
Supplementary Table S1. The architecture of the g-DeepMGM with 256 units for each LSTM layer 

 
_________________________________________________________________ 

Layer (type)                 Output Shape              Param #    

================================================================= 

lstm_3 (LSTM)                (None, 30, 256)           292864     

_________________________________________________________________ 

dropout_2 (Dropout)          (None, 30, 256)           0          

_________________________________________________________________ 

lstm_4 (LSTM)                (None, 256)               525312     

_________________________________________________________________ 

dense_2 (Dense)              (None, 29)                7453       

================================================================= 

Total params: 825,629 

Trainable params: 825,629 

Non-trainable params: 0 

  



Supplementary Table S2. The architecture of the g-DeepMGM with 512 units for each LSTM layer 

 
_________________________________________________________________ 

Layer (type)                 Output Shape              Param #    

================================================================= 

lstm_3 (LSTM)                (None, 30, 512)           1110016    

_________________________________________________________________ 

dropout_2 (Dropout)          (None, 30, 512)           0          

_________________________________________________________________ 

lstm_4 (LSTM)                (None, 512)               2099200    

_________________________________________________________________ 

dense_2 (Dense)              (None, 29)                14877      

================================================================= 

Total params: 3,224,093 

Trainable params: 3,224,093 

Non-trainable params: 0 

 

  



Supplementary Table S3. The validity, uniqueness, and novelty of sampled purine molecules under 

different epochs and sampling temperatures of the g-DeepMGM  

 

Epoch Temperature Validity Uniqueness Novelty 

10  

(training loss: 

0.6309) 

0.5 0.873 0.197 0.291 

1.0 0.499 0.441 0.601 

1.2 0.391 0.514 0.557 

1.5 0.338 0.506 0.731 

20  

(training loss: 

0.5966) 

0.5 0.895 0.228 0.275 

1.0 0.560 0.695 0.530 

1.2 0.447 0.676 0.599 

1.5 0.331 0.689 0.658 

40 

(training loss: 

0.5700) 

0.5 0.892 0.217 0.211 

1.0 0.681 0.498 0.442 

1.2 0.556 0.597 0.518 

1.5 0.406 0.635 0.628 

100  

(training loss: 

0.5444) 

0.5 0.785 0.158 0.282 

1.0 0.594 0.475 0.426 

1.2 0.475 0.564 0.474 

1.5 0.369 0.588 0.664 

 

  



Supplementary Table S4. The metrics for the MLP Discriminator 

 

Algorithms AUC F1_score ACC Cohen-Kappa MCC precision recall 

MLP_3_166_0 0.936 0.558 0.912 0.516 0.556 0.417 0.846 

MLP_3_166_1 0.920 0.471 0.871 0.416 0.487 0.320 0.891 

MLP_3_166_2 0.907 0.487 0.902 0.439 0.469 0.368 0.719 

MLP_3_166_3 0.935 0.512 0.917 0.469 0.486 0.413 0.672 

MLP_3_166_4 0.909 0.435 0.859 0.376 0.445 0.293 0.844 

MLP_3_166_5 0.940 0.514 0.910 0.469 0.497 0.395 0.734 

 

  



Supplementary Figure S1. Log-likelihood and Wasserstein distance at different training epochs. 

 

 
 

Log-likelihood during the training of the model with 256 units per layer (a) and 512 units per layer (b). 

Wasserstein distance during the training of the model with 256 units per layer (c) and 512 units per layer (d).   



Supplementary Figure S2. Synthetic accessibility of generated indole molecules 

 

 
 

Synthetic accessibility scores for generated indole molecules when T=0.5 (a), T=1.0 (b), T=1.2 (c), and T=1.5 

(d).   



Supplementary Figure S3. Quantitative estimate of druglikeness of generated indole molecules 

 

 
 

Quantitative estimation of drug-likeness for generated indole molecules when T=0.5 (a), T=1.0 (b), T=1.2 (c), 

and T=1.5 (d).   



Supplementary Figure S4. Scree plots for physical-chemical properties and MACCS fingerprints 

 

  



Supplementary Figure S5. Physical-chemical properties-based t-SNE analysis on generated indole 

molecules and training compounds. 

 

 
 

t-SNE of physicochemical properties for generated indole molecules when T=0.5 (a), T=1.0 (b), T=1.2 (c), and 

T=1.5 (d).   



Supplementary Figure S6. MACCS fingerprint-based t-SNE analysis on generated indole molecules and 

training compounds. 

 

 
 

t-SNE of MACCS fingerprints for generated indole molecules when T=0.5 (a), T=1.0 (b), T=1.2 (c), and T=1.5 

(d).   



Supplementary application of g-DeepMGM on purine scaffold compounds generation 

To further investigate the generation of the scaffold-focused chemical library with the g-DeepMGM, another 

privileged scaffold, purine, was selected for evaluation. 

Similarly, the g-DeepMGM at four training epochs, 10, 20, 40, and 100 were selected for independent 

molecular sampling under four temperatures, 0.5, 1.0, 1.2, and 1.5. The purine scaffold has four possible positions 

for adding moieties. 2000 SMILES strings were sampled for each addition position under every epoch and 

sampling temperature. Totally 128,000 strings were sampled. The ability of the g-DeepMGM to generate valid 

SMILES strings peaked around the epoch 40 (Supplementary Tab. S3). A lower temperature usually results in 

high validity and low uniqueness and novelty, while a high temperature is inclined to sample unique and novel 

strings. The observation is consistent with the previous practice on the indole scaffold.  

 Supplementary Figure S7a demonstrates examples of generation outcomes of the g-DeepMGM at epoch 

40 under each sampling temperature for four addition positions of the purine. Under the temperature 0.5, some 

special moieties including connecting a fluorobenzene group to piperazine can be seen. The observation of 

fluorine also suggests that atom characters besides “C,” “N,” and “O” can be predicted with the g-DeepMGM 

even under a relatively low sampling temperature. Under the temperature 1.0, interestingly, a nitrile is sampled 

with a cyano group connected to a cyclopentadiene group. A 5-methylhexyl group is spotted. It is common to 

spot sampled aliphatic carbon chains even under a higher sampling temperature. Under the temperature 1.2, the 

structure with positively charged nitrogen and negatively charged oxygen was sampled. Diversified sub-structural 

moieties including isoxazolidine, amide group, pyridine, and benzimidazole are perceived. Finally, under the 

temperature 1.5, linear structures such as carbon-carbon triple bonds were sampled. The inclusion of bromine 

and furan further contributes to the structural diversity with increased uniqueness and novelty. A column of 

reported similar compounds to the generated molecules under the sampling temperature 1.5 are listed for 

structural comparison. 

 Generated purine molecules from four addition positions at epoch 40 were combined. Again, the t-SNE 

analysis was performed to compare generated purine molecules and a half-million training compounds from the 

perspective of physical-chemical properties (Supplementary Fig. S7b) and MACCS fingerprints 



(Supplementary Fig. S7c). Blue dots represent features of training compounds after the t-SNE dimension 

reduction, while colorful dots come from generated purine molecules. Colorful dots are distributed within the 

space covered by blue dots on both t-SNE plots. Certain chemical space is favored by generated purine molecules 

while most of the remaining space is uninviting. T-SNE plots for compounds generated at each temperature are 

supplied in Supplementary Figure S8 and S9. The g-DeepMGM was trained to compose SMILES of drug-like 

molecules starting with the input strings. Using the purine scaffold as the input to build a purine-focused library 

results in a chemical collection that is different from general drug-like compounds with an emphasis on specific 

physical-chemical and structural properties.  

  



Supplementary Figure S7. Sampling examples on purine scaffold and t-SNE analysis of training set and 

generate purine molecules. 

 

a Randomly selected sampling outcome for the purine scaffold under four temperatures with the g-DeepMGM at epoch 40. 

Four SMILES strings representing four addition positions on the purine were fed as the initial input. Reported similar 

compounds to the generated molecules in the column “T=1.5” are listed for comparison. Using both physical-chemical 

properties-based (b) and MACCS fingerprints-based (c) t-SNE analysis to compare generated purine molecules and training 

compounds. 

  



Supplementary Figure S8. Physical-chemical properties-based t-SNE analysis on generated purine 

molecules and training compounds. 

 

 
 

t-SNE of physicochemical properties for generated purine molecules when T=0.5 (a), T=1.0 (b), T=1.2 (c), and 

T=1.5 (d). 

  



Supplementary Figure S9. MACCS fingerprint-based t-SNE analysis on generated purine molecules and 

training compounds. 

 

 
 

t-SNE of MACCS fingerprints for generated purine molecules when T=0.5 (a), T=1.0 (b), T=1.2 (c), and T=1.5 

(d). 

 

  



Supplementary Figure S10. Transfer learning strategies 

 

 
 

Transfer learning strategies under four scenarios: a. Small compound set for transfer learning with similar data 

structure to previous molecules. b. Large compound set for transfer learning with similar data structure to 

previous molecules. c. Small compound set for transfer learning with different data structure to previous 

molecules. d. Large compound set for transfer learning with different data structure to previous molecules. 

 

 

  



Supplementary Figure S11. SAscore and QED for generated CB2 molecules 

 

 
 

Synthetic accessibility (a) and quantitative estimation of drug-likeness (b) for generated CB2 molecules. 

 

  



Supplementary Figure S12. Using MACCS fingerprints-based t-SNE analysis to compare generated 

molecules, known CB2 ligands, and initial half-million training compounds 

 

 

  



Supplementary Figure S13. Distribution and correlation of molecular weight (M.W.), topological polar 

surface area (TPSA), molecular refractivity (SMR), and Log of the octanol/water partition 

coefficient (SlogP) for known CB2 ligands and t-DeepMGM generated molecules 

 

 

 

  



Supplementary Figure S14. ROC curves for the six-fold cross-validation of the established MLP 

Discriminator 

 

 

  



Supplementary Figure S15. The radar plot of the metrics for the MLP Discriminator 
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Calculated Metrics  

Area under the ROC curve (AUC) was calculated with auc() after true positive rate and false positive rate were 

acquired with roc_curve(). AUC computes the area under the receiver operating characteristic (ROC) curve using 

the trapezoidal rule. AUC can be referred to indicate the performance of the model on separating classes.  

 Balanced F-score or F-measure (F1 score) was calculated with f1_score(). The F1 score can be interpreted 

as the weighted average of the precision and recall. The precision and recall have a relatively equal contribution 

to the F1 score. F1 = 2 * (precision * recall) / (precision + recall).  

 Accuracy classification score (ACC) was calculated with accuracy_score(). ACC computes subset 

accuracy as to whether the label predicted for one sample matches the corresponding true value.  

 Cohen’s kappa was calculated with cohen_kappa_score(). Cohen’s kappa measures inter-annotator 

agreement, which expresses the level of agreement between two annotators on a classification problem.  

 Matthew’s correlation coefficient (MCC) was calculated with Matthews_corrcoef(). MCC is used to 

measure the quality of binary and multiclass classifications. It is a balanced measure that both the true and false 

positives and negatives are considered.  

 Precision was calculated with precision_score(). The precision measures the ability of a model not to label 

a negative sample as positive. Precision = true positives / (true positives + false positives).  

 Recall was calculated with recall_score(). The recall measures the ability of a model to find out all the 

positive samples. Recall = true positives / (true positive + false negative). 

 

  



Supplementary Figure S16. 1H NMR for XIE9-1-37 

 

  
  



Supplementary Figure S17. 13C NMR for XIE9-1-37 

 

  
 


