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Abstract: Alzheimer’s disease (AD) is one of the most complicated progressive neurodegenerative
brain disorders, affecting millions of people around the world. Ageing remains one of the strongest
risk factors associated with the disease and the increasing trend of the ageing population globally has
significantly increased the pressure on healthcare systems worldwide. The pathogenesis of AD is
being extensively investigated, yet several unknown key components remain. Therefore, we aimed to
extract new knowledge from existing data. Ten gene expression datasets from different brain regions
including the hippocampus, cerebellum, entorhinal, frontal and temporal cortices of 820 AD cases
and 626 healthy controls were analyzed using the robust rank aggregation (RRA) method. Our results
returned 1713 robust differentially expressed genes (DEGs) between five brain regions of AD cases
and healthy controls. Subsequent analysis revealed pathways that were altered in each brain region,
of which the GABAergic synapse pathway and the retrograde endocannabinoid signaling pathway
were shared between all AD affected brain regions except the cerebellum, which is relatively less
sensitive to the effects of AD. Furthermore, we obtained common robust DEGs between these two
pathways and predicted three miRNAs as potential candidates targeting these genes; hsa-mir-17-5p,
hsa-mir-106a-5p and hsa-mir-373-3p. Three transcription factors (TFs) were also identified as the
potential upstream regulators of the robust DEGs; ELK-1, GATA1 and GATA2. Our results provide
the foundation for further research investigating the role of these pathways in AD pathogenesis, and
potential application of these miRNAs and TFs as therapeutic and diagnostic targets.

Keywords: Alzheimer’s disease; GABAergic synapse pathway; retrograde endocannabinoid
signaling; differentially expressed genes

1. Introduction

Alzheimer’s disease (AD) is the leading cause of dementia, affecting between 70
to 80% of older adults with dementia [1]. Currently, over 50 million people are living
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with the disease worldwide, and this number is estimated to rise to 150 million in 2050,
exacerbating an already constrained healthcare system unless preventive strategies are
implemented [2,3]. AD is characterized by initial memory loss and learning impairment,
followed by cognitive dysfunction. The disability progresses significantly throughout the
disease course, culminating in death within 5–12 years of the onset of symptoms [3,4]. The
current treatments only provide symptomatic relief without mitigating disease progression.
Thus, there are a growing number of studies focusing on potential therapeutic agents to
combat AD more directly [5–7]. Most of these studies are focused on two main pathological
hallmarks of AD: senile plaques (SPs) composed of amyloid beta (Aβ) peptides; and
neurofibrillary tangles (NFTs) composed of hyperphosphorylated tau proteins [3–5,8].
Although results of clinical trials have been underwhelming for the past 25 years, recently
an anti-amyloid β antibody, Aducanumab, received an accelerated FDA approval, requiring
further clinical trials to confirm the estimated efficacy [1]. Repeated failure in clinical
trials has challenged our understanding of this multifactorial disease, leading to recent
studies concentrating on advancing our knowledge of the underlying mechanisms of AD
pathogenesis to find druggable targets.

High-throughput ‘omics’-based research including genomics, transcriptomics and
proteomics has made a significant contribution to our current understanding of AD [9–11].
However, currently the biological data are generated at a higher pace than they are being
interpreted. Thus, there is an urgent need to summarize and extract new knowledge
from the existing data. We have used meta-analysis to summarize and extract the most
reliable data from existing results of multiple studies, taking advantage of the increased
statistical power of larger combined sample sizes [12,13]. Several meta-analyses have
been performed on microarray gene expression datasets of different brain regions to
identify altered pathways involved in AD, as brain regions are differentially affected
by AD during the course of disease progression [12,14]. The hippocampus is one of
the earliest brain regions to be affected and thus most studies have been aimed at this
region. However, data from the other regions, especially those that are less affected
by AD such as the cerebellum, are not well-studied and are sometimes even excluded
from meta-analyses [15,16]. Exploring these changes in less affected brain regions may
open new avenues to enhance the molecular understanding of AD pathogenesis and may
reveal key disease mechanism in affected brain regions [17]. Therefore, in this study we
have combined multiple gene expression datasets from five brain regions including the
hippocampus, cerebellum, frontal, entorhinal and temporal cortices of AD patients and
healthy controls, and used robust rank aggregation (RRA) meta-analysis to find robust
differentially expressed genes (DEGs) between AD cases and healthy controls. We further
investigated enriched pathways, related miRNAs and transcription factors of these DEGs.

2. Materials and Methods
2.1. Search Strategy

A comprehensive search was performed through the National Center for Biotechnol-
ogy Information (NCBI) Gene Expression Omnibus (GEO) datasets (https://www.ncbi.nlm.
nih.gov/geo/, accessed on 25 March 2021) to identify eligible data from inception to March
2021. The following key words were used: “Alzheimer”, “hippocampi”, “hippocampus”,
“entorhinal”, “temporal”, “frontal” and “cerebellum”, then three filters including ‘Homo
sapiens’, ‘Series’ and ‘Expression profiling by array’ were applied. In addition, references
of all included studies were screened to find other relevant studies.

2.2. Dataset Selection

Datasets were included in our study if they met the following inclusion criteria:
(1) dataset was original; (2) reported gene expression in hippocampus, cerebellum, frontal,
entorhinal and temporal cortices of AD patients; (3) reported gene expression datasets for
both cases and controls; (4) when the same authors published two or more datasets possibly
using same data or re-analyzed pre-existing datasets, we used the most comprehensive

https://www.ncbi.nlm.nih.gov/geo/
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dataset. GEO2R tool was used to analyze datasets and extract differentially expressed
genes (DEGs) between AD cases and healthy controls. DEGs with adjusted p-value less
than 0.05 were considered significant.

2.3. Integrated Genomic Analysis

Herein, we utilized the R package RRA to integrate microarray datasets downloaded
from the GEO database and identify robust DEGs. The RRA method generates a relevant
list from input lists even if they are incomplete. Robust DEGs with a Bonferroni-corrected
p-value less than 0.05 were considered statistically significant.

2.4. Pathway Analysis

To identify relevant pathways, two lists of down- and up-regulated robust DEGs were
submitted separately in Enrichr, a web-based tool for comprehensive gene set enrichment
analysis (https://maayanlab.cloud/Enrichr/, accessed on 16 July 2021) [18]. KEGG (Kyoto
Encyclopedia of Genes and Genomes) pathway was then used to find the enriched path-
ways from the submitted robust DEGs. Pathways with an adjusted p-value less than 0.05
were considered statistically significant.

2.5. Protein–Protein Interaction Analysis

Protein–protein interaction (PPI) networks were analyzed using Cytoscape string App
plugin with the confidence score > 0.05 as previously described [19]. Briefly, differentially
expressed genes were loaded into Cytoscape, and the Homo sapiens database in the StringDB
was selected to reveal the protein interaction between differentially expressed proteins. In
addition, hub genes within the protein network were identified using CytoHubba, a plugin
within Cytoscape, based on the Maximal Clique Centrality (MCC) algorithm.

2.6. Gene–miRNA Interaction Analysis

The gene–miRNA interaction analysis was carried out in NetworkAnalyst (https://
www.networkanalyst.ca/, accessed on 10 November 2021) [20], which uses collected data of
validated miRNA-gene interaction from TarBase and miRTarBase [21,22]. Related miRNAs
were obtained from both of these databases and common miRNAs were obtained using a
Venn diagram analysis (http://bioinformatics.psb.ugent.be/webtools/Venn/, accessed on
10 November 2021). The miRNAs were then ranked using network topology measurements
including degree and betweenness centrality, and the top five interactions were reported.

2.7. Gene-Transcription Factors Interaction Analysis

Gene-transcription factor interactions were discerned using NetworkAnalyst. Official
gene symbols were submitted and related TFs were explored from three sources including
Encyclopedia of DNA Elements (ENCODE) ChIP-seq data, ChIP Enrichment Analysis
(ChEA) and the JASPAR database [23–25]. Common TFs between these three datasets were
obtained using a Venn diagram analysis, and these common TFs were ranked based on
network topology measurements including degree and betweenness centrality, and the top
five interactions were reported.

3. Results
3.1. Search Results and Characteristics of Selected Studies

The initial search through GEO yielded 37 datasets, of which 10 datasets including
820 AD cases and 626 healthy controls met the eligibility criteria and were included in
our study. The basic characteristics of the included studies are given in Table 1. There
were seven datasets for the frontal cortex (GSE118553, GSE48350, GSE5281, GSE33000,
GSE44770, GSE36980, GSE122063), five datasets for the temporal cortex (GSE118553,
GSE5281, GSE36980, GSE122063, GSE132903), four datasets for the hippocampus (GSE48350,
GSE5281, GSE36980, GSE29378), three datasets for the entorhinal cortex (GSE118553,
GSE48350, GSE5281), and two datasets for the cerebellum (GSE118553, GSE44768).

https://maayanlab.cloud/Enrichr/
https://www.networkanalyst.ca/
https://www.networkanalyst.ca/
http://bioinformatics.psb.ugent.be/webtools/Venn/
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Table 1. Characteristics of the selected datasets based on the criteria of this study.

Datasets Country Number of
AD/CTR Age (years) AD/CTR Postmortem Interval (h)

AD/CTR Brain Region (s) Reference

GSE118553 UK 52/27 82.9 ± 8.7/70.6 ± 15.9 39.9 ± 21.3/
37.1 ± 20.7 Cerebellum/Entorhinal/Frontal/Temporal [26]

GSE44768 USA 129/101 - - Cerebellum [27]
GSE48350 USA 15/39 85.7 ± 6.3/64.8 ± 9.5 - Entorhinal/Frontal/Hippocampus [28]
GSE5281 USA 33/14 79.9 ± 6.9/79.8 ± 9.1 2.5/2.5 Entorhinal/Frontal/Temporal/Hippocampus [29,30]
GSE33000 USA 310/157 80.6 ± 9.0/63.5 ± 9.9 13.7 ± 7.4/22.4 ± 5.8 Frontal [31]
GSE44770 USA 129/101 - - Frontal [27]
GSE36980 Japan 26/62 83.0 ± 5.7 - Frontal/Temporal/Hippocampus [32,33]
GSE122063 USA 12/11 80.9 ± 7.4/78.6 ± 8.5 8.0 ± 4.0/

9.0 ± 3.0 Frontal/Temporal [34]
GSE132903 USA 97/98 85.02 ± 6.75/84.98 ± 6.90 - Temporal [35]
GSE29378 USA 17/16 77.3 ± 9.1/81.7 ± 6.9 11.2 ± 6.3/10.8 ± 6.8 Hippocampus [36]

3.2. Robust Differentially Expressed Genes

DEGs in each brain region were extracted from GEO using the GEO2R tool based on
the limma R package (p-value < 0.05). In the next step the RRA R package was used to
identify the robust DEGs [37]. This process identified a total of 1713 robust DEGs. The
numbers of down- and up-regulated robust DEGs in each tissue were, respectively, 138
and 84 in the cerebellum, 420 and 300 in the frontal cortex, 49 and 54 in the hippocampus,
95 and 90 in the entorhinal cortex, and 282 and 201 in the temporal cortex. Interestingly,
Serpin Family A Member 3 (SERPINA3) was up-regulated in all brain regions and none
of the robust down-regulated genes were shared between all brain regions (Figure 1 and
Supplementary File 1). The full list of robust DEGs and their scores can be found in the
Supplementary File 1.
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indicates the overlap of robust differentially expressed genes with either increased or decreased
abundance in different brain regions; DEGs, differentially expressed genes; CB, cerebellum; FC,
frontal cortex; HPC, hippocampus; EC, entorhinal cortex; TC, temporal cortex.
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3.3. Pathways Enriched by Differentially Expressed Genes

Enrichr and subsequently KEGG were used to predict pathways enriched separately
by down- and up-regulated robust DEGs, and the pathways with an adjusted p-value of less
than 0.05 were considered statistically significant. The top three enriched pathways in each
brain region are provided in Table 2. Interestingly, based on adjusted p-value, the GABAer-
gic synapse pathway, enriched by 18 robust DEGs, and the retrograde endocannabinoid
signaling pathway, enriched by 17 robust DEGS, were meaningful pathways that were
significantly down-regulated in all brain regions except the cerebellum (Figure 2), which
is known to be less affected by AD. In addition, temporal and frontal cortices showed a
higher number of altered pathways. A full list of enriched pathways for each brain region
is provided in Supplementary File 2.
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Table 2. The top three enriched pathways by robust DEGs in each brain region, determined using
Enrichr and KEGG.

Brain Region Pathway Alteration p-Value Adjusted
p-Value

Odd
Ratio

Combined
Score Genes

Cerebellum

Mineral absorption Up-regulated 0.000005926 0.0007467 22.29 268.27 MT2A, MT1A, MT1M,
ATP2B4, MT1G

IL-17 signaling pathway Up-regulated 0.00005312 0.003347 13.75 135.34 NFKBIA, CEBPB, CXCL1,
S100A9, S100A8

NF-kappa B signaling
pathway Up-regulated 0.01023 0.3936 7.09 32.49 NFKBIA, GADD45A, CXCL1

Frontal cortex

Neuroactive
ligand-receptor

interaction
Down-regulated 0.000001048 0.0002148 3.50 48.19

GABBR2, GABRA1, CHRM3,
EDN3, NPY5R, GABRA5,
GABRA4, GRIK1, HTR2A,

MCHR1, GABRG2, MCHR2,
ADCYAP1, CORT, CCKBR,

GLRB, SST, NMU, CRH, TAC3,
TAC1, VIP, GABRD

GABAergic synapse Down-regulated 0.000002641 0.0002252 6.71 86.16
GABBR2, GABRA1, GNG3,
GNG2, SLC32A1, GABRA5,
GABRA4, GAD2, PRKACB,

GABRD, GABRG2

Complement and
coagulation cascades Up-regulated 8.435 × 10−15 1.839 × 10−12 17.28 560.01

C1QB, C1QA, C1S, CFH, C1R,
C5AR1, CFI, F13A1, SERPINA5,
C4B, C4A, C7, CFHR1, C3AR1,

VSIG4, CFB, C1QC

Hippocampus

Bacterial invasion of
epithelial cells Down-regulated 0.0003395 0.01724 13.26 105.91 CDC42, ARPC1A, ARPC4, MET

Synaptic vesicle cycle Down-regulated 0.0003567 0.01724 13.08 103.83 ATP6V1G2, SLC32A1,
SLC17A6, SLC1A6

Morphine addiction Down-regulated 0.0006406 0.01724 11.12 81.74 GABRA1, SLC32A1,
GNG4, PDE2A

Entorhinal
cortex

Morphine addiction Down-regulated 0.00008088 0.009868 12.52 118.00 GABRB2, GABRA1, GNAS,
ADCY1, GABRD

Gap junction Down-regulated 0.0008877 0.02926 10.15 71.31 GNAS, ADRB1,
ADCY1, TUBB4A

GABAergic synapse Down-regulated 0.0009261 0.02926 10.03 70.04 GABRB2, GABRA1,
ADCY1, GABRD

Temporal
cortex

GABAergic synapse Down-regulated 4.244 × 10−10 9.295 × 10−8 12.30 265.54
GABRB3, GABRB2, GABBR2,
GABRA1, SLC12A5, PRKCB,
GABRA5, GAD2, GABRG2,

GLS, GNG3, GNG2, GABRD

Nicotine addiction Down-regulated 4.089 × 10−9 4.478 × 10−7 20.63 398.46
GABRB3, GABRB2, GRIA2,

GABRA1, GABRA5, SLC17A6,
GABRD, GRIN2B, GABRG2

Retrograde
endocannabinoid

signaling
Down-regulated 0.000001505 0.00007431 6.30 84.53

GABRB3, GRIA2, GABRB2,
MAPK9, GABRA1, GNG3,
GNG2, PRKCB, GABRA5,

SLC17A6, GABRD, GABRG2

3.4. Protein-Protein Interaction Analysis

PPI network between down regulated genes in common pathways including GABAer-
gic synapse pathway, retrograde endocannabinoid signaling, morphine and nicotine
addiction-related pathways were retrieved using the Cytoscape stringApp plug-in. Further-
more PRKACB, PRKCB and GABRA1 found as the top three hub genes through CytoHubba
and based on the MCC algorithm (Figure 3).

3.5. Gene–miRNA Interaction and Targeting miRNA Analysis

TarBase, miRTarBase and miRecords databases in NetworkAnalyst were used to in-
dicate miRNAs interacting with the GABAergic synapse pathway and the retrograde
endocannabinoid signaling pathway down-regulated genes, which returned 458 and 346
miRNAs respectively. There were 31 and 32 miRNAs common among all the databases for
DEGs involved in the GABAergic synapse pathway and the retrograde endocannabinoid
signaling pathway, respectively, and these were ranked based on network topology mea-
surements including degree and betweenness centrality. The top five miRNAs are shown
in Figure 4, and the top three miRNAs that were shared between the GABAergic synapse
pathway and the retrograde endocannabinoid signaling pathway are provided in Table 3.

3.6. Gene–Transcription Factors Interaction Analysis

Gene-transcription factors (TFs) interaction analysis was performed in NetworkAna-
lyst, in order to identify upstream regulators of the down-regulated robust DEGs involved
in the GABAergic synapse pathway and the retrograde endocannabinoid signaling path-
way. All transcription factors from the three different databases (ENCODE, ChEA and
JASPAR) were extracted in NetworkAnalyst. Comparison of the identified TFs from these
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databases using a Venn diagram analysis yielded 3 shared TFs in the GABAergic synapse
pathway and 5 TFs in the retrograde endocannabinoid signaling pathway (Figure 4). The
top three TFs that were shared between the GABAergic synapse pathway and the retrograde
endocannabinoid signaling pathway are shown in Table 3.
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(yellow) found the top hub genes based on the MCC algorithm.
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Table 3. The top three shared miRNAs and TFs between the GABAergic synapse pathway and
the retrograde endocannabinoid signaling pathway; data were extracted from miRTarBase and
JASPAR databases.

Name Pathway Degree Betweenness

miRNA

hsa-mir-17-5p GABAergic synapse pathway 2 887.4
Retrograde endocannabinoid signaling 3 1135.6

hsa-mir-106a-5p GABAergic synapse pathway 2 887.4
Retrograde endocannabinoid signaling 3 1135.96

hsa-mir-373-3p GABAergic synapse pathway 1 0
Retrograde endocannabinoid signaling 1 0

Transcription Factors

ELK1
GABAergic synapse pathway 2 7.35

Retrograde endocannabinoid signaling 2 8.13

GATA1
GABAergic synapse pathway 1 0

Retrograde endocannabinoid signaling 1 0

GATA2
GABAergic synapse pathway 10 245.61

Retrograde endocannabinoid signaling 10 261.51
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Figure 4. Transcription factors and miRNAs analyses. (A,B) results represent Venn diagram analysis
for the top five miRNAs and the three TFs that interact with the robust DEGs of the GABAergic
synapse pathway. (C,D) show Venn diagram analysis and the top five miRNAs and the TFs interacting
with the robust DEGs involved in retrograde endocannabinoid signaling.

4. Discussion

In this study, ten microarray gene expression datasets available in the public domain
were analyzed using an integrated genomic approach. The datasets comprised 1446 brain
samples from five brain regions, including the hippocampus, cerebellum, frontal, entorhinal
and temporal cortices. Between the AD cases and the healthy controls, 1713 robust DEGs
were identified, showing different dysregulated pathways in these brain regions. The
down-regulation of the GABAergic synapse pathway and the retrograde endocannabinoid
signaling pathway was common among the hippocampus, frontal, entorhinal and tem-
poral cortices, all of which have been shown to be more impacted by AD, compared to
the cerebellum.
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A balance between neural excitation and inhibition is vital to proper brain function and
its disruption contributes to several neuronal disorders such as AD. The down-regulation
of the GABAergic synapse pathway and the decreased levels of Gamma-aminobutyric
acid (GABA) in the hippocampus, frontal, entorhinal and temporal cortices found in this
study have also been reported in other human and mice AD studies [35,36]. GABA is the
main inhibitory neurotransmitter within the mammalian central nervous system [38]. A
decreased level of GABA receptor subunits such as GABRA1, GABRA5, GABRB1, GABRB2,
GABRB3, GABRG1, GABRG2 and GABRG3 have been observed at the transcriptional and
protein levels in the hippocampus of AD patients [39–43].

However, in contrast to these results, the expression of another GABA receptor named
GABRA6 was increased in cultured rat cerebellar granule neurons following treatment
with amyloid beta (Aβ), one of the main pathological hallmark proteins implicated in
AD [43,44]. Studies in both mice and humans have reported that the presence of Aβ can
decrease the numbers and activity of GABA inhibitory interneurons, leading to impaired
synaptic transmission and disrupted neural network activity, and resulting in cognitive
impairment [45]. Interestingly, transplantation of GABA progenitor neurons into the
hippocampus of mice overexpressing Aβ restored normal learning and memory [46].

Furthermore, the accumulation of phosphorylated tau (p-tau), another pathological
hallmark protein of AD, in the hippocampus reduced extracellular GABA level and led
to tau-induced anxiety in mice. In addition, p-tau accumulation in GABAergic interneu-
rons in the dentate gyrus of AD patients and mice also caused disruption of GABAergic
transmission [47,48]. This means that the GABAergic synapse pathway is down-regulated
in AD, although there are some conflicting results from mice models [43]. However, AD
has a complex neuropathological basis and mice models may not accurately represent
underlying pathological events of AD in humans.

Another common down-regulated pathway between the AD sensitive brain regions
was the retrograde endocannabinoid signaling pathway. The endocannabinoid system
(ECS) is comprised of endocannabinoids (eCBs) that are endogenous lipid-based neurotrans-
mitters, along with their receptors such as cannabinoid receptor 1 (CB1R) and cannabinoid
receptor 2 (CB2R), and the enzymes that are involved in their synthesis and degrada-
tion [49]. Arachidonoyl ethanolamide (anandamide or AEA) and 2-arachidonoylglycerol
(2-AG) are the two main endocannabinoids [49]. ECS plays a vital role in the central ner-
vous system function and in the regulation of the endocrine and immune systems [50,51].
Endocannabinoid-mediated retrograde signaling was first reported in 2001, where eCBs
were shown to mediate a type of short-term synaptic plasticity known as depolarization-
induced suppression of inhibition (DSI)/excitation (DSE) [52,53]. Later, the effect of eCBs
on long-term depression (eCB-LTD) on both excitatory and inhibitory synapses was also ob-
served [54]. Although the alteration of ECS components in AD animal models has remained
controversial and mostly unchanged levels of these components in the hippocampus have
been reported, beneficial effects of CB1R activation via exogenous cannabinoids has been
observed against Aβ-induced neurotoxicity, particularly microglia activation in several cell
models [54–56]. Moreover, eCBs have anti-inflammatory and neuroprotective properties,
and since neuroinflammation is a key driver of neurodegenerative diseases such as AD,
restoration of dysregulated ECS has emerged as a promising therapeutic option [55].

Interestingly, the down-regulation of retrograde endocannabinoid signaling also has
been observed in a meta-analysis of gene expression data from patients with mild cognitive
impairment (MCI) [57]. MCI patients are at a higher risk of developing AD as MCI is
considered an early stage of AD. Thus, the molecular changes in the respective brain regions
of MCI patients may represent early changes that mediate the development of AD [57,58].
The down-regulation of the retrograde endocannabinoid system in MCI patients, and in
the four AD sensitive brain regions but not in the cerebellum of AD patients, highlighted
dysregulation of this pathway as an early and key change in AD development. As such,
this can be a promising therapeutic target for early intervention against AD progression.
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The miRNAs and TFs that interact with robust DEGs in the GABAergic synapse
pathway and in retrograde endocannabinoid signaling were also investigated here. Among
the identified miRNAs, hsa-mir-17-5p, hsa-mir-106a-5p and hsa-mir-373-3p were found
to interact with robust DEGs of both pathways. Recently, the elevated levels of hsa-mir-
17-5p have been reported in the human AD brain and the microglia of AD mice models,
coupled with the down-regulation of autophagy markers, that consequently impaired Aβ

clearance [59]. In contrast to our results, decreased serum level of hsa-mir-106a-5p has
previously been observed in AD patients [60].

However, recent studies have reported that hsa-mir-106a-5p decreased the level of
VEGFA, which plays a protective role against cognitive impairment in AD patients, and its
level is decreased in AD patients [61,62]. Therefore, the increased level of hsa-mir-106a-5p
in AD patients may be involved in cognitive impairment, and thus its abundance may
be altered in patients with mild cognitive impairment. No data is yet available in the
published literature on the role of hsa-mir-373-3p in AD; however, a recent study indicated
that hsa-mir-373-3p inhibits epithelial–mesenchymal transition in choriocarcinoma through
targeting TGFβR2 [63]. Interestingly, the level of TGFβR2 in AD patients was shown to
be about 50% lower than normal [64], therefore hsa-mir-373-3p may be associated with
decreased level of TGFβR2 in AD patients. Collectively, there are limited data about these
miRNAs and further studies are needed to establish their role in AD.

In order to investigate the upstream regulation of robust DEGs, TF analysis was per-
formed. This returned the three TFs, ELK1, GATA1 and GATA2 that interact with robust
DEGs involved in both the GABAergic synapse pathway and the retrograde endocannabi-
noid signaling pathway. ELK-1 belongs to the ternary complex factor (TCF) subfamily of
ETS-domain TFs and its presence in diverse brain regions has been previously reported [65].
ELK-1 plays a dual role in neuronal function; while its expression is required for proper
neuronal differentiation, overexpression and distinct phosphorylation of this TF is toxic
for neuronal cells [66]. ELK-1 decreases expression of the presenilin 1 gene (PS1), which
is involved in the proteolytic processing of the amyloid precursor protein (APP) and the
generation of amyloidogenic Aβ, while, in turn, the presence of Aβ decreases ELK-1 acti-
vation and may derepress PS1 expression [66–68]. The other two identified TFs, GATA1
and GATA2, belong to the GATA family. Aberrant expression of GATA1 has been reported
in AD patients previously, and has been shown to induce the expression of the β-amyloid
precursor mRNA, and modulate γ-secretase activity. GATA1 may therefore be involved in
the impairment of the synaptic plasticity and cognitive function [69,70]. GATA2, on the
other hand, has been reported to play a key role in neuroglobin (NGB) activation, which
has been shown to exhibit protective effects for neuronal cells in AD [71]. The expression
of NGB is increased in early and moderate stages of AD but significantly decreased in
advanced stages, which might be due to the decreased levels of GATA2 in the advanced
stages of AD [72,73]. However, further studies are needed to evaluate this association.
Interestingly, previous analysis of DEGs between the entorhinal cortex of AD patients
and healthy controls also showed alteration of the retrograde endocannabinoid signaling
pathway and predicted GATA1 and GATA2 as the upstream regulators of the identified
DEGs in AD [74]. Our results here identified altered pathways in each brain region of
AD patients and shared pathways between AD sensitive brain regions. Furthermore, our
study also predicted miRNAs and TFs that interact with the DEGs involved in these shared
pathways. However, experimental data about these regulators are limited and further
studies are needed to reveal their role in AD pathogenesis.

5. Conclusions

In this study, we identified robust DEGs in different brain regions of AD patients
and investigated enriched pathways using these genes. Our results suggested that the
GABAergic synapse pathway and the retrograde endocannabinoid signaling pathway are
two key pathways involved in AD pathogenesis, shared between all AD sensitive brain
regions but not cerebellum. Further analyses revealed hsa-mir-17-5p, hsa-mir-106a-5p
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and hsa-mir-373-3p as potential miRNAs that may be involved in the down-regulation
of these pathways. TF analysis further demonstrated ELK-1, GATA1 and GATA2 are
upstream regulators of these pathways. Additional studies using large cohorts of AD
patients are warranted to assess the potential therapeutic targets related to these pathways,
and determine the miRNA and TFs involved in their regulation.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
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60. Yılmaz, Ş.G.; Erdal, M.E.; Özge, A.A.; Sungur, M.A. Can peripheral MicroRNA expression data serve as epigenomic (upstream)
biomarkers of Alzheimer’s disease? Omics A J. Integr. Biol. 2016, 20, 456–461. [CrossRef]

61. Ma, J.; Wang, W.; Azhati, B.; Wang, Y.; Tusong, H. miR-106a-5p Functions as a Tumor Suppressor by Targeting VEGFA in Renal
Cell Carcinoma. Dis. Markers 2020, 2020, 8837941. [CrossRef] [PubMed]

http://doi.org/10.1186/gm452
http://doi.org/10.1093/bioinformatics/btr709
http://doi.org/10.3389/fnins.2020.00660
http://doi.org/10.1016/S0006-8993(98)00437-5
http://doi.org/10.1016/S0306-4522(03)00030-7
http://doi.org/10.1111/j.1440-1789.2008.00978.x
http://www.ncbi.nlm.nih.gov/pubmed/19019179
http://doi.org/10.1016/S0169-328X(97)00347-1
http://doi.org/10.3389/fnagi.2016.00031
http://doi.org/10.1111/jnc.12471
http://www.ncbi.nlm.nih.gov/pubmed/24118019
http://doi.org/10.1016/j.neuron.2017.11.028
http://www.ncbi.nlm.nih.gov/pubmed/29301104
http://doi.org/10.1523/JNEUROSCI.0693-14.2014
http://www.ncbi.nlm.nih.gov/pubmed/25031394
http://doi.org/10.1016/j.ymthe.2016.10.010
http://www.ncbi.nlm.nih.gov/pubmed/28129110
http://doi.org/10.1016/j.stem.2019.12.015
http://doi.org/10.3390/biom11101411
http://doi.org/10.1016/j.biopsych.2015.07.028
http://doi.org/10.1038/s41582-019-0284-z
http://www.ncbi.nlm.nih.gov/pubmed/31831863
http://doi.org/10.1016/S0896-6273(01)00247-1
http://doi.org/10.1038/35069076
http://www.ncbi.nlm.nih.gov/pubmed/11279497
http://doi.org/10.3390/ijms19030833
http://doi.org/10.1177/1073858414524632
http://doi.org/10.1093/brain/awr046
http://doi.org/10.3390/ijms20215403
http://doi.org/10.1038/s41598-021-96914-3
http://doi.org/10.3389/fimmu.2021.705581
http://doi.org/10.1089/omi.2016.0099
http://doi.org/10.1155/2020/8837941
http://www.ncbi.nlm.nih.gov/pubmed/33224312


Cells 2022, 11, 987 14 of 14

62. Mahoney, E.R.; Dumitrescu, L.; Moore, A.M.; Cambronero, F.E.; De Jager, P.L.; Koran, M.E.I.; Petyuk, V.A.; Robinson, R.A.;
Goyal, S.; Schneider, J.A. Brain expression of the vascular endothelial growth factor gene family in cognitive aging and alzheimer’s
disease. Mol. Psychiatry 2021, 26, 888–896. [CrossRef] [PubMed]

63. Lu, Y.; Li, X.; Zuo, Y.; Xu, Q.; Liu, L.; Wu, H.; Chen, L.; Zhang, Y.; Liu, Y.; Li, Y. miR-373-3p inhibits epithelial–mesenchymal
transition via regulation of TGFβR2 in choriocarcinoma. J. Obstet. Gynaecol. Res. 2021, 47, 2417–2432. [CrossRef] [PubMed]

64. Fessel, J. Ineffective levels of transforming growth factors and their receptor account for old age being a risk factor for Alzheimer’s
disease. Alzheimer’s Dement. Transl. Res. Clin. Interv. 2019, 5, 899–905. [CrossRef] [PubMed]

65. Sharma, A.; Callahan, L.M.; Sul, J.-Y.; Kim, T.K.; Barrett, L.; Kim, M.; Powers, J.M.; Federoff, H.; Eberwine, J. A neurotoxic
phosphoform of Elk-1 associates with inclusions from multiple neurodegenerative diseases. PLoS ONE 2010, 5, e9002. [CrossRef]

66. Galan, B.; Caboche, J. Elk-1 a transcription factor with multiple facets in the brain. Front. Neurosci. 2011, 5, 35.
67. Tong, L.; Balazs, R.; Thornton, P.L.; Cotman, C.W. β-amyloid peptide at sublethal concentrations downregulates brain-derived

neurotrophic factor functions in cultured cortical neurons. J. Neurosci. 2004, 24, 6799–6809. [CrossRef]
68. Pastorcic, M.; Das, H.K. Ets transcription factors ER81 and Elk1 regulate the transcription of the human presenilin 1 gene promoter.

Mol. Brain Res. 2003, 113, 57–66. [CrossRef]
69. Chu, J.; Wisniewski, T.; Praticò, D. GATA 1-mediated transcriptional regulation of the γ-secretase activating protein increases A β

formation in D own syndrome. Ann. Neurol. 2016, 79, 138–143. [CrossRef]
70. Roy, J.; Mallick, B. Altered gene expression in late-onset Alzheimer’s disease due to SNPs within 3′ UTR microRNA response

elements. Genomics 2017, 109, 177–185. [CrossRef]
71. Tam, K.T.; Chan, P.K.; Zhang, W.; Law, P.P.; Tian, Z.; Fung Chan, G.C.; Philipsen, S.; Festenstein, R.; Tan-Un, K.C. Identification of

a novel distal regulatory element of the human Neuroglobin gene by the chromosome conformation capture approach. Nucleic
Acids Res. 2017, 45, 115–126. [CrossRef] [PubMed]

72. De Vidania, S.; Palomares-Perez, I.; Frank-García, A.; Saito, T.; Saido, T.C.; Draffin, J.; Szaruga, M.; Chávez-Gutierrez, L.;
Calero, M.; Medina, M. Prodromal Alzheimer’s Disease: Constitutive Upregulation of Neuroglobin Prevents the Initiation of
Alzheimer’s Pathology. Front. Neurosci. 2020, 14, 1001. [CrossRef] [PubMed]

73. Ciccone, L.; Nencetti, S.; Socci, S.; Orlandini, E. Neuroglobin and neuroprotection: The role of natural and synthetic compounds
in neuroglobin pharmacological induction. Neural Regen. Res. 2021, 16, 2353. [PubMed]

74. Bottero, V.; Powers, D.; Yalamanchi, A.; Quinn, J.P.; Potashkin, J.A. Key Disease Mechanisms Linked to Alzheimer’s Disease in
the Entorhinal Cortex. Int. J. Mol. Sci. 2021, 22, 3915. [CrossRef]

http://doi.org/10.1038/s41380-019-0458-5
http://www.ncbi.nlm.nih.gov/pubmed/31332262
http://doi.org/10.1111/jog.14809
http://www.ncbi.nlm.nih.gov/pubmed/33955122
http://doi.org/10.1016/j.trci.2019.11.007
http://www.ncbi.nlm.nih.gov/pubmed/31890854
http://doi.org/10.1371/journal.pone.0009002
http://doi.org/10.1523/JNEUROSCI.5463-03.2004
http://doi.org/10.1016/S0169-328X(03)00090-1
http://doi.org/10.1002/ana.24540
http://doi.org/10.1016/j.ygeno.2017.02.006
http://doi.org/10.1093/nar/gkw820
http://www.ncbi.nlm.nih.gov/pubmed/27651453
http://doi.org/10.3389/fnins.2020.562581
http://www.ncbi.nlm.nih.gov/pubmed/33343276
http://www.ncbi.nlm.nih.gov/pubmed/33907006
http://doi.org/10.3390/ijms22083915

	Introduction 
	Materials and Methods 
	Search Strategy 
	Dataset Selection 
	Integrated Genomic Analysis 
	Pathway Analysis 
	Protein–Protein Interaction Analysis 
	Gene–miRNA Interaction Analysis 
	Gene-Transcription Factors Interaction Analysis 

	Results 
	Search Results and Characteristics of Selected Studies 
	Robust Differentially Expressed Genes 
	Pathways Enriched by Differentially Expressed Genes 
	Protein-Protein Interaction Analysis 
	Gene–miRNA Interaction and Targeting miRNA Analysis 
	Gene–Transcription Factors Interaction Analysis 

	Discussion 
	Conclusions 
	References

