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Abstract: Neuronal polarity established in developing neurons ensures proper function in the mature
nervous system. As functionally distinct cellular compartments, axons and dendrites often require
different subsets of proteins to maintain synaptic transmission and overall order. Although neurons
in the mature CNS do not regenerate throughout life, their interactions with their extracellular envi-
ronment are dynamic. The axon remains an overall protected area of the neuron where only certain
proteins have access throughout the lifespan of the cell. This is in comparison to the somatodendritic
compartment, where although it too has a specialised subset of proteins required for its maintenance,
many proteins destined for the axonal compartment must first be trafficked through the former.
Recent research has shown that axonal proteins contain specific axon-targeting motifs that permit
access to the axonal compartment as well as downstream targeting to the axonal membrane. These
motifs target proteins to the axonal compartment by a variety of mechanisms including: promoting
segregation into axon-targeted secretory vesicles, increasing interaction with axonal kinesins and
enhancing somatodendritic endocytosis. In this review, we will discuss axon-targeting motifs within
the context of established neuron trafficking mechanisms. We will also include examples of how
these motifs have been applied to target proteins to the axonal compartment to improve both tools
for the study of axon biology, and for use as potential therapeutics for axonopathies.

Keywords: axon-targeting motif; neuronal polarity; protein trafficking; somatodendritic; transmem-
brane protein; transcytosis; secretory pathway; axon transport

1. Introduction

Mature central nervous system neurons display a unique morphology among mam-
malian cell types. Common multipolar neurons possess a highly polarised morphology
consisting of a cell body (soma) with many branching dendrites and a single axon, which
may end in a presynaptic terminal at distances ranging from microns to metres away from
the cell body, such as in mammals [1]. This polarity of morphology is established de novo
early in development, once migrating immature neurons reach their destination within the
cerebrum. Immature neurons at first possess many processes but as they develop, one pro-
cess is specified to become the axon and undergoes rapid outgrowth towards its anatomical
target. Axon specification and outgrowth is driven by extracellular cues (e.g., laminin in
the extracellular matrix) and intracellular changes such as cytoskeletal remodelling and
trafficking of growth machinery into the nascent axon [2].

Having established polarity, mature neurons are considered to consist of two func-
tionally distinct compartments, the somatodendritic and axonal compartments, which are
responsible for the reception of post-synaptic potentials, and the initiation and transmission
of action potentials, respectively. The distinct complement of proteins localised to either
compartment underlies the normal function of mature neurons. Indeed, mislocalisation
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of axonal proteins may cause or contribute to neuropathology, such as in Alzheimer’s
disease and amyotrophic lateral sclerosis [3,4]. Thus, much of the research has focused on
characterising the mechanisms by which mature neurons may establish and maintain such
polarity of protein localisation between the somatodendritic and axonal compartments, and
how these mechanisms change during cellular maturation and go awry in pathology. This
review discusses the mechanisms by which neurons maintain polarity of transmembrane
protein localisation between the somatodendritic and axonal compartments through pro-
tein sorting, trafficking and exclusion mechanisms, and how short peptide axon-targeting
motifs (ATMs) interact with these different pathways to promote axonal localisation of
transmembrane proteins. Finally, the potential further methodological and therapeutic
applications of ATMs are discussed.

2. Two Distinct Pathways Mediate Transmembrane Protein Trafficking in
CNS Neurons

Transmembrane proteins are initially synthesised and adopt their native confirmation
in the endoplasmic reticulum (ER) then undergo further maturation by post-translation
modifications as they transit through the Golgi network. In the trans-Golgi network (TGN),
transmembrane proteins are segregated into distinct populations of somatodendritic and
axonal vesicles, a process that forms the basis of polarity maintenance in neurons. The
mechanisms by which axonal cargoes are differentiated from somatodendritic cargoes
in the neuronal TGN are not completely understood. However, recent evidence from
Caenorhabditis elegans suggests that cargo recognition is dependent in part on competition
between clathrin-associated adaptor protein (AP) complexes [5]. Binding of AP-3 complexes
to axonal cargoes sorts these into vesicles destined for the axon whereas binding of AP-1
targets these to the somatodendritic domain [5,6]. Preferential binding of either AP complex
is mediated by dileucine motifs ([D/E]xxxL[L/I]) present in the cytoplasmic tails of certain
transmembrane proteins and those with higher affinity for AP-3 thus promoting axonal
localisation of transmembrane proteins [5].

Having left the TGN, vesicles containing axonal proteins are trafficked towards both
the somatodendritic and axonal compartments, whereas vesicles containing somatoden-
dritic proteins, such as transferrin receptor (TfR), are excluded from the axon [7]. Some
axonal transmembrane proteins are trafficked directly to the axon in secretory vesicles
without interacting with the somatodendritic membrane, in a pathway resembling the
canonical secretory pathway. Such trafficking is known to occur for tropomyosin receptor
kinase B (TrkB) [8] and neuron–glia cell adhesion molecule (NgCAM) [9]. One might
expect that vesicles carrying axonal proteins are efficiently routed directly to the axonal
membrane without interacting with the somatodendritic membrane; however, a second
level of transmembrane protein sorting occurs at the somatodendritic surface. Indeed,
axonal transmembrane proteins may be exocytosed at the somatodendritic membrane
then rapidly reinternalized into endosomes [9,10]. Endosomes containing axonal cargo are
then either degraded [9,11] or recycled to the axon in a process resembling transcytosis
in epithelial cells [9,12]. Interestingly, binding of ligands to TrkA and type-1 cannabinoid
receptor (CB1R) at the axonal or somatodendritic surface, respectively, has been shown to
stimulate transcytosis to the axonal compartment [13]. These findings could suggest that
the local extracellular environment of both the axon and soma plays a role in regulating the
contribution of transcytosis to axonal protein trafficking.

Since finding that these two pathways operate in neurons, their relative contribution to
the sorting of axonal proteins has remained somewhat unclear. For example, seminal papers
on this topic disagreed on the role of transcytosis in axonal expression of NgCAM [9,12].
With improvement of live-cell imaging of surface labelled proteins this dispute may soon
be resolved. Indeed, a recent report using live-cell imaging of hippocampal neurons
with surface labelled proteins found that the majority (84–90%) of vesicles containing
somatodendritic surface-labelled VAMP2 and NgCAM were targeted to lysosome-like
endosomes upon endocytosis and that direct axon-targeting in the secretory pathway
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accounted for the majority (85–94%) of anterograde vesicles carrying these proteins in
the axon [11]. This is a remarkable finding, as it suggests that transcytotic trafficking of
axonal proteins is quite inefficient in neurons as much of the axonal transmembrane protein
retrieved from the somatodendritic surface is targeted for degradation.

3. Maintenance of Transmembrane Protein Polarity by the Proximal Axon

The two previously discussed trafficking pathways for transmembrane proteins in
neurons are further supplemented by a host of mechanisms which function to exclude
somatodendritic transmembrane proteins from the axonal compartment. Entry of vesicular
cargo to the axon is regulated by two distinct regions at the proximal axon, the pre-axonal
exclusion zone (PAEZ) and the axon initial segment (AIS).

The PAEZ lies just proximal to the axon hillock within the soma (Figure 1). Within
the PAEZ, a population of somatodendritic vesicles are returned to the cell soma without
entering the axon [14]. Sorting at the PAEZ appears to be regulated primarily by interactions
of cargo-bound kinesins with post-translationally modified microtubules within the PAEZ,
since fusion to a kinesin light chain binding sequence or overexpression of an acetylation
mimic of α-tubulin results in axonal entry of TfR [14]. Microtubule associated proteins
also play a role in filtering cargo at the PAEZ. Microtubule associated protein 2 (MAP2),
which localises to the somatodendritic compartment, was shown to inhibit the binding of
kinesin-1 to microtubules to favour anterograde trafficking of kinesin-3 bound cargoes in
hippocampal neurons and dorsal root ganglion (DRG) neurons [15]. Similarly, the ability of
secretory vesicles carrying TrkB to cross the PAEZ was shown to rely on kinesin-3 whereas
rapid anterograde trafficking in the axon required kinesin-1 [8]. Thus, even in neurons
lacking an AIS, such as DRG neurons [15], entry to the axon and correct distribution of cargo
within the axon requires vesicles carrying axonal cargoes to associate with the appropriate
complement of kinesins which preferentially bind to and ‘walk’ along axonal microtubules.

Beyond the PAEZ lies the AIS, which makes up the first 20–60 µm of the axon in
central nervous system neurons [16]. The AIS is marked by a unique molecular architecture
that consists of the cytoskeletal proteins, filamentous actin (f-actin), ankyrin-G (AnkG)
and βIV-spectrin that together form an annular cortex or ‘undercoat’ below the plasma
membrane of the AIS [17] (Figure 1). Exclusion of somatodendritic transmembrane proteins
at the AIS appears to be mediated in part via inhibition of lateral diffusion between the
somatodendritic and axonal membranes and a cytoplasmic vesicle filter [18]. AnkG is
necessary for the function of the AIS as a selective filter to maintain neuronal polarity
since its knockdown allows somatodendritic proteins to cross the AIS and stimulates
outgrowth of dendrite-like processes from the proximal axon [19,20]. Interaction with
AnkG clusters many transmembrane proteins at high density on the AIS membrane, for
example voltage-gated sodium channels (e.g., Nav1.2 and Nav1.6) and cell adhesion
molecules (e.g., neurofascin-186 (NF-186) and L1) [21–23]. These clustered transmembrane
proteins potentially inhibit lateral diffusion of membrane-associated proteins between
neuronal compartments by greatly increasing the path length required to diffuse across the
AIS due to molecular crowding [24,25].

As previously mentioned, the AIS also represents a cytoplasmic filtering point at
which somatodendritic vesicles may be returned to the cell soma [16]. In contrast to
somatodendritic vesicles, which pause before undergoing retrograde trafficking at the
AIS [7,26], vesicles carrying axonal proteins appear unhindered as they traverse the AIS [22].
Indeed, as the AIS develops it recruits signaling proteins which interact with the cell’s
trafficking machinery to exclude somatodendritic cargoes. For example, the ARF6 guanine-
exchange factor EFA6 accumulates in the AIS during cortical neuron development where it
activates ARF6, which induces retrograde trafficking of vesicles carrying integrins [20,27,28].
Similarly, nuclear distribution element-like 1 (NDEL1) localises to the AIS where it regulates
dynein, potentially via lissencephaly 1 (Lis1), to enhance retrograde trafficking of vesicles
carrying TfR that enter the AIS [29]. Besides regulation via the activity of microtubule-based
motors, actin-based myosin motors also play a role in regulating vesicle trafficking at the
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AIS. Specifically, myosin Va, a plus-end directed motor, has been shown to be involved in
excluding somatodendritic vesicles from the AIS and returning them to the somatodendritic
domain, potentially by retrieving these vesicles from microtubules in the AIS where the
plus-ends of actin filaments point toward the soma [30]. The accumulation of proteins
that promote the activity of retrograde motors associated with somatodendritic cargoes
following the initial assembly of the AIS may underlie further development of the AIS as
a barrier to axonal entry of proteins. For example, in postnatal day 5 rat pups the AnkG
is localized to the AIS however virally-expressed integrins are still permitted entry to
the axon whereas in adult animals virally-expressed integrins are completely excluded
from the axons of central neurons [31]. This suggests that the mechanical properties of the
AIS scaffold alone may not be sufficient to exclude all somatodendritic cargoes and that
maintenance of transmembrane protein polarity becomes more stringent with age.

Figure 1. Organisation of the pre-axonal exclusion zone (PAEZ) and axon initial segment (AIS) of
mature central nervous system neurons. The PAEZ is located within the soma just proximal to the
AIS. In the axon, the majority of microtubules are oriented with the plus-end pointing away from the
soma. Plus-end directed kinesins drive anterograde transport and minus-end directed dyneins drive
retrograde axonal transport of transmembrane proteins. The AIS is found in the axon hillock and is
marked by a unique molecular architecture consisting of periodic rings of f-actin and a submembrane
undercoat composed of ankyrin-G and βIV-spectrin. Furthermore, the AIS membrane is densely
packed with transmembrane proteins such as voltage-gated ion channels and cell adhesion molecules.

4. Axon-Targeting Motifs Exploit Diverse Trafficking Pathways to Promote
Axonal Localisation

The aforementioned mechanisms of protein sorting, trafficking and exclusion are
dependent on the recognition of cargoes by the neuronal protein sorting machinery. In-
teractions between cargo proteins and protein sorting machinery are mediated in part
by axon-targeting motifs. The term ‘axon-targeting motifs’ is generally used to describe
relatively short peptide motifs, usually found in axonal proteins, that when tagged to
a non-polarised or somatodendritic protein are sufficient to target it to the axon. Similarly,
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there also exist mRNA axon-targeting ‘zip-codes’, cis-acting elements that drive axonal
localisation of mRNA in the 3′ UTR of axon-enriched mRNAs, for example, in β-actin [32]
and the axonal microtubule associated protein tau [33] but these are outside the remit
of this review (see review by Turner-Bridge and colleagues, 2020 [34]). ATMs display
a variety of targeting mechanisms, reflecting the diversity of trafficking routes that proteins
take to reach the axon. This section aims to discuss mechanisms by which ATMs target
transmembrane proteins to the axonal compartment (see Table 1 for overview of ATMs
discussed in this section).

Table 1. Summary of previously identified and characterised axon-targeting motifs (ATMs). Examples
of several ATMs characterised in the literature. The protein of origin, reported location and amino
acid sequence of each ATM is given. Where possible, the putative targeting mechanism is also
summarised alongside the model used to study the targeting mechanism.

Protein of Origin Region Peptide Putative Mechanism of Targeting Model Source

Amyloid precursor
protein (APP) C-terminus GYENPTYKFFEQMQN

Promotes interaction with KLC1
and NPTY motifs recruits JIP-1b

which interacts with KLC1 to
promote association with kinesin-1.

Giant squid axon,
primary E18 rat

hippocampal neurons,
and primary E14-16
murine dorsal root
ganglion neurons

[35–37]

Paralemmin C-terminus DMKKHRCKCCSIM
Dicysteine palmitoylation motif
with nearby basic amino acids

sufficient for targeting to secretory
pathway, likely through association

with lipid rafts in
trans-Golgi network.

Primary E18 rat
hippocampal neurons

[38]

Growth associated
protein-43 (GAP-43) N-terminus MLCCMRRTKQV [35,38,39]

Kv3.1 C-terminus MAKQKLPKKKKHIPRRP
Interacts with T1 tetramerisation
domain and Ankyrin-G binding

motif.

Primary E18 rat
hippocampal neurons [40]

Nav1.2 C-terminus CLDILFAFT Stimulates clathrin-dependent
somatodendritic endocytosis.

Primary E18 rat
hippocampal neurons [10]

Voltage gated sodium
channel α subunits Intracellular loop II-III (V/A)P(I/L)AxxE(S/D)D Ankyrin-G binding motif.

Primary dorsal
root ganglion

neuron-Schwann cell
myelinating coculture

[41,42]

Optineurin (OPTN)
Myosin

VI-binding domains

OPTN AAs 420-526 Association with actin-based
minus-end directed myosin

VI stimulates
somatodendritic endocytosis.

Primary E18 rat
cortical neurons

[43]Disabled homologue 2
(DAB2) DAB2 AAs 649-719

Neurexin-1α
(Nxn1α) C-terminus Nxn-1α AAs 1420-1477

PDZ recognition motif is required
for Golgi exit and sorting into
secretory vesicles, preferential

exocytosis onto axon membrane.

Primary P0 murine
hippocampal neurons [44]

Acetylcholine receptor
α4 subunit M3-M4 loop [D/E]xxxL[L/I]

AP-2 and -3 binding motif
stimulates

somatodendritic endocytosis.

Primary P0 rat
hippocampal neurons [45]

Contactin-associated
protein-like 2 (Caspr2) 4.1 binding domain RYMFRHKGT

Protein kinase C phosphorylation of
[R/K]X[pS/pT] motif increases
somatodendritic endocytosis.

Primary E18 rat
hippocampal neurons [46]

SifA and
kinesin-interacting

protein (SKIP)

Kinesin light chain
binding sequence TNLEWDDSAI KLC1 binding motif promotes

association with kinesin-1.
Primary E18 rat

hippocampal neurons [14]

Several ATMs have been identified that appear to target proteins to secretory vesicles
destined for the axon at the TGN. For example, the C-terminus of neurexin-1α (Nxn1α)
contains a PDZ-binding motif that targets Nxn1α to axon-targeted vesicles without the
protein appearing on the somatodendritic membrane suggesting direct targeting [44].
Beyond interaction with the proteinaceous sorting machinery at the TGN, ATMs from both
growth associated protein-43 (GAP-43) and paralemmin contain dicysteine palmitoylation
motifs with adjacent dibasic amino acids that anchor these proteins into detergent-insoluble
glycolipid-enriched complexes present in the plasma membrane (Figure 2A) [35,38]. These
palmitoylation motifs may aid proteins in associating with vesicles in the secretory pathway
during TGN sorting, as has been shown for GAP-43 [47]. Indeed, another cytosolic axonal
protein, MAP6, also contains a similar N-terminal dicysteine palmitoylation motif with
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adjacent basic residues (RACCIAR) which promotes association with membranes of Rab6
positive secretory vesicles in the cell soma [48]. These motifs originate in lipid-anchored
peripheral membrane proteins and studies using these motifs have tagged them to cytosolic
proteins [35,36,49], thus whether they may successfully target transmembrane proteins
remains unclear.

Figure 2. Axon-targeting motifs influence diverse steps in the secretory and transcytotic trafficking
pathways of transmembrane proteins to the axonal compartment. (A) A dicysteine palmitoylation
motif found in Paralemmin and GAP-43 promotes association with lipid rafts in the trans-Golgi
network, sorting transmembrane proteins into axon-targeted secretory vesicles. (B) Fused myosin
VI binding domains of optineurin and DAB2 promote endocytosis of transmembrane proteins from
the somatodendritic membrane for transcytotic delivery to the axon. (C) The C-terminus of APP
drives association with light chains of kinesin-1, promoting axonal entry and anterograde trafficking.
(D) Ankyrin-G (AnkG) binding domains found in Nav1.6 and Kv3.1 promote localisation to the axon
initial segment potentially via association with AnkG on kinesin-3 driven vesicles or by anchoring
transmembrane proteins in place following lateral diffusion into the AIS.

As previously discussed, many transmembrane proteins undergo transcytosis to
reach the axonal membrane [9,12]. Therefore, increasing endocytosis of a protein from the
somatodendritic membrane may increase the pool of endosomes available for transcytosis.
Indeed, an early paper by Garrido and colleagues found that fusion of a dileucine-based
endocytosis signal from the cytoplasmic domain of Nav1.2 to the non-polarised type
1 transmembrane protein CD4 increased its axonal localisation via clathrin-dependent
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endocytosis [10]. Another protein which may play a role in selective somatodendritic
endocytosis of axonal proteins is the plus-end directed actin-based motor protein myosin VI.
By fusing the myosin VI binding domains (MVIBD) of two proteins, optineurin (OPTN) and
disabled homologue 2 (DAB2), to the C-terminus of non-polarised CD8 it, was shown that
axonal enrichment of this transmembrane protein was dependent in part on endocytosis
(Figure 2B) [43]. Further endocytosis-based motifs are also present in mGluR7 and Caspr2
which rely on the interaction with AP-2 and protein kinase C to induce endocytosis,
respectively [45,46]. Some endocytosis-based ATMs have also been shown to drive axonal
localization by both the transcytotic and secretory pathways, suggesting that sorting
mechanisms at the somatodendritic membrane and the TGN may overlap mechanistically.
For example, dynasore-mediated inhibition of endocytosis did not completely abrogate
axon enrichment of channelrhodopsin tagged with the fused OPTN and DAB2 MVIBDs or
the C-terminus Nav1.2 suggesting that these motifs may play a yet uncharacterised role in
directing vesicles into the secretory pathway at the TGN [43].

Besides the previously discussed mechanisms of sorting proteins into axonal vesicles
and removing them from the somatodendritic surface, ATMs may also interact with sorting
machinery at the PAEZ and AIS to allow normally somatodendritic cargoes entry to the
axon. As previously discussed, vesicles may be permitted entry to the axon and further
trafficking to the distal axon by association with kinesin-3 and -1. Indeed, tagging three
copies of the kinesin light chain binding sequence TNLEWDDSAI from cargo adaptor
protein SifA and kinesin-interacting protein (SKIP) to somatodendritic TfR led to redirection
of this protein to the distal axon in hippocampal neurons in vitro [14]. Interaction with
axonal kinesin-1 may also underlie the axon-targeting effect of the C-terminal 15 amino acid
ATM of amyloid precursor protein (APP) which contains a highly conserved GYENPTY
motif [37]. The axon-targeting function of the C-terminus of APP as an ATM was first
identified in experiments where fluorescent beads coated with the C-terminus of APP
were shown to undergo fast anterograde transport when injected into the giant squid axon
suggesting interaction with kinesin-1 [37].

Furthermore, the ATM of APP may interact directly with kinesin-1 or indirectly by the
binding of jun N-terminal kinase (JNK) interacting protein JIP-1b which in turn interacts
with kinesin light chain [50]. Thus, ATMs which drive interaction with axonal kinesins
may function by first allowing tagged cargoes to cross the PAEZ and then facilitating fast
anterograde transport within the axon itself (Figure 2C).

A subset of axon-targeting motifs containing AnkG binding motifs are found in voltage-
gated sodium channels Nav1.2 and Nav1.6 [10,41] and potassium channel Kv3.1 [40] that
cluster at the AIS. Nav1.2, for example, contains two putative axon-targeting sequences, an
AnkG binding motif present in the second intracellular loop (II-III) and a 9 AA dileucine
motif containing ATM in the intracellular C-terminal domain [10]. AnkG binding could
increase axonal localisation of transmembrane proteins via two distinct mechanisms. First,
lateral diffusion of transmembrane proteins into the AIS from the somatodendritic mem-
brane could allow them to become anchored on the AIS membrane via interaction with
AnkG. Secondly, it has previously been shown that Nav1.2 and AnkG are trafficked to the
AIS in pre-assembled complexes driven by the interaction of AnkG with kinesin-1 [51] sug-
gesting that AnkG binding motifs may also promote indirect association of transmembrane
proteins with kinesin-1 via AnkG (Figure 2D). Whilst these may both be termed ATMs, the
pattern of axon-targeting by these motifs appears to differ. By expressing CD4 that was
tagged with either loop II-III or the C-terminus of Nav1.2 in hippocampal neurons, Garrido
and colleagues showed that loop II-III targets CD4 to the AIS whereas CD4 tagged with
the C-terminus was distributed throughout the axon suggesting that extra signals within
the C-terminus are required for onward anterograde trafficking [10]. Thus, it appears that
AnkG binding is sufficient to increase localisation at the AIS but further ATMs present in
these proteins contribute to transport into the distal axon.
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5. Further Applications of ATMs
5.1. Improving Characterisation of Mammalian Neuronal Circuity

Characterising the connectivity of neuronal circuitry is a pre-requisite to fully un-
derstanding its function; however, this is made difficult by the complexity of projections
within the mammalian brain which may extend over long distances. ATMs could aid such
characterisation by enhancing the ability of proteins to enter the axon and accumulate at
the distal axon where otherwise they may not readily localise. Indeed, Padmanabhan and
colleagues showed that by tagging the red fluorescent protein Tomato with the ATM of
APP it was possible to efficiently label axons of the medial forebrain bundle and nigro-
striatal tract, improving the ability to count axons within these tracts over non-targeted
Tomato [35]. Thus, by simply targeting fluorescent proteins to the axon it could be possible
to improve morphological characterisation of neuronal circuitry to study the number, size
or complexity of axons.

Another class of fluorescent proteins are the GCaMPs, a family of genetically encoded
calcium indicators (GECIs) that increase in fluorescence when Ca2+ binds to the protein
as a result of conformational changes which exclude water from the fluorophore [52].
Thus, fluorescence can be used as a measurement of transient changes of intracellular
Ca2+ concentration, such as those that occur during action potential firing [53]. Previous
GCaMPs were limited by poor long-distance diffusion of cytosolic GCaMPs to the distal
axon, which interferes with precise measurement of Ca2+ in the axonal compartment of
neurons in vivo [49]. A synapse-targeted GCaMP was produced by fusing GCaMP2 to the
cytoplasmic tail of full-length synaptophysin, a synaptic vesicle protein, to monitor spike
activity in pre-synaptic boutons of the optic tectum in Zebrafish [54]. Improving on this
application, a later study used the dicysteine palmitoylation motif of GAP-43, to develop
an axon-targeted version of GCaMP6 for use in mice. This version of GCaMP6 offered
lower background signal from somatodendritic domains, improved signal-to-noise ratio
and photostability compared to non-targeted GCaMP [49].

5.2. Improving Genetic Therapies for Axonopathies

Following axotomy, the distal axon displays a stereotypical degeneration process
known as “Wallerian degeneration” [55]. The Wallerian degeneration slow (Wlds) mouse
however displays delayed onset of Wallerian degeneration following axotomy [56]. The
Wlds gene encodes a chimeric fusion protein of ubiquitination factor Ube4b and the nuclear
NAD+ synthesising enzyme nicotinamide nucleotide adenylyltransferase 1 (NMNAT1) [57].
The axoprotective effect of Wlds is dependent on its mislocalisation into the cytoplasm,
with a portion of the mutant protein ending up in axons [58]. When NMNAT1 was tagged
with the 15AA ATM of APP and its nuclear localisation signal was removed, the axonal
localisation and axoprotective properties of NMNAT1 were increased compared to non-
targeted NMNAT1 both in vivo and in vitro [36].

Besides potentiating the axoprotective effect of proteins, ATMs may also enhance
the pro-regenerative effects of proteins by targeting them to the axon or growth cone.
For example, chondroitinase ABC (ChABC), is a bacterial enzyme that degrades the gly-
cosaminoglycan side chains of inhibitory extracellular matrix proteins chondroitin sulfate
proteoglycans [59] deposited by reactive astrocytes following spinal cord injury [60]. Infu-
sion of ChABC into spinal cord lesion sites following injury has been shown to promote
regeneration of sensory and corticospinal tract axons beyond the lesion site [61]. Several
modifications have been made to increase thermostability of ChABC at body tempera-
ture [62], allow controllable expression [63], and secretion from mammalian cells [64]. In
line with these improvements, a recent in vitro study used the YENPTY ATM from APP to
assess the effect of axon-targeting on the pro-regenerative effect of ChABC. Whilst the study
did not provide evidence of ChABC being targeted to the neurites or axons of the cells
used, potentially due to the lack of antibodies against ChABC, expression of axon-targeted
ChABC did increase neurite outgrowth and branching from SH-SY5Y cells and dissociated
primary DRG neurons on chondroitin-4-sulfate compared to non-targeted ChABC [65].
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Although limited in number these studies suggest that axon-targeting of either axopro-
tective or pro-regenerative proteins may potentiate their effects by delivering them to the
axonal compartment. Several studies have already identified pro-regenerative proteins that
are excluded from axons when virally expressed in mature neurons of the sensorimotor
cortex and red nucleus, which supply axons to descending motor tracts. These include
insulin-like growth factor type 1 receptor (IGF-IR), Trks and integrins [31,66,67]. It could
therefore be possible to identify ATMs which could target these proteins to lesioned axons
and assess whether this would potentiate the pro-regenerative effects of these proteins in
the descending motor tracts.

6. Conclusions

Here we have discussed some of the mechanisms by which neurons establish and
maintain a highly polarised distribution of transmembrane proteins between the soma-
todendritic and axonal compartments. Two main pathways via which transmembrane
proteins leave the TGN to reach the axonal membrane have emerged, the indirect transcy-
tosis pathway and the direct secretory pathway. Even for well-defined proteins, the relative
contribution of each pathway to axonal localisation has been a point of contention. Recent
evidence suggests that the majority of axonal proteins endocytosed from the somatoden-
dritic membrane are trafficked to endolysosomes. Further study of the downstream fate of
selectively eliminated axonal proteins will further aid in addressing this problem.

Polarised sorting of transmembrane proteins at the TGN and at the somatodendritic
membrane is further coupled to selective filtration at both the PAEZ and the AIS of mature
neurons. Evidence from in vitro studies suggests a model of proximal axon vesicle sorting
whereby vesicles carrying axonal transmembrane proteins must associate with a specific
complement of kinesin motors to traverse both the PAEZ and to gain entry to the AIS
where somatodendritic cargoes are physically excluded by the AIS scaffold or by the action
of proteins that regulated the motility of somatodendritic cargo-associated retrograde
motor proteins.

Understanding the mechanisms of transmembrane protein trafficking in neurons
is necessary to fully characterise how neurons establish and maintain polarity. Further
mechanistic characterisation of these pathways will aid in manipulating transmembrane
protein trafficking in adult animals. Polarised trafficking may be manipulated both in vitro
and in vivo by the addition of ATMs to specific transmembrane proteins. Thus far, many
ATMs have been identified and effort has been made to understand the mechanisms by
which they are sufficient to induce axonal localisation of normally excluded proteins.
It appears clear that ATMs target almost all identified steps within the trafficking and
exclusion pathways described here. However, the research on ATMs beyond mechanistic
characterisation is relatively sparse. We have described some applications of ATMs but to
our knowledge in vivo studies have only been performed on targeting of non-polarised
proteins used to study axon biology and potential genetic therapies. Therefore, studies
assessing the impact of ATMs on transmembrane receptors localisation in the mature CNS
in vivo where mature trafficking and exclusion mechanisms are active are needed.
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