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Abstract: In recent years, the introduction of new drugs targeting Bruton’s tyrosine kinase (BTK)
has allowed dramatic improvement in the prognosis of patients with chronic lymphocytic leukemia
(CLL) and other B-cell neoplasms. Although these small molecules were initially considered less
immunosuppressive than chemoimmunotherapy, an increasing number of reports have described
the occurrence of unexpected opportunistic fungal infections, in particular invasive aspergillosis (IA).
BTK represents a crucial molecule in several signaling pathways depending on different immune
receptors. Based on a variety of specific off-target effects on innate immunity, namely on neutrophils,
monocytes, pulmonary macrophages, and nurse-like cells, ibrutinib has been proposed as a new host
factor for the definition of probable invasive pulmonary mold disease. The role of platelets in the
control of fungal growth, through granule-dependent mechanisms, was described in vitro almost
two decades ago and is, so far, neglected by experts in the field of clinical management of IA. In the
present study, we confirm the antifungal role of platelets, and we show, for the first time, that the
exposure to BTK inhibitors impairs several immune functions of platelets in response to Aspergillus
fumigatus, i.e., the ability to adhere to conidia, activation (as indicated by reduced expression of
P-selectin), and direct killing activity. In conclusion, our experimental data suggest that antiplatelet
effects of BTK inhibitors may contribute to an increased risk for IA in CLL patients.

Keywords: BTK inhibitors; platelets; ibrutinib; acalabrutinib; CLL; invasive fungal infections; molds;
Aspergillus

1. Introduction

In recent years, new compounds targeting Bruton’s tyrosine kinase (BTK) have success-
fully been introduced in the treatment algorithm of chronic lymphocytic leukemia (CLL)
and other B-cell neoplasms, pioneering a major therapeutic shift from chemoimmunother-
apy to targeted therapy [1]. Although BTK inhibitors (BTKis) were initially considered less
immunosuppressive than chemoimmunotherapy, an increasing number of reports have
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described the occurrence of infectious complications in ibrutinib-treated patients [2–6],
with an unexpectedly high incidence of opportunistic invasive fungal infections (IFIs),
mainly invasive aspergillosis (IA) [7–15]. Peculiarly, cases of IA occurring under ibrutinib
are characterized by an early onset (usually within the first 6 months of treatment) and high
rate of central nervous system (CNS) involvement [16,17]. Several lines of evidence suggest
that the increased risk for IFIs cannot strictly be attributed to the effects of ibrutinib on
the humoral immunity nor to the BTK inhibition alone, raising the possibility of off-target
effects as major contributors [17–19].

Ibrutinib is an irreversible BTKi affecting pathways downstream of B-cell receptor
(BCR) in malignant B lymphocytes, but has also potent effects on the normal cells of
the immune system, thus exerting immunomodulatory activity [20]. BTK represents a
crucial molecule in the transmission of signaling cascades from different innate immune
receptors, including Toll-like receptors (TLRs), Fc-gamma receptors (FcγRs), triggering
receptor expressed on myeloid cells-1 (TREM-1), Dectin-1, and CD11b/CD18 (complement
receptor 3, CR3), which allow the recognition of fungi by the innate arm of the immune
system [21]. Neutrophils and macrophages, which coexpress BTK and TEC (both targeted
by ibrutinib), represent the first line of defense against human fungal infections, acting
chiefly through phagocytosis and direct pathogen killing [22,23].

The role of neutrophils is essential for Aspergillus fumigatus (A. fumigatus) clearance,
especially in the early phases of fungal infection, and neutropenia constitutes the principal
risk factor for IA [24,25]. BTK is required for E-selectin-mediated slow rolling of neutrophils
on inflamed endothelial cells [26,27], as well as for signal transmission from pattern recog-
nition receptors (PRRs) detecting pathogen-associated molecular patterns (PAMPs), i.e.,
β-glucans, mannans, and chitins [28–30]. Once at the site of fungal infection, neutrophils
release granule proteins, radical oxygen species (ROS), and neutrophil extracellular traps
(NETs) [25,31]. In mouse models, BTK-deficient neutrophils show defective expression
of granule proteins and impaired release of ROS and nitric oxide in response to different
inflammatory stimuli [32,33]. In line with this, a recent study by Blez and colleagues clearly
demonstrated that ibrutinib blunts anti-A. fumigatus responses of neutrophils both in vitro
and in vivo [34].

Macrophages can engulf and degrade fungal conidia and hyphae, after recognition of
specific PAMPs by different PRRs. In addition, macrophages can recruit neutrophils by re-
leasing cytokines, such as tumor necrosis factor α (TNF-α) and interleukin 1β (IL-1β) [22,23].
Several studies have displayed the involvement of BTK in FcγR-mediated phagocytosis
in macrophages. The activation of TLR9 by phagocytosis of A. fumigatus conidia drives
the BTK-calcineurin–NFAT signaling pathway, which is crucial for TNF-α production
by macrophages and subsequent chemotaxis of neutrophils to the airways during pul-
monary aspergillosis [35]. Consistently, BTK-deficient macrophages exhibit impaired fungal
phagocytosis, disruption of intracellular signal propagation after PAMPs-PRRs binding,
and reduced cytokine release [32]. Ibrutinib targets BTK expressed in CLL-associated
macrophages (also known as nurse-like cells, NLCs), exacerbating their immunosuppres-
sive profile through polarization toward M2-type macrophages, showing impaired phago-
cytic activity [36,37]. Moreover, ibrutinib was found to inhibit NFAT and NF-κB responses
in monocyte-derived human macrophages, thus hampering the ability to counteract the
fungal growth, albeit without affecting the phagocytic activity [38]. Similarly, a reduction in
FcγR-mediated cytokine production, but not phagocytic ability, was observed in circulating
monocytes treated in vitro with ibrutinib [39]. By extending these results, our group demon-
strated that the exposure to either ibrutinib or acalabrutinib determines an exacerbation of
an immunosuppressive profile, a reduction in phagocytosis, and a significant drop in the
secretion of inflammatory cytokines, both in NLCs and circulating monocytes from CLL
patients and healthy donors, leading to a failure in counteracting conidia germination [40].

Besides neutrophils and monocyte/macrophage populations, platelets (coexpressing
BTK and TEC) represent a crucial cell type involved in the host’s innate immune responses.
Platelets are equipped with several innate immune receptors, including TLRs and FcγRIIA,
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which bestow the ability to recognize pathogens [41]. Other molecules, such as P-selectin
(CD62P), glycoprotein IV (GPIV), GPIb (CD42b), CD40L, and integrin αIIbβ3, enable the
interactions between platelets and leukocytes [42,43]. This process leads neutrophils to
produce ROS and form NETs [44]. Furthermore, platelets express soluble molecules, com-
prising chemokines (e.g., CCL3, CXCL4, CCL5, and CXCL7) and cytokines (e.g., IL-1β
and TGF-β) [45]. These factors are present in platelet granules but can also be synthesized
de novo. Such a broad armamentarium of immune receptors, adhesion molecules, and
soluble factors makes platelets full-fledged innate immune cells that can drive inflamma-
tion and mediate pathogen clearance by different mechanisms [45–48]. Several studies
have investigated the role of platelets in the control of fungal infections. The expression
of CD62P and other molecules indicative of platelet activation (i.e., CD63, RANTES, or
CD40L) was found to be increased following platelet exposure to hyphae or conidia [49,50].
Interestingly, Perkhofer et al. demonstrated that human platelets attenuate Aspergillus
species in vitro through granule-dependent mechanisms [51]. The same group also showed
that the combination of platelets and anidulafungin significantly reduces the germination
rate of A. fumigatus, alters the hyphal elongation, and downregulates the fks gene, encoding
for β-D-glucan, an essential component of the cell wall [52]. In addition, A. fumigatus
antigens seem to affect platelet aggregation in vitro through the deposition of complement
factors [53]. Further data suggest that platelets could trigger coagulopathy and activate
neutrophils during A. fumigatus infection [54–56]. In line with these findings, thrombocy-
topenia constitutes a risk factor for fungal infections in liver transplant recipients [57] and
a predictor of outcome in neutropenia-related IA [58]. Since BTKis are known to hinder
platelets’ functions through the inhibition of both BTK and TEC [59,60], we hypothesized
that defective thrombocyte-mediated immune responses may contribute to the increased
risk of IFIs in treated patients. In order to characterize the specific effects of the pharma-
cological inhibition of BTK on antimold innate immune responses mediated by platelets,
we performed a broad functional in vitro and in vivo analysis of samples from both CLL
patients and healthy donors.

2. Materials and Methods
2.1. Patients and Samples

Blood samples from patients matching standard diagnostic criteria for CLL were
obtained from the Hematology Unit of Modena Hospital, Italy. Written informed consent
was obtained in accordance with the Declaration of Helsinki, and the study was approved
by the local Institutional Review Board (protocol 63/11 CE AVEN). Peripheral blood
samples from healthy donors, treatment-naïve CLL patients, and CLL patients under
ibrutinib were centrifuged at 900 rpm for 15 min to obtain platelet-rich plasma (PRP).
Before the evaluations, PRP was treated with ibrutinib or acalabrutinib (1 µM) or vehicle
(DMSO) for 1 h at 37 ◦C. For some experiments, increasing concentrations (0.2 µM, 0.5 µM,
and 1 µM) of ibrutinib were used. The experimental workflow is summarized in Figure 1.
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fumigatus conidia. Platelet-induced hyphal damage was measured by performing a colorimetric 
assay with XTT. Platelet-mediated antifungal activity was also evaluated in CLL patients before and 
after ibrutinib administration by cytofluorimetric analysis of P-selectin expression in response to A. 
fumigatus conidia. 
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inactivated A. fumigatus conidia at an E:T ratio of 100:1. After 30, 60, 90, 150, 210, and 270 
min, samples were acquired and analyzed on a BD Accury C6 flow cytometry. Analysis 
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Figure 1. Experimental workflow. Platelet-rich plasma (PRP) from healthy donors and treatment-
naïve CLL patients was treated with ibrutinib or acalabrutinib or vehicle (DMSO) for 60 min at
37 ◦C. Platelet adhesion to conidia was assessed by a spectrophotometric method. Surface expression
of CD62P (P-selectin) was evaluated by flow cytometry at baseline and following stimulation by
A. fumigatus conidia. Platelet-induced hyphal damage was measured by performing a colorimetric
assay with XTT. Platelet-mediated antifungal activity was also evaluated in CLL patients before and
after ibrutinib administration by cytofluorimetric analysis of P-selectin expression in response to
A. fumigatus conidia.

2.2. Platelets–Conidia Adherence Assay

The adherence of platelets to A. fumigatus conidia was determined by a previously
described spectrophotometric method [49]. In short, ibrutinib-treated or untreated platelets
were incubated with A. fumigatus conidia at a platelets-to-conidia (effector-to-target, E:T)
ratio of 100:1 for 30 min at 37 ◦C and centrifuged at 500 rpm for 5 min at 4 ◦C. Platelets alone
and conidia alone were used as controls. The 700 nm optical density (OD700) of supernatant
was determined spectrophotometrically, and the percentage of platelet adherence was
calculated by the following formula: {1 − OD700 reaction supernatant/[0.5 × (OD700
conidia supernatant + OD700 platelet supernatant)]} × 100.

2.3. P-Selectin Expression Assay

PRP treated with ibrutinib, acalabrutinib, or vehicle was labeled with anti-CD42b
and anti-CD62P antibody. CD42b is a membrane glycoprotein constitutively expressed on
platelet surface and is useful in identifying platelet population, while CD62P is a marker of
activated platelets. Labeled platelets were then incubated with swollen, heat-inactivated
A. fumigatus conidia at an E:T ratio of 100:1. After 30, 60, 90, 150, 210, and 270 min, samples
were acquired and analyzed on a BD Accury C6 flow cytometry. Analysis was performed
gating CD42b+ cells and analyzing the mean fluorescence intensity in the positive CD62P
population. Results are reported as percentages of CD62b expression normalized on DMSO-
treated unstimulated platelets (100%). Normalization was performed by dividing the value
of ibrutinib- or acalabrutinib-treated, stimulated or unstimulated samples to the value of
the corresponding DMSO-treated unstimulated samples and multiplying by 100.
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2.4. XTT Assay

A. fumigatus conidia were incubated in 96-well plates for 16 h to produce hyphae,
with ibrutinib-treated, acalabrutinib-treated, or vehicle-treated platelets, at an E:T ratio of
100:1. Conidia alone were used as positive control. Each experimental condition was per-
formed in triplicate. Then, platelets were lysed hypotonically with H2O and hyphae were
incubated for 1 h at 37 ◦C with 2,3-bis[2-methoxy-4-nitro-5-sulfophenyl]2H-tetrazolium-
5-carboxyanilide sodium salt (XTT; Sigma, St. Louis, MO, USA) plus coenzyme Q0 (2,3-
dimethoxy-5-methyl-1,4-benzoquinone; Sigma) for colorimetric measurement of hyphal
metabolic activity. Absorbance was determined at 450 nm using an enzyme-linked im-
munosorbent assay plate reader, and antifungal activity was calculated as the percentage
of hyphal damage according to the equation: [1 − (X/C)] × 100, where X is optical density
of test wells and C is optical density of control wells with hyphae only.

2.5. Statistical Analyses

Data were analyzed using SPSS version 20.0 (SPSS, Chicago, IL, USA). p values were
calculated by Student t test (* p < 0.05; ** p < 0.01; *** p < 0.001; **** p < 0.0001). Data are
presented as mean, and standard error of the mean (SEM) is depicted as error bars.

3. Results
3.1. Ibrutinib Inhibits the Ability of Platelets to Adhere to Conidia

The ability of platelets to adhere to conidia was assessed in six healthy subjects and six
CLL patients by spectrophotometric methods. Our data confirmed the ability of platelets
to adhere to conidia in both healthy subjects and CLL patients, with mean adhesion rates
of 56.6% (±3.7%) and 46% (±3%), respectively. Treatment with ibrutinib resulted in a
significant reduction in adhesion ability in a dose-dependent manner. Specifically, in
healthy subjects, mean values of 47% (±6.2%), 34.6% (±2.5%), and 17% (±3%) were found
in the presence of ibrutinib at 0.2 µM, 0.5 µM, and 1 µM, respectively. In patients with CLL,
the adhesion rate decreased to 40% (±2.5%), 23% (±2.9%), and 1% (±1.3%), in the presence
of ibrutinib at 0.2 µM, 0.5 µM, and 1 µM, respectively (Figure 2).
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Figure 2. Ibrutinib inhibits adhesion of platelets to conidia. Platelets, treated or not treated with three
different concentrations of ibrutinib (0.2 µM, 0.5 µM, and 1 µM), were incubated with A. fumigatus
conidia, at an effector-to-target (E:T) ratio of 100:1 for 30 min at 37 ◦C, and then centrifuged at
low intensity. Then, the OD700 of the supernatant was determined by spectrophotometer, and the
percentage of platelet adhesion was calculated in relation to the OD700 of platelets and conidia alone
(** p < 0.01; *** p < 0.001; **** p < 0.0001). HS, healthy subjects; PTs, patients; CTRL, control; IBRU,
ibrutinib.
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3.2. Ibrutinib and Acalabrutinib Reduce P-Selectin Expression on Platelets in Response to A.
fumigatus Conidia

To assess whether BTK inhibition affects A. fumigatus-induced platelet activation,
surface expression of CD62P (P-selectin), a marker of alpha granule secretion, was evaluated
by flow cytometry at baseline and following stimulation with A. fumigatus conidia. We
first performed in vitro experiments on platelet-rich plasma (PRP) from six healthy donors
and six treatment-naïve CLL patients. Platelet interaction with conidia strongly induced P-
selectin expression on platelet surface, both in healthy volunteers (mean CD62P expression
144%, range 107–184%) and CLL patients (mean 153%, range 126–185%), with different
exposure times according to individual patient variability, ranging from 90 to 270 min.
P-selectin exposure induced by conidia was significantly reduced in the presence of either
ibrutinib or acalabrutinib. In detail, in ibrutinib-treated platelets, mean CD62P expression
was 86% (range 65–102%) and 79% (range 70–94%), in healthy donors and CLL patients,
respectively. Similarly, in acalabrutinib-treated platelets, mean CD62P expression was 91%
(range 67–115%) and 85% (range 75–94%) in healthy donors and CLL patients, respectively.
Basal CD62P expression was also significantly reduced in ibrutinib- and acalabrutinib-
treated unstimulated platelets compared to controls in both groups (Figure 3). In contrast,
response to 10 µM of thrombin receptor agonist peptide (TRAP) was not altered (data not
shown).

Cells 2022, 11, x FOR PEER REVIEW 6 of 13 
 

 

3.2. Ibrutinib and Acalabrutinib Reduce P-Selectin Expression on Platelets in Response to A. 
fumigatus Conidia 

To assess whether BTK inhibition affects A. fumigatus-induced platelet activation, 
surface expression of CD62P (P-selectin), a marker of alpha granule secretion, was 
evaluated by flow cytometry at baseline and following stimulation with A. fumigatus 
conidia. We first performed in vitro experiments on platelet-rich plasma (PRP) from six 
healthy donors and six treatment-naïve CLL patients. Platelet interaction with conidia 
strongly induced P-selectin expression on platelet surface, both in healthy volunteers 
(mean CD62P expression 144%, range 107–184%) and CLL patients (mean 153%, range 
126–185%), with different exposure times according to individual patient variability, 
ranging from 90 to 270 min. P-selectin exposure induced by conidia was significantly 
reduced in the presence of either ibrutinib or acalabrutinib. In detail, in ibrutinib-treated 
platelets, mean CD62P expression was 86% (range 65–102%) and 79% (range 70–94%), in 
healthy donors and CLL patients, respectively. Similarly, in acalabrutinib-treated 
platelets, mean CD62P expression was 91% (range 67–115%) and 85% (range 75–94%) in 
healthy donors and CLL patients, respectively. Basal CD62P expression was also 
significantly reduced in ibrutinib- and acalabrutinib-treated unstimulated platelets 
compared to controls in both groups (Figure 3). In contrast, response to 10 µM of thrombin 
receptor agonist peptide (TRAP) was not altered (data not shown). 

 
Figure 3. In vitro effects of ibrutinib and acalabrutinib on platelets’ degranulation in response to A. 
fumigatus conidia. Platelet-rich plasma (PRP) from healthy volunteers (A) and treatment-naïve CLL 
patients (B) was treated with 1 µM ibrutinib (IBRU), acalabrutinib (ACALA), or vehicle (DMSO) for 
1 h at 37 °C and stimulated or not stimulated with A. fumigatus conidia at an effector-to-target (E:T) 
ratio of 100:1 for 30, 60, 90, 120, 180, or 270 min. Platelet activation was detected by flow cytometry, 
labeling samples with PE-conjugated anti-CD42b antibody, a surface marker constitutively 
expressed on platelets, and with an FITC-conjugated anti-CD62P/P-selectin antibody, a marker of 
alpha granule secretion. Results are reported as percentages of CD62b expression normalized on 
DMSO-treated unstimulated platelets (** p < 0.01; *** p < 0.001). 

3.3. Ibrutinib and Acalabrutinib Hamper Platelet-Mediated Hyphal Damage 
To further explore the effects of BTK inhibition on antifungal activity, we measured 

hyphal damage induced by ibrutinib, acalabrutinib, or vehicle-treated platelets by 
performing a colorimetric assay with XTT. Firstly, we confirmed the ability of platelets to 
impair germination of conidia and hyphal elongation by counteracting the fungal 
metabolic activity. Indeed, vehicle-treated platelets from six healthy donors and six CLL 
patients induced 46% (range 28–58%) and 44% (range 30–58%) mean hyphal damage, 
respectively. Moreover, we found that ibrutinib- and acalabrutinib-treated platelets 
showed a statistically significant reduced capacity to induce hyphal damage compared 
with vehicle-treated platelets. In particular, ibrutinib-treated platelets induced 34% (range 

Figure 3. In vitro effects of ibrutinib and acalabrutinib on platelets’ degranulation in response to
A. fumigatus conidia. Platelet-rich plasma (PRP) from healthy volunteers (A) and treatment-naïve
CLL patients (B) was treated with 1 µM ibrutinib (IBRU), acalabrutinib (ACALA), or vehicle (DMSO)
for 1 h at 37 ◦C and stimulated or not stimulated with A. fumigatus conidia at an effector-to-target (E:T)
ratio of 100:1 for 30, 60, 90, 120, 180, or 270 min. Platelet activation was detected by flow cytometry,
labeling samples with PE-conjugated anti-CD42b antibody, a surface marker constitutively expressed
on platelets, and with an FITC-conjugated anti-CD62P/P-selectin antibody, a marker of alpha granule
secretion. Results are reported as percentages of CD62b expression normalized on DMSO-treated
unstimulated platelets (** p < 0.01; *** p < 0.001).

3.3. Ibrutinib and Acalabrutinib Hamper Platelet-Mediated Hyphal Damage

To further explore the effects of BTK inhibition on antifungal activity, we measured hy-
phal damage induced by ibrutinib, acalabrutinib, or vehicle-treated platelets by performing
a colorimetric assay with XTT. Firstly, we confirmed the ability of platelets to impair ger-
mination of conidia and hyphal elongation by counteracting the fungal metabolic activity.
Indeed, vehicle-treated platelets from six healthy donors and six CLL patients induced 46%
(range 28–58%) and 44% (range 30–58%) mean hyphal damage, respectively. Moreover, we
found that ibrutinib- and acalabrutinib-treated platelets showed a statistically significant
reduced capacity to induce hyphal damage compared with vehicle-treated platelets. In
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particular, ibrutinib-treated platelets induced 34% (range 17–50%) and 33% (range 12–51%)
mean hyphal damage in healthy volunteers and CLL patients, respectively. Similarly,
acalabrutinib-treated platelets induced 38% (range 24–55%) and 34% (range 17–51%) mean
hyphal damage in healthy donors and CLL patients, respectively (Figure 4).
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Figure 4. In vitro effects of ibrutinib and acalabrutinib on platelet-mediated hyphal damage. Platelet-
rich plasma (PRP) from healthy volunteers (A) and treatment-naïve CLL patients (B) was treated
with 1 µM ibrutinib (IBRU), acalabrutinib (ACALA), or vehicle (DMSO) for 1 h at 37 ◦C. A. fumigatus
conidia were incubated for 16 h at 37 ◦C in RPMI medium plus 1% sodium pyruvate to produce
hyphae with or without platelets, at an effector-to-target (E:T) ratio of 100:1. For measurement
of hyphal metabolic activity, XTT salt plus 40 µg/mL coenzyme Q was added. Absorbance was
determined at 450 nm using an enzyme-linked immunosorbent assay plate reader, and antifungal
activity was calculated as the percentage of hyphal damage equal to [1− (X/C)]× 100, where X is the
optical density of test well and C is the optical density of control wells with hyphae only (* p < 0.05;
** p < 0.01; *** p < 0.001).

3.4. Platelet-Mediated Antifungal Activity Decreases during Ibrutinib Treatment in CLL Patients

Next, to verify the clinical relevance of these findings, we evaluated platelet-mediated
antifungal activity in six CLL patients before receiving ibrutinib and after 1, 3, and 6 months
during the course of treatment. Before treatment, P-selectin expression on the platelet
surface was induced in response to A. fumigatus conidia (mean CD62P expression 160%,
range 120–224%). In contrast, after 1, 3, and 6 months of therapy, A. fumigatus-induced
P-selectin mean expression was significantly reduced: 124% (range 97–137%) at month +1,
95% (range 80–114%) at month +3, and 99% (range 87–111%) at month +6 (Figure 5).
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4. Discussion

The lesson learned from IFIs, unexpectedly arising in patients treated with ibrutinib,
the first-in-class BTKi, made physicians aware of the potential clinical consequences de-
riving from the pharmacologic inhibition of such a pleiotropic kinase, as well as from the
off-target effects related to this (not so specifically) targeted drug. Indeed, BTK, widely
acknowledged as a pivotal B-cell regulator, is expressed in nearly all immune cells, where
it is essentially involved in several signaling pathways downstream of different immune
receptors, thus mediating different innate immune functions, such as (i) PRR-dependent
recognition of infectious agents; (ii) maturation, recruitment, and activation of neutrophils,
monocytes, macrophages, and platelets; and (iii) NLRP3 inflammasome activation [21].

Several studies have demonstrated that BTK inhibition by either ibrutinib or acalabru-
tinib can compromise the ability of neutrophils, monocytes, normal human macrophages,
and NLCs to counteract the fungal growth in vitro [34,38,40,61]. However, acalabrutinib
has not yet been associated with an increased risk for IFIs in treated patients and has
already been shown to have different influences on both innate and adaptive immunity
compared with ibrutinib [20,62,63]. Of note, ibrutinib, unlike other more selective BTKis
(acalabrutinib and zanubrutinib), has been proposed as a new predisposing factor for
IFIs and incorporated as a novel host factor for the definition of probable invasive pul-
monary mold disease by the European Organization for Research and Treatment of Cancers
(EORTC) and the Mycoses Study Group (MSG) [64].

Despite these recent achievements, much remains to be learned about the complex role
of BTK within the innate immune system and its potential clinical relevance. In particular,
the specific immunopathogenic mechanisms underlying the susceptibility to IFIs in patients
treated with BTKis are not fully elucidated, and multiple cell pathways are deemed to be
implicated (Figure 6). Relevant to this, by considering the previously described antifungal
properties of platelets [65] and the well-known antiplatelet effects of BTKis (classically
associated with bleeding complications) [66], it could be argued that an impairment of
platelet-mediated antifungal responses may contribute to the emergence of IFIs in CLL
patients. Nonetheless, this suggestive hypothesis has never been explored so far, and,
more generally, the potential impact of BTKis on innate immune functions of platelets is
largely unknown. Intriguingly, Naylor-Adamson et al. have recently reported that platelets
from CLL patients can respond to Staphylococcus aureus and Escherichia coli bacteria in
an FcγRIIA-dependent manner and that ibrutinib impairs such responses, highlighting
the relevance of evaluating the effects of BTKis on platelet immune functions [67]. In
the present work, we confirm the significant role of platelets in the host defense against
A. fumigatus, and we demonstrate, for the first time, that the exposure to BTKis impairs
different antifungal immune functions of platelets. Our original data show that in vitro and
in vivo inhibition of BTK, by either ibrutinib or acalabrutinib, suppresses platelet-mediated
antifungal activities, with a reduction in platelets’ adhesion to conidia and conidia-mediated
P-selectin expression, as well as platelet-induced hyphal damage, thereby supporting the
hypothesis that ibrutinib may promote the development of IFIs through a detrimental effect
on platelets.
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Figure 6. BTK inhibitors (BTKis) suppress (×) antifungal immune responses (⊥) mediated by
macrophages, nurse-like cells (NLCs), monocytes, neutrophils, and platelets. The fungal cell wall
contains polysaccharides and lipid moieties that elicit an immune response with a strong production
of cytokines, comprising tumor necrosis factor α (TNF-α), interleukin 1β (IL-1β), IL-6, and IL-8. The
recognition of fungi by innate immune cells relies on the interaction between pathogen-associated
molecular patterns (PAMPs, i.e., β-glucans, chitins, and mannans) and different pattern recognition
receptors (PRRs). The typical PRRs for A. fumigatus encompass β-glucan receptor (Dectin-1), com-
plement receptor 3 (CR3), triggering receptor expressed on myeloid cells-1 (TREM-1), and Toll-like
receptors (TLRs). BTK is crucially involved in the transmission of multiple signaling cascades ac-
tivated by PRRs and, therefore, can be considered a ‘guardian’ of the innate immunity. Ibrutinib
and acalabrutinib compromise the ability of neutrophils, monocyte/macrophage populations, and
platelets to counteract the fungal growth. Of note, acalabrutinib, unlike ibrutinib, has not yet been
associated with an increased risk for invasive fungal infections (IFIs) in treated patients, nor have
detrimental effects on antifungal innate immune responses been described in vivo so far. It is conceiv-
able that the presence of functional TEC (not targeted by acalabrutinib) may partially compensate
for nonfunctional BTK in non-B cells, as suggested for patients with X-linked agammaglobulinemia
(XLA), showing unremarkable rates of IFIs. The combined inhibition of BTK and TEC (both targeted
by ibrutinib) is expected to fully suppress BTK/TEC-dependent inflammatory pathways, thus leading
to an augmented susceptibility to IFIs. FcγR, Fc-gamma receptor; ROS, radical oxygen species; NETs,
neutrophil extracellular traps; PSGL-1, P-selectin glycoprotein ligand 1; ↑, increase; ↓, decrease.
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5. Conclusions

Moving from bench to bedside, our study reveals specific modifications in antifungal
immune responses mediated by platelets induced by ibrutinib and acalabrutinib both in
CLL patients and healthy donors, shedding further light on the relationship between treat-
ment with BTKis and IFIs. In particular, BTKi-mediated suppression of platelet immune
functions might contribute to mold infections by interfering with the ability of platelets to
directly counteract the fungal growth and cooperate with other immune cells.

In perspective, additional studies are required to (i) precisely assess the risk of IFIs
occurring in patients treated with ibrutinib and, more importantly, with other BTKis;
(ii) disclose whether the multifunctional impairment in innate immunity is strictly caused
by the inhibition of BTK outside the BCR (i.e., on unwanted cellular targets expressing BTK)
or, more likely, is also mediated by unselective molecular inhibition of other kinases (such
as TEC); (iii) fully characterize platelet proteomic and structural modifications occurring in
the presence of BTKis; and (iv) test new immunological tools and specific inflammatory
biomarkers, including platelet parameters, such as mean platelet volume (MPV) and
platelet distribution width (PDW) [68,69], aiming to identify and monitor ‘protective vs.
permissive’ immune profiles in patients with or at risk for IFIs.

Finally, by considering that the exposure to BTKis is probably not sufficient to lead to
the onset of IFIs, the development of novel score systems (based on all the inherited and
acquired host factors, as well as environmental factors) is warranted to refine individual
risk stratification, possibly guiding the clinical use of antifungal prophylaxis.
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