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Abstract: The mucosal immune system of the respiratory tract possesses an effective “defense barrier”
against the invading pathogenic microorganisms; therefore, the lungs of healthy organisms are
considered to be sterile for a long time according to the strong pathogens-eliminating ability. The
emergence of next-generation sequencing technology has accelerated the studies about the microbial
communities and immune regulating functions of lung microbiota during the past two decades. The
acquisition and maturation of respiratory microbiota during childhood are mainly determined by the
birth mode, diet structure, environmental exposure and antibiotic usage. However, the formation
and development of lung microbiota in early life might affect the occurrence of respiratory diseases
throughout the whole life cycle. The interplay and crosstalk between the gut and lung can be
realized by the direct exchange of microbial species through the lymph circulation, moreover, the
bioactive metabolites produced by the gut microbiota and lung microbiota can be changed via blood
circulation. Complicated interactions among the lung microbiota, the respiratory viruses, and the
host immune system can regulate the immune homeostasis and affect the inflammatory response
in the lung. Probiotics, prebiotics, functional foods and fecal microbiota transplantation can all be
used to maintain the microbial homeostasis of intestinal microbiota and lung microbiota. Therefore,
various kinds of interventions on manipulating the symbiotic microbiota might be explored as novel
effective strategies to prevent and control respiratory diseases.

Keywords: lung microbiota; gut-lung axis; immunity homeostasis; inflammatory response; respiratory
disease

1. Introduction

Over the past two decades, accumulated studies on the interactions between lung
microbiota and the host immune system have provided invaluable understanding about the
immune modulating functions of the lung microbiome [1,2]. The lungs of healthy individu-
als have been considered to be sterile for a long time according to the classic respirology
theory. However, the development of culture-independent sequencing technology has
proved that there are abundant and diverse microbial communities in the respiratory tract
and have intimate associations with the host’s health and disease [3–5]. The acquisition and
maturation of the lung microbiome in the early life can be influenced by delivery mode,
feeding practices, living environment, and other affecting factors [6]. The interactions
among the lung microbiota, infected viruses, invading bacteria, and the host immune
system can affect the susceptibility to lower respiratory tract infections and diseases [7].
Therefore, investigations on the microbial composition and the immune function of the
lung microbiome may provide novel effective interventions and preventive measures to
treat respiratory diseases.

The respiratory tract has a large exposed surface to execute the air-exchange function,
while the abundance and diversity of the lung microbiome are obviously influenced by
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the contacting air environment [8]. Though the lungs of mammals are equipped with
an effective antimicrobial defense system, the relatively lower microbial biomass of the
pulmonary microbiota successfully colonized the respiratory tract and obtained tolerance
to the host immune system [9,10]. Moreover, the stably harbored lung commensal bacteria
can generate colonizing resistance and help to fight against the invading outer pathogens
by producing various kinds of antimicrobial molecules. Therefore, the lung microbial
ecosystem is maintained by the balance of transiently entered and selectively eliminated
microorganisms [11]. The bi-directional cross-talk between the lung microbiome and the
host immune system plays a fundamental role in keeping the lung immune homeostasis.
On one side, the inhabited pulmonary microbiota can influence the maturation of the
host immune system by producing numerous structural ligands and metabolites (such
as lipopolysaccharide, peptidoglycan, and short-chain fatty acids). On the other side, the
host’s innate and adaptive immune system can alter the lung microbiome by forming
biophysical barriers, secreting immunoglobulin A (IgA), producing antimicrobial peptides,
and recognizing the resident and viable microbes [12]. Therefore, many factors that cause
lung microbiome dysbiosis can alter the pulmonary immune homeostasis and induce the
occurrence and development of respiratory inflammation and diseases [13].

Increasing evidence has revealed that the disturbed balances of intestinal microbiota
and lung microbiota had intimate correlations and can corporately cause respiratory dis-
eases. The comprehensive and sophisticated interactions between intestinal microbiota
and lung microbiota and their collective actions in modulating the pulmonary immune
homeostasis might provide new therapeutic targets and manipulating strategies for clinical
treatment of respiratory infections [14,15]. Research about the gut-lung axis demonstrated
the depletion of the gut microbiota in C57BL/6 mice could induce lung bacterial dissemina-
tion, organ damage and enhance mice mortality during Streptococcus pneumoniae infections.
However, the restored process of the gut microbiota by fecal microbiota transplantation
(FMT) could reverse the survival rate of broad-spectrum antibiotics treated mice by regulat-
ing alveolar macrophage function and inflammation response [16,17]. Probiotics treatments
targeting gut and lung microbiota could confer health benefits for the host during the
chronic lung disease progression, and other interventions to protect the microbial ecosys-
tem balance of the gastrointestinal tract and the respiratory tract could also be exploited to
protect the respiratory immune system [18–20].

In this review, we mainly summarize the composition of respiratory microbiota and
their potential functions related to the host immune system. Moreover, we also dis-
cuss the novel therapeutic approaches targeting the gut and lung microbiota to treat
respiratory diseases.

2. The Origin of Pulmonary Microbiota and the Influencing Factors

The lungs of healthy individuals have previously been considered to be sterile be-
cause the traditional microbiology approaches usually cannot give out positive cultural
results [21]. Progress on the culture-independent techniques has proved that the coloniza-
tion of microbial community in respiratory tract began immediately after birth, for the
reason that the bacterial DNA in the tracheal aspirates of healthy neonates could be detected
24 h after birth [22]. By comparing the microbial communities in oral wash, nasal swab,
and bronchoalveolar lavage (BAL) from the healthy subjects, the bacterial communities of
the lungs shared much higher similarity with those from the oral cavity, but were different
from the nasal cavity. Therefore, the lung microbiota might quite possibly originate from
the oral microbiota through the microaspiration, which usually occurred during the sleep
process when the tone of the oral and pharyngeal muscles is diminished [23].

Initial microbial colonization in the respiratory tract is mainly impacted by delivery
mode, antibiotic usage, dietary structure, environment exposure, and pathogenic infections
(Figure 1) [24–27]. In early life, caesarean delivery patterns, increasing use of antibiotics,
changes in food composition, and the contacting environmental microorganisms can all
directly and indirectly impact the diversity and abundance of the lung microbiome [28–30].
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Moreover, pathogenic infections induced by various kinds of viruses can also play im-
portant roles in shaping lung microbiota formation [31,32]. Comprehensive analysis of
the environmental and lifestyle factors that influence the early colonization of the lung
microbiome might provide preventative interventions and therapeutic strategies to treat
respiratory diseases [33,34].
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3. The Diversity and Composition of Respiratory Microbiota

At birth, the acquisitions of infant microbial community in the mucosal surfaces is
mainly determined by the microbes derived from the mother’s vagina, skin and intestinal
tract [35,36]. In the subsequent early life period, the distribution, composition and devel-
opment of respiratory microbiota are transiently diversified together with the maturation
of the host immune system [37,38]. As the air-exchange area, the lung environmental con-
dition is vastly different from other body sites, therefore the compositions and diversities
of lung microbiota are mainly determined by the transient change of entering outer mi-
croorganisms and selective elimination of viable microorganisms. During the microbe–host
crosstalk process, the host respiratory tract has developed a variety of selective strategies
to maintain the balance of the microbial ecosystem [39].

Though the lung has a large surface to directly contact with the outer air environments,
the pulmonary immune system is equipped with an effective antimicrobial and defensive
system to fight against the invading foreign microorganisms. Therefore, the microbial
biomass in the lung is remarkably lower than that in other body sites [7,40]. At the phy-
lum level, the predominant microbial communities in the lungs are mainly composed of
Proteobacteria, Firmicutes, Tenericutes, and Bacteroidetes. When analyzed at the genera
level, the most common genera in the lungs of healthy individuals are mainly composed
of Prevotella, Veillonella, Streptococcus and Pseudomonas. When compared with the adjacent
sites, enhanced richness of Proteobacteria, Ralstonia and Haemophilus and decreased abun-
dance of Prevotella-affiliated taxa are consistently observed, the unique compositions of
lung microbiota are possibly related to the redox state and oxygen application of the lower
respiratory tract [41–43]. The composition of lung microbiota in health and disease states
differed apparently when the balance of host immune response is disturbed by viruses,
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allergens or genetic deficiency. Upon the conditions of cystic fibrosis (CF), chronic obstruc-
tive pulmonary disease (COPD), and other chronic lung diseases, the predominant genera
were shifted to Pseudomonas, Streptococcus, Prevotella and Haemophilus. When compared
with the healthy individuals, the richness of Bacteroidetes in the patients was significantly
decreased [7]. Studies about the lung microbiota in patients with asthma indicated that
the abundance of Proteobacteriae was increased which might be driven by the Haemophilus,
Moraxella and Neisseria species [44]. Multiple studies demonstrated that gut dysbiosis was
observed in patients with coronavirus disease 2019 (COVID-19), and the gut microbiota
richness and composition of COVID-19 patients were quite different from those of healthy
controls. After severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection,
the richness and diversity of gut microbiota were both significantly decreased, and mi-
crobial richness could not restore to normal levels even after 6-month recovery. However,
the predominant microbial taxa of severely ill patients were characterized by Burkholderia
cepacia complex, Staphylococcus epidermidis, or Mycoplasma spp. (including M. hominis and
M. orale) [45–47].

4. Relations between the Gut Microbiota and Lung Microbiota Mediated by the
Gut-Lung Axis

The “Zang-Fu” theory in traditional Chinese medicine describes that “lung and large
intestineare interior-exteriorly related”, which demonstrates the close physiological and
pathological connections between the gut and lung [48]. In fact, the microbiota–host com-
munications can transmit multiple intestinal signals to different distal organs and contribute
to host health and disease [49,50]. By comparing the microbial community structures be-
tween lung and intestine bacteria, evidence reveals that members of lung and intestine
bacteria can directly exchange through the lymph circulation [51–53]. Additionally, gut
microbiota can produce various kinds of bioactive metabolites (such as butyrate, p-cresol
sulfate, and indoles) to impact the host immune response and energy homeostasis [54–58].
The innate lymphoid cells (ILCs) derived from intestinal lamina propria have important
action on host defense and inflammatory responses. When the interleukin-25-induced
group 2 innate lymphoid cells (ILC2) and interleukin-22 (IL-22)-producing group 3 innate
lymphoid cells (ILC3) migrate to the lung, the host resistance to pneumonia and other
inflammatory infections could be promoted [59–62]. Therefore, the gut microbiome plays
an important role in regulating pulmonary immune function and health protection through
signals transmitted by the gut–lung axis.

The regulating role of the lung microbiota on intestinal infectious diseases through the
gut–lung axis should also not be neglected (Figure 2). Alteration of pulmonary microbiota
is found to be able to modulate the microbial communities of gut and influence intestinal
immunity and disorders [63]. Pulmonary infections caused by Mycobacterium tuberculosis
can induce a distinct dysbiosis of the gut microbiota by decreasing the α-diversity; however,
the anti-tuberculosis therapy can also cause a rapid and significant change in the diversity
and composition of the gut microbiota [64–69]. Recently, the gut microbiota is consid-
ered to be a novel potential therapeutic target in treating tuberculosis. Supplementation
of Lactobacillus could restore the dysregulated the gut microbiota and enhance the lung
dendritic cells (DCs) function and subsequent T cell response to control tuberculosis [70].
Moreover, the diversity of the intestinal microbial community can be significantly disturbed
in the Pneumocystis murina and Klebsiella pneumoniae caused respiratory infection [71,72].
The dysbiosis of gut microbiota and subsequent dysregulation of microbiota-related im-
munological processes could also be observed in patients with asthma, COPD, and other
chronic respiratory diseases [73,74]. Therefore, precise treating approaches to modify the
lung and gut microbiome might play important roles in the management and treatment of
respiratory diseases.
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Figure 2. Cross-talk between the gut and lung through the gut-lung axis. Communications between
the gut and lung can be realized by multiple signals transmitted from intestine to the lung. Firstly,
certain microbial species of lung and intestine microbiota can directly exchange through the lymph
circulation. Secondly, various kinds of bioactive metabolites produced by the gut microbiota and
lung microbiota can be changed via blood circulation. Additionally, the innate lymphoid cells (ILC2
and3) can migrate from intestinal lamina propria to the lung.

5. The Lung Immune Homeostasis Shaped by Microbe-Host Interactions

The crosstalk between the pulmonary microbiota and host mucosal immune system
plays a fundamental role in maintaining lung immune homeostasis [12]. Numerous factors
that cause pulmonary microbiota dysbiosis could disturb the immune function and induce
inflammation responses and airway diseases [34]. The “hygiene hypothesis” explained the
critical relevance between the symbiotic microbiota alteration and the immune homeostasis
dysregulation, because the modern lifestyle in industrialized societies altered the human
microbial ecosystem and increased the occurring chances of infectious disease [75,76].
In early life, the formation and development of the commensal microbiota have critical
impacts on the maturation of the immune system.

The microorganism-associated molecular patterns (such as lipopolysaccharide and
flagellin) of commensal microbes can induce the production of secretory immunoglobulin
A (sIgA) and establish the balance of immune recognition and immune tolerance [77].
During the process of pregnancy, the pattern of the immune system in the fetal environ-
ment is dominated by the Th2 phenotype. When the neonate’s symbiotic microbiome
is acquired after birth, the polarization of lung naïve T cells begins to shift from Th2 to
Th1 phenotype, and then the infant‘s resistance to allergic diseases is enhanced [78–80].
Because the microbial compounds could induce the differentiation of regulatory T cells
(Treg) and Th17 cells, the dysregulated lung microbiota by bleomycin treatment induce
the production of interleukin-17B (IL-17B) and tumor necrosis factor-α (TNF-α) through
Toll-like receptor-Myd88 adaptor signaling [81,82]. Therefore, manipulation of the infant
microbial community could train the responses of the innate and adaptive immune system,
and provide promising approaches to benefit life-long health [83,84].

6. The Lung Microbiota: Potential Target to Prevent and Treat Pulmonary Infections

The microbial communities harbored in the lung can build a protective barrier against
respiratory diseases, while the complicated interactions among the pulmonary microbiome,
pathogenic virome, and host immunity act as critical roles in lung inflammation and im-
mune responses [85,86]. The secondary bacterial infections often happen together with
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or after viral infections, and the infectious mechanism can be explained the dysregulated
innate and acquired immune homeostasis and the pathological damage which are caused
by the airway tract viruses. Conversely, persistent infection or colonization of pathogenic
bacteria can also induce viral infections by increasing the expression of viral entry recep-
tors [87–89]. Emerging evidence has proved that the sophisticated interactions between
viruses and bacteria at multiple levels in the lower respiratory tract can influence the host
phenotypic effects; therefore, investigations on the viral and bacterial co-infections help to
explore novel effective approaches for preventing respiratory diseases [90–92].

Recent researches on the lung microbiome promote the understanding of the thera-
peutic target of commensal microbiota for various kinds of respiratory diseases. Numerous
probiotics have been widely applied to treat infectious airway diseases for the beneficial
role of regulating the host immunity and inhibiting the invasion of the pathogen [93].
Accumulated studies have demonstrated that oral or nasal administration of Lactobacillus
and other probiotics could modulate the respiratory innate immune responses and promote
health benefits against influenza virus, and several other lactic acid bacteria (LAB) strains
were also reported to be able to stimulate the mucosal immune system and provide effective
protection against Streptococcus pneumoniae infections [94–97]. The symbiotic microbiota
can systematically impact the host respiratory system against Klebsiella pneumoniae infection
and produce short-chain fatty acids (SCFAs) and subsequently activate the G protein-
coupled receptors (GPCRs). The metabolic SCFAs could protect against syncytial virus
(RSV) infection by involving and engagement of interferon-β (IFN-β) via the IFN-1 receptor
(IFNAR) signaling [98–100]. The enhanced anti-viral function of alveolar macrophage was
mainly derived by the up-regulation of IFN-β, and then the recovery of the lung pathology
was also promoted [101,102]. According to the fact that the gut microbiota dysbiosis was
involved in the magnitude of COVID-19 severity through modulating the host immune
responses, targeted manipulation to restore the gut microbiota could be an important
strategy to treat COVID-19 and speed up recovery [103–105]. Nutritional intervention may
play a prominent role in establishing and regulating the compositions of intestinal and lung
microbiome, therefore the applications of probiotics, prebiotics and functional foods can
prevent or alleviate respiratory infections by directly inhibiting the growth of pathogens or
indirectly modulating the host’s immune function (Figure 3) [106,107].
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7. Conclusions

Recent research on the lung microbiome revealed its immune regulating functions
and the protective role in fighting against respiratory diseases. The predominant members
of the lung microbiome can comprise a microbial barrier to inhibit the colonization of
invading pathogenic microorganisms, and the beneficial metabolites produced by the lung
microbiome can enhance respiratory immunity and prevent the occurrence of respiratory
diseases. Moreover, the intimate relations between intestinal microbiota and lung mi-
crobiota provide new therapeutic targets for clinical treatments of respiratory infections.
Probiotics, prebiotics, functional foods and fecal microbiota transplantation can all be
applied to maintain the microbial homeostasis of intestinal microbiota and lung microbiota.
In all, various kinds of interventions targeting the symbiotic microbiota can be used as
novel strategies to prevent and control the respiratory diseases.
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