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Abstract: In response to environmental stimuli, cells make a series of adaptive changes to combat
the injury, repair the damage, and increase the tolerance to the stress. However, once the damage
is too serious to repair, the cells will undergo apoptosis to protect the overall cells through suicidal
behavior. Upon external stimulation, some intracellular proteins turn into unfolded or misfolded
protein, exposing their hydrophobic regions to form protein aggregation, which may ultimately
produce serious damage to the cells. Ubiquitin plays an important role in the degradation of these
unnatural proteins by tagging with ubiquitin chains in the ubiquitin–proteasome or autophagy
system. If the two processes fail to eliminate the abnormal protein aggregates, the cells will move
to apoptosis and death. Dysregulation of ubiquitin–proteasome system (UPS) and autophagy may
result in the development of numerous diseases. This review focuses on the molecular mechanisms
of UPS and autophagy in clearance of intracellular protein aggregates, and the relationship between
dysregulation of ubiquitin network and diseases.

Keywords: cell stress; ubiquitin; ubiquitin–proteasome system; autophagy; endoplasmic reticulum
stress; unfolded protein response

1. Introduction

Under environmental stimuli, cell maintains the cellular homeostasis by increasing
tolerance to damage and repairing damaged macromolecules and organelles. However,
when the cell damage exceeds the capacity of adaptive response, the cell initiates the
apoptosis and death [1]. Common stimuli include heat stress, oxidative stress, hypoxic
stress, and DNA damage, which will quickly destroy the protein-folding ability of the
endoplasmic reticulum (ER) and induce accumulation of misfolded and unfolded proteins
in the ER [2]. To deal with this situation, the stressed cells activate the unfolded protein
response (UPR) [3–5]. UPR then restores the endoplasmic reticulum homeostasis and
protein refolding pathway in three main ways. Firstly, protein synthesis is reduced to
mitigate further aggregation of unfolded proteins. Secondly, the protein-folding ability
in ER is enhanced by inducing chaperone molecules and folding enzymes’ expression.
Thirdly, abnormal proteins are cleared by the endoplasmic-reticulum-associated degrada-
tion pathway (ERAD), which transports the unfolded and misfolded proteins out of the ER
by retro-translocation and is further degraded by the ubiquitin–proteasome system and
autophagy [3,4,6]. If neither of the above processes can alleviate ER stress caused by the
accumulation of abnormal proteins, the apoptosis or death of cells will be triggered [1].
There are three UPR pathways in mammal cell, the activation of which is determined by
three trans-membrane proteins located in ER membrane, namely activating transcription
factor 6 (ATF6), PKR-like ER kinase (PERK), and inositol requiring enzyme 1 (IRE1) [5].
In a physiological cell context, ATF6, PERK, and IRE1 bind to glucose-related proteins
(GRP78) and are inactivated. When folded proteins gather in the endoplasmic reticulum,
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GRP78 binds to the unfolded protein, and ATF6, PERK, and IRE1 are released and acti-
vated; then the unfolded protein signal is transduced across the endoplasmic reticulum
to the cytoplasm and nucleus (Figure 1). The PERK/ATF4 axis induces the expression of
chaperones and proteins involved in autophagy [7], apoptosis, and redox homeostasis. The
IRE1/X-box-binding protein 1 (XBP1) axis promotes the transcription of UPR gene sets
which are related to the full folding and secretion of proteins. Activated ATF6 induces the
expression of chaperone proteins, such as XBP1 and ERAD-related proteins.

Figure 1. Ubiquitin mediates the degradation of protein aggregates under stimuli. In response
to cell stimulation, proteins in the endoplasmic reticulum form aggregates, which are labeled by
ubiquitin in the presence of E1, E2, and E3 and then degraded by proteasome or autophagosome.
UPR mediated by PERK, IRE, and ATF6 possesses a vital role in regulating autophagy and UPS.
Unc-51-like kinase 1 (ULK1), Autophagy-Related 13 (ATG13), RB1-inducible coiled-coil protein 1
(FIP200), neighbor of BRCA1 gene 1 (NBR1), Beclin-1 (BECN1), 5′-AMP-activated protein kinase
(AMPK), mTOR complex 1 (mTORC1), ribosomal protein S6 kinase (RPS6KA3), Tax-binding protein
1 (TAXBP1), phosphoinositide 3-kinase (PI3K), phosphoinositide-3-Kinase Regulatory Subunit 4
(PIK3R4), and Phosphatidylinositol 3-Kinase Catalytic Subunit Type 3 (vps34). UPS: glycine at the
C-terminus of ubiquitin binds to the active site of E1, along with the hydrolysis of ATP. the active
ubiquitin is then transferred to the E2 enzyme to form a complex with the E2 conjugating activation,
and this complex further interacts with the specific enzyme E3, which makes the ubiquitin transfer to
the specific substrate. Autophagy lysosomal system (ALS) induction: in response to cell stress, (such
as starvation), the complex formed by ULK1, mAtg13, Atg101, and FIP200 is activated to initiate
the de novo isolation of a portion of intracellular membrane. Vesicle nucleation: ULK1 complex
phosphorylates autophagy protein BECN1 and promotes it to form a class PI3K complex (including
PIK3R4, BECN1, ATG14, and VPS34). Vesicle elongation: ATG16L1 binds with ATG5–ATG12 to form
the active ligase-like complex ATG12–ATG5–ATG16L1, serve as E3 ligase, and make LC3-I combined
with PE to form LC3-PE (LC3-II). LC3-II anchors to the autophagy vesicle and promotes the extension
of autophagy vesicle. Autophagosome: Cargo receptors of autophagy (such as p62, NBR1, and
TAXBP1) transport the ubiquitinated substrate to the autophagosome. Finally, autophagosomes fuse
with lysosomes. UPR regulates UPS and ALS to clear protein aggregates in response to cellular stress.
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Ubiquitin is a classical molecular label for protein degradation. When the misfolded
proteins and unfolded proteins are tagged with ubiquitin, these proteins will be degraded in
proteasome or lysosome [8,9]. Ubiquitin not only plays a role in UPR, but also participates in
the activation of cellular stress responses. UPS and autophagy are two independent system
in protein quality control (PQC). However, there is more evidence about the connections
between UPS and autophagy [10]. In this review, we first briefly summarize the ubiquitin
pool, UPS, and autophagy and then discuss, in detail, various examples of coordination
and crosstalk between them and dysregulation of UPS and ubiquitin-mediated autophagy
pathways in human diseases, neurodegenerative diseases, and cancer, in particular.

2. Ubiquitin Pool

Ubiquitin is a highly conserved small protein molecule containing 76 amino acids and
is founded in all eukaryotic cells. Furthermore, ubiquitin molecules are very stable and will
not be changed when exposed to acid stress or heat shock. These two properties give ubiq-
uitin molecules an important role in the cell’s defense against the abnormal accumulation
of proteins caused by stress. According to the lysine residues in the ubiquitin molecule,
the ubiquitin chain can be divided into seven isoforms, namely K6, K11, K27, K29, K33,
K48, and K63 [5]. Ubiquitin moieties can be conjugated through N-terminal methionine
residue (M1) [11]. In addition to polyubiquitination, there are monoubituitination and
multi-monoubituitination. Polyubiquitination can also be divided into homotypic polyu-
biquitination and heterotypic polyubiquitunqition. Different ubiquitin-chain links function
as different regulators; among them, the K48 chain is the main mediator of degradation.

UPS and autophagy are two pathways related to protein degradation, and the acti-
vation of the two processes depends on the ubiquitin pool in cells. Intracellular ubiquitin
consists of monomer ubiquitin and substrate-bound ubiquitin. Most deubiquitinases
(DUBs) play an important role in maintaining the ubiquitin homeostasis in cells by releas-
ing monomer ubiquitin from ubiquitinated protein, which is degraded by proteasomes or
lysosomes and recovers the ubiquitin level [12]. DUBs, meanwhile, maintains protein sta-
bility, edits ubiquitin chains, processes ubiquitin precursors, and removes non degradative
ubiquitin signal. However, the stable state of intracellular ubiquitin still needs appropriate
synthesis to compensate for the basal ubiquitin reversal. There are four ubiquitin genes:
UbC, UbB, UbA52, and UbA80. UbC and UbB encode polyubiquitin, while UbA52 and UbA80
encode ubiquitin and two small ribosome fusion proteins [5]. Therefore, small ubiquitin
molecules are all derived from the primary translation products of ubiquitin genes, which
would be further hydrolyzed by ubiquitin-specific protease. Almost all of the polyubiq-
uitin genes are stress regulatory genes with heat-shock elements in their promoters [13].
Similarly, the expression of UbC and UbB is upregulated under various stresses [14,15].
NF-E2-related factor 1 (NRF1) [16], NRF2 [17], SP1 [15], and Heat-Shock Transcription
Factor 1 (HSF1) [18] were identified as transcription factor of UbC, and these transcription
factors may upregulate UbC transcription under cell stress. Several studies have shown
that mice with targeted UbC gene knockout would die at 12.5–14.5 days during embryonic
life period, accompanied by severe liver defects. Embryonic fibroblasts from embryonic
mice with UbC gene knockout showed slower growth, premature senescence, increased
apoptosis, delayed cell-cycle progression, and decreased levels of ubiquitin homeostasis.
Thus, homeostasis of the ubiquitin pool is important for cell survival, especially under
severe stresses [19].

3. UPS
3.1. Mechanism of UPS

Unfolded and misfolded proteins are toxic to cells and must be eliminated quickly and
efficiently. To achieve this, mechanisms controlling the protein quality have been formed to
clear the denatured proteins in eukaryotic cells. Eukaryotic cells have developed specific
protein quality-control mechanisms to recognize and process these unnatural proteins. One
important defense mechanism is the specific elimination of these proteins by the UPS [12].
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Ubiquitin-26s Proteasome system is an ATP-dependent non-lysosomal protein degradation
mechanism in cells. In this process, proteins can be degraded efficiently and selectively
under cell stress, such as cyclin, p21, p53, c-Jun, c-fos, and other structural proteins. The
degradation of proteins via ubiquitin-26s proteasome system is a multistage process in
presence of ubiquitin, three ubiquitin enzymes, and proteasomes. There are three kinds of
ubiquitin enzymes, including E1 (ubiquitin activating enzyme), E2 (ubiquitin conjugating
enzyme), and E3 (ubiquitin ligase). Ubiquitin E3 ligase determines the specificity of the
substrate, which can be divided into HECT, ring-finger, and U-box ubiquitin E3 ligase
according to the biochemical characteristics and structural differences. Chaperones and
proteases play a key role of PQC when protein aggregates occur. Molecular chaperones
promote the folding of new peptides and refolding of misfolded proteins to inhibit the
aggregation of protein through recognition of hydrophobic patches of misfolded protein
and unfolded protein under cellular stress [20]. However, when the unnatural proteins
can no longer be refolded, it is necessary to identify these misfolded proteins and degrade
them through the ubiquitin–proteasome pathway. Misfolded and unfolded proteins are
firstly recognized by chaperones, such as Hsp70 and Hsp90, which are mainly chaperones
in PQC, and both of them utilize co-chaperones to recognize and bind substrate [21]. Then
unnatural proteins either refold in an ATP-dependent manner or are labeled by ubiquitin
under the action of chaperon-bound ubiquitin E3 enzymes, such as STIP1 Homology and
U-Box Containing Protein 1 (CHIP), BAG Cochaperone 1 (BAG1), and Scythe (Figure 1).

3.2. Molecular Chaperones and Ubiquitin E3 Ligases Involved in Cell

Molecular chaperones and ubiquitin E3 ligases are key factors in the degradation of
misfolded proteins via the proteasome pathway. CHIP is a typical representative and the
most thoroughly studied ubiquitin E3 enzyme related to protein quality control. CHIP has
the function of both molecular chaperone and ubiquitin E3 ligase. Studies have shown
that CHIP cooperates with BAG-1 to transform the activity of Hsc/Hsp70 molecular chap-
erone system, from promoting protein folding to promoting protein–ubiquitin-mediated
degradation. Interestingly, CHIP also mediates the ubiquitination degradation of Hsp70
(Figure 1). Misfolded cystic fibrosis transmembrane conductance regulator (CFTR) [18–20],
glucocorticoid hormone receptor (GR) [21], Erb-B2 Receptor Tyrosine Kinase 2 (ErbB2) [22],
and Pael receptor (Pael-R) [22] have been identified as substrates for CHIP. Misfolded
Integrin, Pdr5, and HMG-CoA reductase (HMGCR) are the substrates of ERAD-related
E3 Ligase Der3, gp78, and SCF Fbx2 [23]. To date, nearly 40 ERAD-related ubiquitin E3
ligases have been identified in mammals. The major ubiquitin E3 ligases are summarized
in Table 1.

Table 1. Ubiquitin E3 ligase in protein quality control under stimuli.

Ubiquitin E3 Ligase Substrates

GP78 CD3—δ [22], CFTR [23], HMGCR [24].

Parkin α-synuclien, synphilin-1, Pae1 [25], glucocerebrosidase (GCase) [26].

E3 ubiquitin–protein ligase synoviolin
(HRD1/3) [21,27]

Hmg1p [28], pre-B cell receptor (pre-BCR), pro-arginine vasopressin (AVP)
B-lymphocyte-induced maturation protein 1 (BLIMP1) [29], NRF2 [30],

peroxisome proliferator activated receptor γ coactivator-1 β (PGC1β) [31],
transforming growth factor beta (TGF-β) [32], T-cell receptor alpha (TCR-α), [33]

alpha1-antitrypsin [34], p53 [35], amyloid precursor protein (APP) [36], et al.

membrane-associated RING C3HC4 finger 6
(MARCHF6) [37–39] squalene epoxidase (SQLE) [40], HMGCR [38], perilipin-2 (PLIN2) [38], et al.

RNF5 [41] CFTR [41], JNK-associated membrane protein (JAMP) [42], et al.

Makorin ring-finger protein 1 (MKRN1) Potassium voltage-gated channel subfamily H member 1 (KCNH1), Eag1 [43]
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Table 1. Cont.

Ubiquitin E3 Ligase Substrates

SCF Fbx2 [37] β-secretase (BACE1) [44], CFTR [45], et al.

SCF Fbx6 [37] Chk [46]

SCFβ-TrCP1/2 CD4 [47], Tetherin [48]

CHIP [24] (CFTR) [19–21], GR [22], Pael [23], ErbB2 [23], IRE [49], INO80 [50], tau [51], et al.

SMAD ubiquitination regulatory factor 1
(Smurf1) Wolframin (WFS1) [52], phosphatase and tensin homolog (PTEN) [53], et al.

Neuregulin receptor degradation pathway
protein 1 (Nrdp1) [37] Erb-B2 receptor tyrosine kinase 3 (ErbB3) [54], et al.

4. Autophagy
4.1. Mechanisms of Autophagy

Besides UPS, autophagy can also protect the cell by removing toxic protein aggregates
and damaged organelles from cytotoxicity pressure. Autophagy was originally thought
to non-selectively degrade long-lived proteins and organelles for nutrient cycling and
energy production [9]. Later studies have shown that protein aggregates can be removed by
selective autophagy. The process of autophagy is usually divided into four stages: induc-
tion, nucleation, elongation and substrate isolation, and fusion with lysosomes (Figure 1).
The initial signal of autophagy usually comes from a variety of stress conditions, such as
hunger, hypoxia, oxidative stress, protein aggregation, and oxidative stress. The target of
these signals is ULK1 complex (composed of ULK1, ATG13, ATG101, and FIP200) [55–57].
Moreover, mTORC1 is a key regulator of autophagy [58]. As a receptor of energy and
nutrition, the activity of mTORC1 is inhibited after starvation [55], which leads to de-
phosphorylation of ATG13 and activation of ULK1 complex [59]. Subsequently, ULK1
complex phosphorylates autophagy protein BECN1 and promotes it to form a class PI3K
complex (including PIK3R4, BECN1, ATG14, and VPS34), which mediates the formation
of autophagy vesicles. The extension of autophagy depends on two ubiquitin-like con-
nection systems. In the first one, ATG16L1 binds with ATG5–ATG12 to form the active
ligase-like complex ATG12–ATG5–ATG16L1. In the second conjugation process, LC3-pro is
hydrolyzed by ATG4B and expose the C-terminal glycine and then became LC3-I. LC3-I
combined with PE to form LC3-PE (LC3-II) under the catalysis of E1-like ATG7, E2-like
ATG3 and E3-like ATG16L1–ATG5–ATG12 complex [60]. LC3-II anchors to the autophagy
vesicle and promotes the extension of autophagy vesicle by recruiting other membrane
structure, and then wraps the substrate in the cytoplasm to form autophagosome. In the
mature stage of autophagy, autophagosomes fuse with lysosomes under the action of
GTPase Rab7 and Synaptosomal-Associated Protein (Synaptosomal-Associated Protein,
SNAP) receptor Syntaxin 17 (Syntaxin 17, STX17) to form autophagy lysosomes (Autolyso-
somes). Finally, protein aggregates and damaged organelles are degraded by lysosome
proteases and sent to the cytoplasm for cell reuse [56] (Figure 1). The activity of ULK1 is
also regulated by 5′-AMP-activated protein kinase (AMPK) [59,61]. AMPK phosphorylates
ULK1 and phosphorylated ULK1 phosphorylates Raptor, resulting in a decrease in the
binding of Raptor to mTORC1 and a decrease of mTORC1 activity. In addition, AMPK can
also phosphorylate Raptor directly [61] (Figure 1).

4.2. Cargo Receptors of Autophagy

The cargo receptors p62, NBR1, Optineurin (OPTN), Toll Interacting Protein (TOLLIP)
and TAXBP1 act as bridges between the ubiquitin chain and LC3, helping with the formation
of aggregates [55,62,63] (Figure 1). Moreover, p62 binds with ubiquitin or poly-ubiquitin
chain through its ubiquitin-associated domain (UBA) and then transfers the substrate
to autophagosome and lysosome through LC3-interacting region (LIR) domain and PB1
domain. Although p62 could bind to both K48 and K63 chains, it has a higher affinity
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for K63 chains. The intracellular level of p62 depends on transcriptional regulation and
post-translational autophagy degradation. The transcription of p62 is regulated by NRF2,
ras/MAPK pathway, JNK/c-Jun pathway and some compounds [55]. NBR1 and p62 form
a complex to promote the formation of aggregates. Overall, p62 is the major driver of
ubiquitin condensate formation. NBR1 recruited TAXBP1 into ubiquitin aggregates formed
by p62 [62]. Although all three receptors interact with FIP200, TAXBP1 is the main driving
force for recruitment of FIP200 and degradation of p62–ubiquitin aggregates through
autophagy [63]. TNF receptor associated factor 6 (TRAF6) catalyzes K63 ubiquitination
of mTOR and activates mTORC1 through its interaction with p62 in nutrient-activated
cells [64,65].

4.3. UPR and Autophagy

During endoplasmic reticulum stress, UPR regulates autophagy in different ways [4].
On the one hand, the UPR signal can regulate autophagy by regulating the activity of
AKT, mTORC1, and AMPK (Figure 1). For example, activated PERK induces the trans-
lation of ATF4, and it further increases the expression of sestrin 2 (SESN2) and DNA-
damage-induced transcript 4 (DDIT4). SESN2 and DDIT4 directly inhibit the activity of
mTORC1 [37,57] (Figure 1). At the same time, ATF4 can inhibit the activity of AKT and
then inhibit the activity of mTORC1 through the DDIT3/TRIB3 pathway [66]. Meanwhile,
AMPK can also be activated by PERK signal pathway; activated AMPK cannot only di-
rectly activate ULK1, but it also inhibits the activity of mTORC1. The IRE1 signal pathway
activates RPS6KA3, and RPS6KA3 also activates ULK1 through activating AMPK [57]
(Figure 1). JNK is one of the key regulator of IRE1 signal axis, and BECN1 is the main down-
stream regulatory factor of JNK. After JNK is activated, Bcl-2 becomes phosphorylated,
and that destroys the interaction between BECN1 and Bcl-2 and induces the autophagy
of tumor cells [67,68] (Figure 1). ATF6 can suppress autophagy by activating AMPK [69].
UPR cannot only regulate protein activity of autophagy related proteins, but it can also
regulate the transcription of key proteins in autophagy. For example, hypoxia-induced en-
doplasmic reticulum stress can induce ATF4 and CHOP-mediated upregulation of LC3 and
ATG5 [70]. Furthermore, eIF2a-kinases, PERK, ATF4, and DDIT3 activate the transcription
of a series of autophagy-related genes, including LC3, ATG5, ATG3, ATG7, ATG10, ATG12,
beclin1, γ-aminobutyric acid receptor related protein (GABARAP), p62, and NBR1 [7,10].
In addition, the activated IRE1 promotes the splicing of XBP1 mRNA, and the spliced XBP1
triggers the autophagy signal pathway by regulating the transcriptional of BECN1 [71].

4.4. Chaperone-Mediated Autophagy

Chaperone-mediated autophagy (CMA) is another type of autophagy that degrades cy-
toplasmic proteins in lysosomes without autophagy-related gene. Hsc70 forms complexes
with Hsp40, Hip, Hop, and Hsp90 to recognize and bind substrates with KFERQ-like se-
quences [72]. Then the unfolded substrates interact with molecular chaperone complex and
then are transferred to the lysosomal cavity by binding Lysosome-Associated Membrane
protein type-2A (LAMP-2A). Thus, LAMP-2A is a rate-limiting factor for CMA. After enter-
ing the lysosome, the substrates are rapidly degraded by lysosomal proteases, and then
chaperone complex is released from the lysosomal membrane. Starvation and serum with-
drawal increase the LAMP-2A protein level and its reinsertion into the lysosomal membrane
by reducing its degradation. After long-term starvation, 30% of the cytoplasmic proteins are
degraded through the CMA pathway. LAMP-2A identifies membrane-associated ring-CH-
type finger 5 (MARCHF5) through KFERQ-like consensus, an E3 ubiquitin ligase required
for mitochondria fission. Severe oxidative stress compromised CMA activity and stabilized
MARCHF5, which facilitated Dynamin-1-Like (DNM1L) translocation and led to excessive
mitochondria fission [72]. Furthermore, a report shows that CMA is required for PQC in
stem cells and for the upregulation of fatty acid metabolism upon hematopoietic stem cells
(HSCs) activation [73].
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5. Crosstalk between UPS and Autophagy
5.1. UPR Mediates Crosstalk between UPS and Autophagy

UPS and autophagy are two major ways of protein degradation in cells. More and
more studies have shown a coordinated and complementary relationship between these
two systems [74,75]. When misfolded proteins cannot be degraded by the molecular
chaperone-mediated proteasome pathway and cause protein aggregation, which may in
turn inactivate proteasome and lead to cytotoxicity, the autophagy lysosome pathway is
an important compensation mechanism for mediating the degradation of ubiquitinated
protein aggregates [63].

UPR plays an important role in the process of autophagy induced by proteasome
inhibitor. Due to the destruction of proteasome, the misfolded proteins cannot be degraded
by proteasome and form aggregates, which destroys the homeostasis of endoplasmic
reticulum and induces UPR [76]. For example, proteasome inhibitor activates autophagy
through the IRE/JNK/bcl2/BECN1 axis [77,78] (Figure 1). Activated IRE1 can also recruit
TRAF2, resulting in JNK phosphorylation and the expression of autophagy core gene [79,80].
At the same time, ATF6 is cleaved and transferred from the Golgi apparatus to the nucleus,
where it induces the expression of death-associated protein kinase 1 (DAPK1), [81] and
ATF6 can also promote the biogenesis of autophagosomes by increasing phosphorylation
of BECN1. Concurrently, many studies have shown that proteasome inhibitors can increase
the expression of ATF4 through PERK axis, and previous studies proved that ATF4 regulates
the transcription of autophagy-related genes, such as LC3, ATG5, and ATG7. Proteasome
inhibitors can also inhibit the ubiquitin degradation of ATF4 [82].

5.2. Proteasome Inhibitors Regulates Proteins Involved in Autophagy

In addition to UPR, proteasome inhibitors can also directly act on autophagy-related
proteins to promote autophagy [63]. For example, proteasome inhibitor destroys the
protein–protein interaction between Raptor, one of the structural components of mTORC1,
and its interacting partners, thereby inhibiting the activity of mTORC1 [83,84] (Figure 1).
In addition, p53 accumulates and is transferred to the nucleus and acts as a transcription
factor for autophagy housekeeping genes after inhibiting the proteasome, such as diastasis
of the rectus abdominis muscle (DRAM) [81]. Alternatively, elevation of p53 level may
activate autophagy by inhibiting the mTORC1 pathway [83] (Figure 1). Furthermore, a
number of studies have shown that the protein level of LC3 is significantly increased when
tumor cells are exposed to proteasome inhibitors [85,86].

Moreover, p62 is an important bridge between the proteasome system and autophagy [87].
There is evidence that proves that proteasome inhibitors and starvation can promote the
synthesis of p62 and impair the protein toxicity stress caused by protein aggregation [88].
When the proteasome system is inhibited, E3 ligase TRIM50 co-locates with p62 and HDAC6
on aggregates or ubiquitin aggregate proteins to help autophagy machines to recognize
aggregates and remove them [89]. The transcription of p62 is mainly regulated by NRF2. In
the basic state, NRF2 is degraded by the Cul3-Keap1-E3ligase (keap1)-mediated ubiquitin–
proteasome pathway. Under the stimulation of oxidative stress, the ubiquitination of NRF2
by Keap1 is blocked; thus, NRF2 is transferred to the nucleus to promote the transcription of
p62, while overexpressed p62 competes with NRF2 to bind KEAP1, thus forming a positive
feedback regulatory loop [90]. Under cellular stress, ULK1 can phosphorylate the serine 405
and 409 of p62, thus increasing the affinity of p62 to ubiquitin proteins and leading to the
effective degradation of protein aggregates. The inhibition of proteasome can also activate the
adaptive transcription of NRF2, which, in turn, promotes the synthesis of p62 [91].

HDAC6 is another key protein in linking UPS and autophagy. HDAC6 regulates the
acetylation of α-tublin, which not only participates in the formation of aggregates but also
promotes the transport of ubiquitin aggregates to new phagocytic vesicles [9,92,93]. HDAC6
interacts with polyubiquitinated proteins and brings these proteins to the dynamins, which
transport polyubiquitinated proteins to the autophagosomes [9,94]. HDAC6 is involved in
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the fusion of autophagosomes and lysosomes, and inhibition of HDAC6 can enhance the
cytotoxicity of proteasome inhibitors [93].

In addition, Bcl-2-associatedathanogene (BAG) family proteins also mediate the
crosstalk of the proteasome pathway and autophagy. BAG1 promotes proteasome degra-
dation of unfolded proteins by interacting with Hsc70/Hsp70 chaperone complexes and
proteasomes. Meanwhile, BAG3 interacts with the complex composed of heat-shock protein
B8 (HSPB8) and Hsp70, which recruit p62, and substrates bind with Hsp70 to LC3 [95].
In senescent cells or tissues, the conversion of BAG1 expression to BAG3 during inhibi-
tion of proteasome or oxidative stress leads to autophagy as an alternative pathway for
PQC [96,97].

5.3. Inhibition of Autophagy Affects UPS

Inhibition of proteasome leads to a compensatory stimulation of autophagy, whereas
the inhibition of autophagy activates or impairs proteasomal flux via several mechanisms.
For example, overabundant p62 delays the transport of substrates to proteasomes [98].
Moreover, research shows that USP10 interacts with p62 and augments p62-dependent
ubiquitinated protein aggregation and aggresome formation, which inhibit proteasome
activity [99]. Another possible mechanism of autophagy inhibition impacts proteasome
system is proteaphagy. Senescent or inactivated proteasomes and subunits are eliminated by
selective autophagy to maintain the balance of the overall proteasome pool, which is known
as proteaphagy. When proteaphagy is inhibited, senescent or inactivated proteasomes
increase and compete with normal proteasome, and this affects the proteasome flux [10].
However, there is an opposite view that proteasome can be activated when autophagy is
inhibited by drugs or gene editing. After knocking out autophagy-related protein factors
PIK3C3, ATG5, and ATG7, the activities of three types of proteasome are upregulated, and
the protein levels of proteasome subunits, including proteasome β 5 subunit (PSMB5), are
also increased.

6. UPS and Autophagy in Disease
6.1. Neurodegenerative Disease

In recent years, many clinical studies have shown that UPS and autophagy are closely
related to many diseases. The dysfunction in regard to the elimination of misfolded or
aggregated proteins from the cytoplasm of neurons and glial cells seems to be a particu-
larly common cause of various neurodegenerative diseases [6,100]. In the past decade, a
number of studies have shown that ER plays a key role in the pathogenesis of neurode-
generative diseases, including Alzheimer’s disease (AD), amyotrophic lateral sclerosis
(ALS), Parkinson’s disease (PD), and hypermetabolic disease (GD). Parkinson’s disease is a
progressive neurodegenerative disease characterized by α-synuclein (α-syn) oligomers, but
not monomers or fibers, suggesting the unique ability of α-syn oligomers to perturb cellular
processes [101,102]. Oligomeric α-syn uniquely leads to ER stress. The two main ways to
maintain proteostasis are UPS and autophagy, which are both affected by α-syn oligomers.
Oligomers inhibit proteasome activity and cause lysosome dysfunction [102]. Moreover,
α-Syn is highly susceptible to ubiquitination, and dysfunction in α-Syn ubiquitination
contributes to chronic synucleinopathies [103].

In the past few decades, a large number of studies have improved our understanding
of the complexity of ubiquitin networks. In view of the abnormality of E3 ligase in a
variety of pathogenic processes, E3 ligases have become an effective target for the treat-
ment of diseases. For example, Parkin is an ubiquitin E3 ligase involved in a variety of
cellular processes associated with PD [104]. One of Parkin’s targets for ubiquitination,
Parkin interacting substrate (PARIS) accumulates in the brain of patients with autosomal
recessive juvenile PD [105]. Mutations to Parkin result in the accumulation of PARIS and
successive inhibition of the transcription of Peroxisome proliferator-activated receptor
gamma coactivator 1-alpha (PGC-1α) and its downstream targets, thus affecting the degra-
dation of damaged mitochondria and biogenesis of mitochondrial. Autosomal recessive
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juvenile parkinsonism (AR-JP) is related to the mutation of Parkin [106]. In addition, the
overexpression of Parkin specifically inhibits UPR-induced cell death, but the mutant
Parkin cannot.

There is much evidence for the association of dysregulation of ubiquitin-mediated
autophagy with various neurodegenerative diseases. For example, the wild ataxin 3
in spinocerebellar ataxia type 3 is a DUB of BECN1. With this function, ataxin 3 is re-
quired for starvation-induced autophagy [107]. Ataxin 3 with expanded polyQ repeats
has higher binding affinity with BECN1, which is defective in removing ubiquitin chain
from BECN1. These findings identify a link of ataxin 3 to autophagy regulation, and, more
important, impairment of Beclin-1 mediated autophagy accounts for one mechanism of
polyQ repeat-associated neurodegenerative diseases. USP19-depedent Beclin-1 deubiquiti-
nation mediates selective autophagy and anti-inflammation and determines the outcome
of infection and immunological functions [108]. TAX1BP1, a particular autophagy receptor,
also possesses a unique role in cell intrinsic control of infection [109].

6.2. Cancers
6.2.1. UPR and Cancers

In addition to neurodegenerative diseases, PQC is closely related to tumor develop-
ment, invasion, and drug resistance [110]. In the process of carcinogenesis, tumor cells
are exposed to various stresses, such as lack of nutrition, accumulation of acid waste and
hypoxia, change of chromosome number, activation of oncogenes, inactivation of tumor
suppressor genes, and accelerated secretion, leading to endoplasmic reticulum stress and
then activating the PQC mechanism of endoplasmic reticulum. First of all, three UPR
signaling pathways will block tumor development in the early stage of cancer, while cancer
cells will adapt to internal and external stress and resist apoptosis caused by endoplasmic
reticulum stress in later stages [111]. For example, PERK is highly expressed in a variety of
tumor cells, such as kidney renal papillary cell carcinoma, brain lower-grade glioma, breast-
invasive carcinoma, and thyroid carcinoma, and the high expression of PERK is associated
with poor prognosis, while the high expression in neck squamous cell carcinoma is well
correlated with good prognosis [112]. PERK-mediated upregulation of vascular endothelial
growth factor (VEGF), fibroblast growth factor-2 (FGF2), and interleukin-6 (IL-6) and down-
regulation of anti-angiogenic cytokines significantly promoted tumor growth [113,114].
However, Ajda Coker-Gurkan et al. demonstrated that Atiprimod upregulated the expres-
sion of Bak, Bax, and Bim through the PERK/eIF2 α/ATF4/CHOP pathway and promoted
the apoptosis of breast cancer cells [115]. XBP1 promotes the occurrence, development, and
recurrence of triple-negative breast cancer by regulating the transcription of HIF1-α [116].
In addition, constitutive activation of XBP1 in tumor-associated DCs (tDCs) drives ovarian
cancer (OvCa) progression by blunting antitumor immunity [117]. Recent studies have
shown that XBP1s protein can upregulate the expression of insulin-like growth factor
binding protein-3 (IGFBP3) and regulate the invasion and metastasis of NSCLC cells by reg-
ulating IGFBP3 [118]. Speaking of ATF6, Jiao Meng et al. have shown that activated STAT3
promotes the transcription of ATF6, which, in turn, endows cancer cells with resistance to
cisplatin and paclitaxel [119]. DAPK1 is a metastasis inhibitory factor, whose mechanism
is to inhibit tumor metastasis and mediate apoptosis and autophagy. Downregulation of
DAPK1 expression was detected in ATF6 knockout cells, which affected the expression
of ATG9 to regulate autophagy flux. At the same time, ATF6-mediated upregulation of
CHOP also contributes to ATF6-induced autophagy [81]. In colon cancer, XBP1 and ATF6
activation reduced cellular proliferation and reduced expression of markers of intestinal
epithelial stemness [120].

6.2.2. UPS and Cancers

Alterations in the UPS have the potential to alter cellular homeostasis, and studies
have demonstrated that proteasomal activity is elevated in human cancers. This may
be due to the fact that UPS regulates key proteins in many cellular processes, such as
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epithelial–mesenchymal transition (epithelial–mesenchymal transition, EMT), cell cycle,
signal transduction, gene expression, DNA repair, and apoptosis. A study has shown
that, in cyclosporine A (CsA)-treated cells, there is an increased expression of PPIL2, a
ubiquitin E3 enzyme, which ultimately leads to the decrease of SNAI and thus inhibits the
EMT process of breast cancer cells [121]. UPS also degrades key proteins in the signaling
pathway in response to cellular stress, such as, Wnt/β-catenin, HIF-α, and p53. Here
we summarize the signal pathways related to tumorigenesis regulated by the ubiquitin–
proteasome pathway in Table 2.

Table 2. Signaling pathways regulated by the ubiquitin–proteasome pathway under cell stimuli.

Signal Pathway Cell Stimuli E3 Enzyme

NF-κB pathway [111,112] Cytokines, UV, virus, oxide, et al.
β-TrCP [122], IRF3 [123], Linear

Ubiquitin Chain Assembly Complex
(LUBAC) [124]

p53 pathway DNA damage MDM2 [125,126], FBXW7 [127]

DDB1/DDB2-XPC/HR23B pathway DNA damage DDB1-CRBN ubiquitin E3 ligase [128]

MAPK pathway [129] UV, Osmotic pressure change, heat shock,
et al.

TRIM48 [130], NEDD4 [123], RNF
[131,132], et al.

HIFα pathway [133] hypoxia pVHL E3 ligase complex [134].

wnt/β-catein pathway DNA damage, hypoxia, virus, et al. SIAH1 [135–137].

PI3K/AKT/mTOR pathway Hypoxia, high glucose, cytokines, et al. FBXL12 [138], parkin [139,140], TRAF6
[141,142], β-TRCP [143], et al.

6.2.3. Autophagy and Cancer

Inducing autophagy in cancer may be helpful in cancer treatment [55]. In fact, au-
tophagy has a dual role in cancer that is related to the type, stage, or genetic context of the
cancers [143–145]. In the study of melanoma, small-molecule HA15 induces apoptosis and
autophagy in vivo and in vitro by targeting the activation of GRP78, a landmark protein
of endoplasmic reticulum stress [146]. The occurrence of autophagy is accompanied by
the accumulation of vesicles, the transformation of LC3-I to LC3-II, and the formation of
autophagosomes [146]. The therapeutic effect of HCA15 on melanoma cells decreases with
the decrease of autophagy and apoptosis, suggesting that autophagy can inhibit tumor
growth. Moreover, inhibition of autophagy can also inhibit the invasion and migration of
tumor cells [147–149]. However, some studies have shown that autophagy can mediate
the immune and chemotherapy resistance of cancer [150]. Cancer stem cells (CSCs) in
a quiescent state obtain resistance to conventional treatment; this is the main cause of
tumor recurrence. Chemotherapy drugs promote autophagy in tumor cells. However, the
combination of chemotherapy drugs and autophagy inhibitors can make CSCs sensitive
to chemotherapy drugs. CSCs heterogeneity and patient-specificity make the situation
more complicated. We are far from finding new drug combinations that would allow us
to eradicate CSCSs or at least inhibit their proliferation. In addition, several studies have
shown that some HER2-positive breast cancer cells can acquire drug resistance through
the upregulation of autophagy pathways [151,152]. Due to the dual role of autophagy in
tumors, whether autophagy can be used as a therapeutic target still needs further study.

7. Conclusions

Under external stimuli, protein denature and aggregate are harmful to the cells. Ubiq-
uitin can protect cells from the stimuli by playing a key role in the clearance of protein
aggregates. Therefore, maintaining the homeostasis of ubiquitin pools is very crucial for
protein quality control, and transcription factors which respond to external stimuli and
deubiquitination enzymes play an important role in ubiquitin pool homeostasis. In the
presence of ubiquitin monomer, the proteins that need to be degraded in the cells will be
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marked by ubiquitin. Ubiquitin-labeled protein aggregates are ultimately degraded by
UPS or autophagy. The ubiquitin, UPS, and autophagy are the interdependent elements of
the protein quality-control system; they must act in a networked manner to maintain pro-
teostasis. Meanwhile, many signal pathways are involved in this. A better understanding
of individual systems, as well as the interconnections and crosstalk between them, is bene-
ficial for clinical management of diseases involving PQC problems. Meanwhile, UPS and
autophagy have been proved to have different functions in different diseases. For example,
autophagy inhibits or promotes cancer depending on the type of cancer [143–152], thus
making it is difficult and complicated to find the precise therapeutic targets for different
diseases with different PQC problems.
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