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Abstract: Mounting data show that MIR139 is commonly silenced in solid cancer and hematological
malignancies. MIR139 acts as a critical tumor suppressor by tuning the cellular response to different
types of stress, including DNA damage, and by repressing oncogenic signaling pathways. Recently,
novel insights into the mechanism of MIR139 silencing in tumor cells have been described. These
include epigenetic silencing, inhibition of POL-II transcriptional activity on gene regulatory elements,
enhanced expression of competing RNAs and post-transcriptional regulation by the microprocessor
complex. Some of these MIR139-silencing mechanisms have been demonstrated in different types of
cancer, suggesting that these are more general oncogenic events. Reactivation of MIR139 expression
in tumor cells causes inhibition of tumor cell expansion and induction of cell death by the repression
of oncogenic mRNA targets. In this review, we discuss the different aspects of MIR139 as a tumor
suppressor gene and give an overview on different transcriptional mechanisms regulating MIR139
in oncogenic stress and across different types of cancer. The novel insights into the expression
regulation and the tumor-suppressing activities of MIR139 may pave the way to new treatment
options for cancer.
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1. Introduction

MiRNAs are small non-coding RNAs (19–22 nt) and post-transcriptionally regulate
the expression of target mRNAs involved in cell proliferation and differentiation, stress
responses and the prevention of oncogenesis [1–3]. Almost all primary miRNA transcripts
(pri-miRNAs) are transcribed by RNA Polymerase II and commonly contain a 5′ cap and,
in most cases, a poly-A tail [4] (for reviews, see [5–8]). The pri-miRNAs form a hairpin
structure and are cleaved by the RNase III enzyme DROSHA that is bound to RNA binding
protein DiGeorge syndrome chromosome region 8 (DGCR8) into a premature miRNA
(pre-miRNA) [9–11]. The pre-miRNA is transported to the cytoplasm by Exportin-5 (XPO5),
where the hairpin is cleaved by the RNase III enzyme DICER and stabilized by trans-
activation-responsive RNA binding protein (TRBP) [12–16]. Only one of the two miRNA
strands, either miRNA-5p or miRNA-3p, is then loaded by the RNA-induced silencing
complex (RISC) loading complex (RLC) into RISC [17–21], which consists of Argonaute 2
(AGO2), DICER, TRBP, proteins of the Glycine-Tryptophan protein of 182 kDa (GW182)
family, such as trinucleotide repeat-containing gene 6A–6C (TNRC6A–TNRC6C), and the
carbon catabolite repressor 4-negative on TATA (CCR4-NOT) complex [22–28]. Nucleotides
2–7 at the 5′ end of the miRNA, the seed region, are critical for target binding specificity on
the 3′ UTR of target transcripts [7,23,29]. The activities of miRNAs are highly cell-type- and
cellular-state-dependent [30,31]. There is strong evidence for miRNA functions in stress
responses [3]. MIR139 is an example of a stress-responsive gene. Silencing of MIR139 is
critical for the oncogenic transformation of cells. The role for miR-139 in the diagnosis and
prognosis of cancer is described in the following reviews [32,33]. Here, we discuss the
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recent findings regarding the transcriptional and post-transcriptional regulation of MIR139
in cellular stress conditions. Furthermore, we discuss some of the major oncogenic targets
that are regulated by miR-139.

2. Genomic Localization and Host Gene PDE2A

MIR139, encoding miR-139-5p and miR-139-3p, is a well-conserved miRNA located on
human chromosome 11q13.4 in intron-1 of the Phosphodiesterase 2A (PDE2A) gene. PDE2A
is an essential cAMP-cGMP hydrolyzing enzyme and is a signal transducer in different cellu-
lar processes [34–36]. Genomic deletion of Pde2a in mice (B6; 129P2-Pde2A< tm1Dgen>/H;
EM: 02366) is embryonically lethal and mutant mice die in utero at embryonic day (E)
15.5 [37]. In addition, despite multiple attempts of our research team, mice with a genomic
deletion of the putative Pde2a promoter could not be generated, indicating that Pde2a is
essential for survival [38]. In agreement, other investigators have found that Pde2a KO
embryos display lethal defects in fetal liver development and hematopoiesis [39]. Livers
from Pde2a KO embryos (E14.5) displayed an increased level of cleaved Caspase-3, ex-
pressed decreased levels of anti-apoptotic protein BCL2 and contained Annexin-V-positive
apoptotic cells compared to heterozygous and wild-type (WT) littermates [39]. In addi-
tion, in Pde2a-deficient fetal livers, the development of myeloid and erythroid lineages is
impaired [39]. However, the Pde2a deficiency does not affect the colony-forming capac-
ity of myeloid progenitors, indicating that PDE2A is dispensable for the expansion and
maturation of hematopoietic progenitors.

Despite a significant correlation between the expression of PDE2A and MIR139 in lung
cancer cell lines [40], we and other investigators have shown that miR-139-5p and/or miR-
139-3p expression is not correlated to PDE2A expression levels in leukemia [38], gastric [41]
and colorectal cancer cells [42]. We have recently shown that MIR139 expression is strongly
silenced in MLL-AF9 AML, whereas the expression of Pde2a was not affected [38]. These
data indicate that post-transcriptional mechanisms other than splicing and subsequent
processing of pri-miR-139 by the microprocessor complex play a role in the stability and
processing of miR-139-5p and miR-139-3p. In agreement, a transcriptional start site (TSS) of
MIR139 was established on pri-miR-139 by rapid amplification of cDNA ends (5′-RACE) in
gastric SGC-7901 cells, which is 2327 base pairs upstream of the pre-miR-139 (Figure 1A) [41].
Together, these data indicate that MIR139 is regulated, at least in part, independently of
PDE2A. The different mechanisms involved in transcriptional and post-transcriptional
MIR139 regulation are discussed below. An overview of the different in vitro and in vivo
models used to study MIR139 in cancer can be found in Table 1.

Table 1. Overview of experimental models used for functional MIR139 investigation in the various
types of cancer.

Experimental Model Type of Cancer, Cell Types References

MIR139 KO mice Bone marrow, T-cells and colon [38,43,44]
Ercc1 KO mice Bone marrow, Fanconi anemia [45]

Mouse 32D cells AML [45]
Mouse MLL-AF9 leukemia and human AML cell lines MOLM-13, THP-1, MV4-11, HL-60, HEL

and U937, Kasumi-1, SKNO-1 MLL-AF9 AML, AML [38,46]
Human AML and CML, AML cell lines NB4, HP-1, KG-1a, OCI-AML3, U937, HL-60 Human

T-ALL cell lines HPB-ALL, TALL-1, KOPTK1, Jurkat, CCRF-CEM, Molt16 Diverse types of leukemia [47–51]
Colon cancer cell lines HT29, SW480, SW620, KM12, SW116, HCT116, HCT-8, HCT-116, LoVo,

Caco2, DLD1, LS180, NCM460, HcoEpic and Human colon cancer in NOD/SCID mice Colon cancer [42,52–61]
Human lung cancer cells, H460, IC11LC13, NSCLC cell lines A549, H1299, H1975, HCC827,

H1650, H460, SK-MES-1 and SPC-A-1, PM2.5-treated mice Lung cancer [40,62–65]

Diabetes mouse model, Streptozotocin-injected Kunming mice Blood cells, liver [66]
Patient-derived glioma stem-like cells, Human glioma cell lines LN229, A172, SHG44, T98G, U87

and U251, BALB/c nude mice Glioma [67–69]

Primary Human Ovarian cancer, cell lines A2780, SKOV3, OVCAR3 and OV90 Ovarian cancer [70–72]
SGC-7901, MKN-45 and AGS Gastric cancer [41]

SW1990, BxPC-3, PANC-1 and AsPC-1 Pancreatic cancer [73]
HepG2, PLC/PRF/5, MHCC97L and SM. Human HCC cell lines (SK-Hep-3B, HepG2,

HCC-LM3) and MHCC97-HMC-7721 Liver cancer [74,75]

Cell lines RC-4B/C (CRL-1903) and GH3 (CCL-82.1) Pituitary adenomas [76]
Cell line SNU46 Laryngeal squamous cell carcinoma [77]

Human cell lines K1, IHH-4, BCPAP and TCP1 Papillary thyroid carcinoma [78]
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Figure 1. Overview of the transcriptional regulation of MIR139. (A) Schematic representation of the 
PDE2A locus (chr11: 72,605,000–72,644,500) with the promoter (P), transcriptional start site of 
MIR139 (TSS), the first two exons of PDE2A (E1 and E2), enhancer regions (in blue) and MIR139 (red 
box). The transcription of PDE2A is indicated by the black arrow. The enhancer regions are critical 
for MIR139 transcription (red arrows). (B) Schematic overview of the model in which, under cellular 
stress conditions, p53 binds to the PDE2A promoter and stimulates transcription (red arrow) and 
processing of pri-miR-139. 

4. MIR139 Expression Is Repressed in Various Types of Cancer 
4.1. The Expression of MIR139 Is Frequently Silenced in AML 

Acute myeloid leukemia (AML) is a complex disorder of the bone marrow (BM) that 
results from the aberrant clonal expansion of myeloid progenitors that have acquired 
genomic aberrations and mutations, which provide a growth advantage and a block of 
differentiation [81]. In addition, miRNAs are aberrantly expressed in all subtypes of AML 
[82–84]. We [38,45] and other investigators [46–51] have found that MIR139 is a tumor 
suppressor gene that is frequently silenced in leukemia, including Fanconi anemia-related 
leukemia, caused by interstrand crosslink (ICL)-induced DNA damage [45], Breakpoint 
Cluster Region Protein-Abelson Murine Leukemia Viral Oncogene Homolog 1(BCR-
ABL)-mediated leukemogenesis [49], AML [46,47] and T-cell acute lymphoblastic 
leukemia [51]. We found that miR-139 expression levels are low in normal HSPCs and 
induced by DNA damage [45]. We showed that miR-139-3p is not expressed in clinical 
AML samples. In agreement, analysis of deep sequencing data of AML samples from the 
Cancer Genome Atlas (TCGA) further indicated that miR-139-3p is not expressed or is 
expressed at low levels in AML [45]. In addition, miR-139-5p is undetectable in most AML 
cases, except for a low expression level in AML samples characterized by a M2 FAB 
classification and t(8;21), in samples with inv-(16) and some cases with various 
abnormalities (our unpublished data). Furthermore, miR-139-5p is downregulated in 
different subtypes of AML and in AML cell lines, compared to differentiated myeloid 

Figure 1. Overview of the transcriptional regulation of MIR139. (A) Schematic representation of the
PDE2A locus (chr11: 72,605,000–72,644,500) with the promoter (P), transcriptional start site of MIR139
(TSS), the first two exons of PDE2A (E1 and E2), enhancer regions (in blue) and MIR139 (red box).
The transcription of PDE2A is indicated by the black arrow. The enhancer regions are critical for
MIR139 transcription (red arrows). (B) Schematic overview of the model in which, under cellular
stress conditions, p53 binds to the PDE2A promoter and stimulates transcription (red arrow) and
processing of pri-miR-139.

3. MIR139 Is Induced by p53-Mediated Cellular Stress Response

The level of miR-139-3p, but not miR-139-5p, is elevated in hematopoietic stem and
progenitor cells (HSPCs) of Fanconi anemia patients and in HSPCs of nucleotide excision
repair gene Ercc1-deficient mice [45]. Elevated miR-139 levels in these cells are a direct result
of interstrand DNA crosslinks (ICLs) and cause apoptosis [45]. In agreement, treatment
of normal HSPCs with ICL-inducing agent Mitomycin C induces miR-139-3p expression.
This effect is counteracted by increased miR-199 expression in these cells [45]. Blocking
of miR-139-3p with antagomirs rescues HSPC expansion in colony assays, demonstrating
the relevance of miR-139-3p for ICL-mediated bone marrow failure. The expression of
miR-139-3p is undetectable in Fanconi AML cells, suggesting that MIR139 silencing is an
oncogenic driver event that allows for the acceptance of high oncogenic stress levels in
the affected cells, which ultimately leads to the transformation of pre-leukemic Fanconi
myeloid progenitor cells towards AML [45]. We showed that p53 is responsible for ICL-
induced bone marrow failure and that loss of p53 drives leukemogenesis in this model [45].
The loss of p53 coincided with the loss of miR-139 expression in Ercc1-deficient leukemia
cells. This result suggests that MIR139 expression is regulated by the tumor suppressor p53.

A well-conserved p53-responsive element (p53RE) is mapped at the −28,747 bp po-
sition downstream of MIR139 (Figure 1B), which was experimentally confirmed by ChIP
experiments with human lung carcinoma cells after p53 induction [52]. Treatment of lung
cancer cell lines with Inauhzin-C, a p53-activating compound, induces MIR139 expres-
sion only in p53-positive cells, but not in p53 KO cells [52]. In the human colon cell line
HT29-tsp53 expressing a temperature-sensitive variant of murine p53 (V135A), miR-139-5p
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and miR-139-3p were both rapidly upregulated at the permissive temperature, as well as
the expression of PDE2A [53,54]. P53 binds to the promoter of PDE2A (Figure 1B), which
may explain the correlation of miR-139 levels with the increased expression of the PDE2A
gene. A different study of colorectal cancer presents evidence for differential transcriptional
regulation of pri-miR-139 transcripts independent of PDE2A [79]. However, it is likely that
one of the mechanisms by which p53 regulates MIR139 expression is via the induction
of PDE2A expression. PDE2A is already expressed in the absence of p53, which suggests
that p53 may play a role in the processing of intronic pri-miR-139 that occurs after splicing
of PDE2A premature mRNA (Figure 1B). The tumor suppressor p53 has been shown to
enhance miRNA biogenesis by association with DEAD-Box Helicase-5 (DDX5) in cellular
stress responses [80]. Mechanisms other than p53-mediated transcription are involved the
regulation of MIR139 expression, which will be discussed in the next section.

4. MIR139 Expression Is Repressed in Various Types of Cancer
4.1. The Expression of MIR139 Is Frequently Silenced in AML

Acute myeloid leukemia (AML) is a complex disorder of the bone marrow (BM) that
results from the aberrant clonal expansion of myeloid progenitors that have acquired
genomic aberrations and mutations, which provide a growth advantage and a block of
differentiation [81]. In addition, miRNAs are aberrantly expressed in all subtypes of
AML [82–84]. We [38,45] and other investigators [46–51] have found that MIR139 is a tumor
suppressor gene that is frequently silenced in leukemia, including Fanconi anemia-related
leukemia, caused by interstrand crosslink (ICL)-induced DNA damage [45], Breakpoint
Cluster Region Protein-Abelson Murine Leukemia Viral Oncogene Homolog 1(BCR-ABL)-
mediated leukemogenesis [49], AML [46,47] and T-cell acute lymphoblastic leukemia [51].
We found that miR-139 expression levels are low in normal HSPCs and induced by DNA
damage [45]. We showed that miR-139-3p is not expressed in clinical AML samples. In
agreement, analysis of deep sequencing data of AML samples from the Cancer Genome
Atlas (TCGA) further indicated that miR-139-3p is not expressed or is expressed at low
levels in AML [45]. In addition, miR-139-5p is undetectable in most AML cases, except for a
low expression level in AML samples characterized by a M2 FAB classification and t(8;21),
in samples with inv-(16) and some cases with various abnormalities (our unpublished data).
Furthermore, miR-139-5p is downregulated in different subtypes of AML and in AML cell
lines, compared to differentiated myeloid cells, which further supports a role of miR-139-5p
as a tumor suppressor [46]. Krowiorz et al. show that miR-139-5p is downregulated in
FLT-3 mutants, in NPM1/FLT3 double mutants and in CN AML compared to the average
expression of all AML samples tested in the TCGA cohort [47]. In this comparison, miR-139
expression in the t-(9;11) cases was very similar to other subtypes of AML. However, we
presented strong evidence that MIR139 is downregulated in AML expressing the MLL-
AF9 oncogene compared to normal HSPCs. Together, these data indicate that the tumor
suppressor gene MIR139 is commonly silenced in AML.

4.2. The Effect of MIR139 KO on Development and Oncogenesis

To investigate the functions of MIR139 in oncogenesis, we have generated Mir139 knock-
out (KO) mice [38,43]. We found that C57BL/6J Mir139 KO mice were born at Mendelian
ratios, developed normally and had expected HSPC counts and mature hematopoietic
cell types in peripheral blood and BM [38,43]. Notably, the expression of Pde2a was not
affected in the HSPCs of Mir139 KO mice [38]. A panel of 22 Mir139 KO and 18 Mir139
WT mice were monitored for the development of leukemia and other types of cancer for
2 years. Only one Mir139 KO mouse developed acute leukemia at the age of 89 weeks, sug-
gesting that additional oncogenic driver events are needed for oncogenesis (unpublished
data). Clinical data show that acute myeloid leukemia (AML) patients with the lowest
miR-139 levels have a poor prognosis [46]. In agreement, we found that Mir139 KO HSPCs
gave rise to more and larger colonies when transformed with the MLL-AF9 oncogene in
colony-forming unit assays, showing that miR-139-depleted leukemia cells have a growth
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advantage [38]. Whether MIR139 silencing is a critical early driver of leukemogenesis still
needs further investigation.

Mir139 KO mice were also used for the investigation of MIR139 tumor suppressor
functions in different types of cancer. For instance, other investigators have found that
Mir139 KO mice are highly susceptible to the development of dextran sulfate salt (DSS)-
induced colitis and colon cancer [44]. The investigators found that miR-139-5p expression is
lost in colorectal cancer tissue over time. The proliferation rate of Mir139 KO tumor cells
was enhanced, confirming the growth advantage of Mir139 KO tumor cells. Furthermore,
Zhou et al. showed increased expression levels of anti-apoptotic genes Bcl-Xl and Bcl-2
in Mir139 KO cells compared to Mir139 WT tumor cells in colitis-associated colorectal
cancer [44]. They found that the expression of Mir139 dampens the expression of phospho-
rylated MAPK, NF-κB and STAT3, all factors that drive inflammation and colitis-associated
oncogenesis [44]. These data demonstrate that MIR139 inactivation is an oncogenic driver
event that results in prolonged intracellular stress-induced signaling and the survival
of cells.

4.3. MIR139 Is Silenced by POLR2M Downstream of PRC2 in AML

Polycomb group (PcG) proteins have been implicated in the silencing of tumor sup-
pressor genes [85–87]. Mounting evidence shows that MIR139 is silenced by the Polycomb
repressive complex-2 (PRC2) in various types of cancer [38,70,73,74]. PRC2 consists of the
methyltransferase Enhancer of Zeste Homolog-1/2 (EZH1/2), Embryonic Ectoderm De-
velopment (EED), Suppressor of Zeste 12 Homolog (SUZ12) and Retinoblastoma-binding
protein-4 (RBBP4) [88,89]. EZH1/2 hypermethylates K27 on Histone-H3 (H3K27), which
marks silenced genes [90]. Deregulation of PRC2 contributes to AML pathogenesis [91–93].
We have recently identified POLR2M as a novel downstream mediator of PRC2-induced
transcriptional repression of MIR139 by interaction with the TSS and enhancer regions of
MIR139 (Figure 2A) [38]. POLR2M (also known as GDOWN1) pauses POL-II-mediated
transcription by binding to the POL-II complex [94,95]. Promoter-proximal pausing of
POL-II at TSSs has been correlated with H3K27me3 and PcG-silenced genes [96,97]. We
have shown that depletion of POLR2M results in the expression of MIR139 and induction
of apoptosis of human and mouse MLL-AF9 AML cells [38]. The repressive activity of
POLR2M can be reversed by interaction with the multi-subunit protein complex Mediator,
which results in the high induction of transcription [95]. Mediator is a transcriptional
co-regulator that consists of approximately 30 subunits, including MED4, MED6, MED7,
MED8, MED10, MED11, MED14, MED 17, MED21 and MED22, which are essential for
Mediator function [98]. Various Mediator subunits are mutated, aberrantly expressed or
deregulated in human cancer including leukemia [99,100]. For example, MED12 mutations
are found in up to 9% of chronic lymphocytic leukemia (CLL) cases and contribute to
the pathogenesis by activating NOTCH signaling [101,102]. CDK8 transiently associates
with Mediator and controls its activity [98]. The Mediator complex provides communi-
cation between active enhancers and promoters by forming a molecular bridge within
actively transcribed genes and interacts with transcription factors, POL-II and elongation
factors [103–107]. In addition, Mediator binds to acetylated Histones [108]. For instance,
H4K16 acetylation inhibits the interaction of MED5 and MED17 to chromatin [108,109].
Moreover, H3K27 acetylation correlates with high levels of Mediator complex subunits at
regular and super enhancers with high POL-II occupancy [79,110,111]. Proteomics studies
in yeast revealed that 17 subunits of the Mediator complex are dynamically phosphorylated
by an unidentified kinase in response to stress and regulate the expression of stress-induced
genes [112] (for review, see [98]). Vice versa, there is evidence that the phosphorylation
of transcription factor ELK in response to ERK activation fine-tunes the interaction with
Mediator and thereby transcriptional activity [113]. However, how Mediator interacts with
other transcription factors to facilitate the transcription of MIR139 remains elusive.
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Figure 2. Overview of MIR139 molecular silencing mechanisms. (A) Model of MIR139-silencing
mechanism in AML. PRC2 is recruited to the promoter region of PDE2A downstream of MLL-
AF9. The host gene PDE2A is expressed at normal levels (black arrow). However, under these
conditions, POLR2M is recruited to the enhancer regions and to the TSS of MIR139 (red arrows),
which results in transcriptional silencing of MIR139 (red cross). (B) Additional silencing mechanisms
of MIR139. Mutant KRAS recruits TCF4-β-CATENIN to the TSS of MIR139, thereby inhibiting
transcription. Activated NOTCH1 signaling results in HES1 binding close to the promoter of PDE2A,
which causes downregulation of MIR139 expression. NOTCH1 is a validated target of miR-139 (red
inhibitor arrow), thereby creating a feed-forward loop. (C) P21 is a central player in the regulation
of pri-miR-139 processing. Activation of P21 stimulates the processing of tumor suppressor pri-
miRNAs, including pri-miR-139. However, when P21 is repressed by the oncogene MYC (red inhibitor
arrow), this results in further stimulation of the microprocessor that is bound by NPM1 and DHX9
to preferentially process oncogenic miRNAs. KRAS-induced MYC transcription activates KMAT
expression, which stabilizes NPM1-DHX9 complex, thereby contributing to the enhanced processing
of oncogenic miRNAs.

4.4. Oncogene Mediated MIR139 Silencing

Multiple well-known oncogenes silence the expression of MIR139 in cancer. For in-
stance, NOTCH1 signaling suppresses MIR139 expression via the transcriptional repressor
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HES1, which binds to the E-box site at position +644 bp in the PDE2A gene in glioma
cells (Figure 2B) [67]. In this study, the authors show that miR-139 modulates stemness
by inhibiting Wnt/β-catenin signaling, which is a hallmark of cancer [67]. As NOTCH1
is a direct target of miR-139 (discussed below), this creates a feedback mechanism that
fine-tunes NOTCH1 signaling (Figure 2B).

In colorectal cancer, MIR139 is strongly downregulated in KRAS mutant cells com-
pared to KRASWT cells [55]. In this study, the investigators found that the expression of
MIR139 is controlled by two TCF4 sites flanking the TSS of MIR139 (Figure 2B). TCF4 binds
to β-catenin and transcriptionally silences target genes. Furthermore, the investigators
found that, in KRAS mutant cells, the MIR139 expression is suppressed in a WNT3A-
activated β-catenin-TCF4 complex-dependent manner [55]. The expression of MIR139
is inhibited in KRASWT-overexpressing lung tumor cells in a very different way [62].
KRAS overexpression induces the expression of the long non-coding RNA KRAS-Induced-
Metastasis-Associated-Transcript 1 (KMAT1) by activation of MYC-mediated transcription.
KMAT1 induces the processing of oncogenic miRNAs, including miR-17, miR-18 and miR-
27, through stabilization of the RNA-binding proteins DExH-Box Helicase 9 (DHX9) and
Nucleophosmin-1 (NPM1). NPM1 binds to DHX9, which is part of the microprocessor
complex, in a RNA-dependent manner and is involved in the selection of pri-miRNAs
for processing [62]. On the other hand, MYC silences CDKN1A (P21), which is a compo-
nent of the microprocessor complex, by interaction with DROSHA in specific conditions.
The authors show that pri-miRNA transcripts of tumor-suppressing miRNAs, including
pri-miR-139, are not processed when P21 is transcriptionally silenced by MYC [62]. When
P21 is overexpressed, it antagonizes the stimulating effects of DHX9 and NPM1 on the
biogenesis of oncogenic miRNAs, whereas the expression of a subset of tumor-suppressing
miRNAs, including pri-miR-139, is enhanced. P21 interacts directly with the microprocessor
complex and with a subset of pri-miRNAs. In addition, the authors showed that the levels
of pre-miR-139 and miR-139 were both dependent on P21 expression, whereas the expression
of pri-miR-139 was not [62]. This indicates that P21 is involved in the selective processing
of pri-miR-139 by the microprocessor complex (Figure 2C). The abovementioned MIR139
regulatory genes, including KRAS, MYC, NOTCH1 and NPM1, are frequently mutated in
leukemia. However, whether the above-described aberrant MIR139 mechanisms play a
direct role in leukemogenesis is unknown and needs further investigation.

4.5. Post-Transcriptional Regulation of MIR139

Mir139 expression is regulated by a post-transcriptional mechanism. The first indica-
tion for the post-transcriptional regulation of pre-miR-139 was found in colorectal cancer
samples from patients in which miR-139 was detected at reduced levels, whereas the levels
of pre-miR-139 were similar to the expression in normal tissue [79]. These data suggest that
DICER or specific RNA-binding proteins, which interact with pre-miR-139 and regulate
further processing, are deregulated in colorectal cancer. In addition, our data in MLL-AF9
leukemia, where Pde2a is normally expressed and spliced but miR-139 levels are strongly
decreased, can only be explained by reduced pri-miR-139 stability and/or processing.
The following mechanisms may explain this phenomenon. In MLL-AF9 leukemia, P21
is silenced by Inhibitor of DNA binding 1 (ID1), which is critical for MLL-AF9 leukemo-
genesis [56,114]. According to the role for P21 in the selection of pre-miR-139 for further
processing as described above, the downregulation of P21 in MLL-AF9 AML may largely
explain the low mature miR-139 levels, but this still needs proper validation.

We found that the enhancer regions in intron-1 of Pde2a and upstream of Mir139
are critical for normal Mir139 expression levels [38]. Thus, our results indicate that other
still unknown mechanisms interact with the enhancer regions and are involved in Mir139
expression regulation. DROSHA and DGCR8, associated with transcriptional regulators,
are thought to be recruited co-transcriptionally and process pri-miRNAs during transcrip-
tion [115]. Recent data present evidence that super enhancers boost the transcription and
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DROSHA/DGCR8-mediated processing of a subset of cell-specific miRNAs [116]. Whether
these interactions exist at the enhancers of MIR139 is currently under investigation.

Downregulation of miR-139 activities in tumors may be due to the overexpression of
competing target RNAs, the so-called sponge activity. For instance, LINC00324 overex-
pression acts as a miR-139 sponge, thereby releasing Insulin-like Growth Factor-1 Receptor
(IGF1R) from miR-139 regulation and increasing the IGF1R protein expression in non-small-
cell lung cancer [63]. In addition, the 3′-UTR of LNCRNA PCAT6 competes with the 3′-UTR
of BRD4 transcripts for miR-139 binding and downregulates miR-139 expression when over-
expressed in pituitary adenomas [76]. The levels of miR-139 may also be downregulated by
circular RNAs with miR-139 sponge activities. To date, only a few circular RNAs have been
reported in the regulation of MIR139. Strikingly, the circular RNAs that are described to
have sponge activity against miR-139 contain only one binding site for either miR-139-5p
or miR-139-3p. To be able to compete with other mRNAs containing sites for miR-139 in
their 3′-UTR, the expression of functional circular RNAs should be at least higher than the
target mRNA. For instance, Circ-0038718 consists of exons 2 and 3 derived from the gene
encoding the Interleukin-4 Receptor (IL4R) and is highly overexpressed in hepatocellu-
lar carcinoma [75]. Circ-0038718 contains one miR-139-3p binding site and interacts with
AGO2-loaded miR-139-3p, thereby competing for oncogenic miR-139-3p mRNA targets.
Furthermore, CircKIF4A acts as a sponge for miR-139-3p in glioma, thereby activating
oncogenic WNT3A signaling [68]. In addition, Circ-0000218 controls miR-139-3p levels in a
very similar way in laryngeal and colorectal cancer [57,77]. CircBACH2 is a circular RNA
that is expressed at elevated levels in papillary thyroid carcinoma and downregulates the
expression of miR-139-5p [78]. How the interaction of AGO2-loaded miR-139 with circular
RNA causes degradation of the miRNA is unknown. However, mechanisms by which
miRNA-target mRNAs degrade miRNAs have been described [117]. Furthermore, how the
increased expression of non-coding RNA or circular RNA, containing only one interaction
site, competes with all other miR-139 targets in such a way that it efficiently represses the
activity of miR-139 on other target mRNAs is not well understood and suggests a specific
RNA-mediated miRNA degradation pathway. An overview of miR-139 regulators is given
in Table 2.

Table 2. Overview of Activators and Repressors of MIR139 Expression.

Regulator of MIR139 Activator/Repressor Type of Cells miR-139 Targets References

PDE2A
(host gene) Activator Lung cancer cell lines [40]

Epigenetic Repressor AML EIF4G2, BTG3 [46]
PRC2 Repressor AML EIF4G2, HPGD, PTPRT [38,70,73,74]

POLR2M Repressor AML EIF4G2, HPGD, PTPRT [38]

P53 Activator HSPCs Fanconi anemia
Colon cancer

ELAVL1 [45]
PDE4D [52]

P53 targets [53,54]

NOTCH1/HES1 Repressor Glioma Wnt/β-Catenin [67]

TCF4 Repressor Colorectal cancer JUN, DVL1, CTNNB1,
ZEB1 [55]

KRAS/MYC/P21 Repressor Lung cancer [62]
Competing RNAs:

Repressors

LINC00324 Non-small-cell lung cancer IGF1R [63]
PCAT6 Pituitary adenomas BRD4 [76]

Circ-0038718 Hepatocellular carcinoma
CircKIF4A Glioma WNT3A [68]

Circ-0000218 Laryngeal/Colorectal cancer RAB5A, RAB1A [57,77]
CircBACH Papillary thyroid carcinoma LMO4 [78]

SNHG3 Ovarian cancer NOTCH1 [71]
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5. MIR139 Targets Involved in Oncogenesis

Overexpression of MIR139 in Kasumi-1 and SKNO-1 cells, both AML cell lines with
t-(8;21), and mRNA expression profiling revealed EIF4G2 as one of the most downregu-
lated transcripts [46]. According to Targetscan, the database that lists predicted miRNA
targets [118], EIF4G2 has one well-conserved 8-mer site for miR-139-5p in the 3′-UTR. This
miR-139-mediated silencing of EIF4G2 was confirmed on the protein level in Kasumi-1
cells [46]. ShRNA-mediated silencing, at least in part, phenocopied the effects of miR-139
expression on the viability and proliferation of Kasumi-1 cells [46]. EIF4G2 mRNA lacking
miR-139 binding sites in the 3′-UTR rescued the anti-proliferative and apoptotic effects of
miR-139 overexpression in Kasumi cells. We recently confirmed Eif4g2 as a critical target of
miR-139 in mouse MLL-AF9 AML [38], suggesting that Eif4g2 is a more common miR-139
target in leukemia. In addition, EIF4G2 has been recently identified as a miR-139 target
in other types of cancer, including glioblastoma and colorectal cancer [119,120]. EIF4G2
is important for protein synthesis [121]. Accordingly, MIR139 overexpression resulted in
reduced overall protein expression, which may explain the inhibitory effects of miR-139
expression on tumor cell proliferation and survival [46].

There is mounting evidence that miR-139-5p targets NOTCH1 in different cell types,
thereby preventing aberrant NOTCH1 signaling and oncogenic transformation. According
to Targetscan, NOTCH1 contains one broadly conserved site for miR-139-5p in the 3′-
UTR. This explains that, in cancers with silenced MIR139 expression, the expression of
NOTCH1 is increased. Forced expression of miR-139-5p causes the downregulation of
NOTCH1 via direct binding to the 3′-UTR in colorectal cancer and inhibits the migration
and invasion of tumor cells [58,59]. Increased levels of RP11-59H7.3, a long non-coding
RNA that is aberrantly expressed and correlates with poor prognosis of colorectal cancer,
compete with NOTCH1 for miR-139 binding, thereby enhancing NOTCH1 oncogenic
functions [60]. Another tumor-suppressing activity of miR-139-5p via NOTCH1 repression in
colorectal cancer is the prevention of CD44+/CD133+-associated multidrug resistance [61].
In ovarian cancer, overexpression of the lncRNA SNHG3 competes for miR-139-5p binding,
thereby increasing NOTCH1 levels [71]. The authors showed that reduced miR-139-5p
expression enhanced the proliferation and migration of ovarian cancer cells. In addition,
downregulation of Notch-1 expression and reduced blood glucose levels were observed as a
result of oxidative-stress-induced miR-139 expression in the liver cells of diabetic mice [66].
Furthermore, reduced miR-139 levels as a consequence of chronic fine particulate matter
(PM 2.5)-induced cellular damage in the lung cause Notch-1 upregulation and Epithelial–
Mesenchymal Transition (EMT) in mice [64]. Vey similar tumor-suppressing activities of
miR-139 on NOTCH1 levels, tumor cell growth, EMT and metastasis have been described
in a mouse model for glioma [69]. NOTCH1 signaling is frequently deregulated in various
types of leukemia [122–124]. Whether MIR139 plays a major role in NOTCH1 signaling
during leukemia development remains to be investigated.

Other miR-139 targets that are described in leukemia and some other types of can-
cer are BTG3 [46], the RNA-binding protein ELAVL1 [45,65,72], Tetraspanin-3 (TSPAN3),
MAX Network Transcriptional Repressor (MNT) [48], 15-Hydroxyprostaglandin Dehydrogenase
(HPGD) and Protein Tyrosine phosphatase Receptor Type-T (PTPRT) [38]. Although knockout
and knockdown studies show the relevance of these downregulated targets for miR-139-
mediated functions as a tumor suppressor, more in-depth studies are needed for the
understanding of their oncogenic role in leukemia.

6. Conclusions

Mounting data show that the targeting of miRNAs and their controlled pathways may
be a successful approach for anti-cancer treatment [82,125,126]. It becomes increasingly
evident that MIR139 is a critical tumor suppressor gene in different types of cancer and
that the deregulation of MIR139 transcription, processing or targeting activity inhibits its
tumor-suppressive activities. Although the mechanism of MIR139 silencing in various
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types of cancer is not fully unraveled, targeting MIR139 to reactivate its expression is a
promising avenue for novel targeted therapies.
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