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Abstract: This review provides a synopsis of transcriptional responses pertaining to interactions
between plant viruses and the insect vectors that transmit them in diverse modes. In the process, it
attempts to catalog differential gene expression pertinent to virus–vector interactions in vectors such
as virus reception, virus cell entry, virus tissue tropism, virus multiplication, and vector immune
responses. Whiteflies, leafhoppers, planthoppers, and thrips are the main insect groups reviewed,
along with aphids and leaf beetles. Much of the focus on gene expression pertinent to vector–virus
interactions has centered around whole-body RNA extraction, whereas data on virus-induced tissue-
specific gene expression in vectors is limited. This review compares transcriptional responses in
different insect groups following the acquisition of non-persistent, semi-persistent, and persistent
(non-propagative and propagative) plant viruses and identifies parallels and divergences in gene
expression patterns. Understanding virus-induced changes in vectors at a transcriptional level can
aid in the identification of candidate genes for targeting with RNAi and/or CRISPR editing in insect
vectors for management approaches.

Keywords: virus transmission; transmission modes; differential gene expression

1. Introduction

Plant viruses cause devastating yield losses in agricultural systems, which result in
reduced economic productivity and nutritional insecurity globally [1]. Plant pathogenic
viruses are transmitted mechanically, via seeds, and by vectors [2–5]. Vector-borne viruses
are transmitted by insects, mites, nematodes, and fungi [6,7]. Several genera, species, or
biotypes from major insect orders have specialized relationships with a wide range of
viruses [8]. These relationships have varying degrees of complexity, which is dependent
upon the mode of transmission. Ultimately, the specialized dynamics between plant
pathogenic viruses and their associated vectors are critical for the successful spread of
plant viruses.

Several factors have been attributed to the emergence and successful establishment of
plant viruses in a wide array of agricultural systems. These include: extensive monoculture
of crops that are susceptible to both viruses and vectors, the movement of virus-infected
plant materials and insect vectors from their native to new environments, plant viruses’
ability to rapidly evolve and adapt, and the effect of climate change on the distribution area
of hosts and vectors [9–16]. Many plant viruses also possess a broad host range, which in
turn aids in their successful establishment in new environments [17].

Among the various insect orders known to transmit plant viruses, insects with piercing
and sucking mouthparts comprise the majority [18]. These include aphids (Hemiptera,
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Aphididea), whiteflies (Hemiptera, Aleyrodidae), leafhoppers (Hemiptera, Cicadellidae),
and thrips (Thysanoptera, Thripidae) [19,20]. The geographical distribution of aphids
tends to be predominantly in temperate regions, and aphids are major pests of crops such
as cereals including wheat and barley [21,22]. Whiteflies are known to be prevalent in
sub-tropical and tropical regions and certain members in the cryptic species complex are
pests on a variety of vegetable and row crops such as cotton [23,24]. Leaf and planthoppers
are pests of host plants such as potato, rice, and soybean in temperate, sub-tropical, and
tropical regions of the world [25,26]. Thrips are pervasive in sub-tropical and tropical
regions throughout the world and are known pests for a variety of vegetable and row crops,
such as tomato and peanut, respectively [27,28].

Insects belonging to the order Hemiptera and Thysanoptera transmit plant viruses
in 12 (Begomovirus, Carlavirus, Closterovirus, Crinivirus, Cucumovirus, Ipomovirus,
Mastrevirus, Potyvirus, Polerovirus, Phytoreovirus, Tenuivirus, and Torradovirus) and
5 (Orthotospovirus, Ilarvirus, Carmovirus, Sobemovirus, and Machlomovirus) genera,
respectively [29–32]. Additionally, beetles (order Coleoptera) are also reported to transmit
over 40 different plant viruses [33]. Details on the specific vector and virus taxonomic
classifications from studies discussed in this review are listed in Table 1. Some viruses in
the above-listed genera have been ranked in the top ten most agriculturally important plant
viruses [34,35]. Plant viruses in the above-mentioned genera diversely interact with their
insect vectors, and these interactions influence virus persistence within the insect [36–40].

The interactions between a given vector and the associated virus could differentially
impact gene expression in the vectors (Figure 1). To investigate the differential expression
patterns in detail, various tools and pipelines have been developed and are detailed in
this review. A de novo transcriptome assembly can provide a foundation for determining
differentially expressed genes (DEGs) [41]. To attain greater clarity as to the genetic
landscape, access to a high-quality genome assembly would be essential. In the case that a
reference genome is available, a de novo transcriptome assembly may still be necessary
to account for potentially misassembled genes or improper annotations [42,43]. Whole
genome assemblies are available for most insect vectors discussed in this review (Table 1).
For non-model organisms, a de novo transcriptome or genome assembly is required prior
to differential expression analysis.

Table 1. Taxonomy of vector–virus associations in which transcriptional responses pertinent to
different modes of virus transmission were evaluated. Virus species descriptions are based on the
March 2021 International Committee on Taxonomy of Viruses (ICTV) report [44].

Insect Family Insect
Binomial Name

Insect
Common Name Virus Family Virus Genus Virus Species Reference

Non-persistent

Aphididae Myzus persicae Green
peach aphid Bromoviridae Cucumovirus Cucumber mosaic virus [45]

Semi-persistent

Aleyrodidae

Bemisia tabaci Middle
East-Asia Minor 1

(MEAM1) Sweetpotato
whitefly

Closteroviridae Crinivirus

Tomato chlorosis virus [46]

Cucurbit yellow
stunting disorder virus [47]

Bemisia tabaci
Mediterranean (MED) Tomato chlorosis virus [48]

Cicadellidae Graminella nigrifrons * Black-faced
leafhopper Secoviridae Waikavirus Maize chlorotic

dwarf virus [49]

Persistent non-propagative

Aleyrodidae
Bemisia tabaci

(MEAM1) Sweetpotato
whitefly Geminiviridae Begomovirus

Tomato yellow leaf curl
China virus [50–53]

Tomato yellow leaf
curl virus

[54–56]

Bemisia tabaci (MED) [48]
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Table 1. Cont.

Insect Family Insect
Binomial Name

Insect
Common Name Virus Family Virus Genus Virus Species Reference

Aphididae

Schizaphis graminum Greenbug

Solemoviridae

Polerovirus Cereal yellow dwarf
virus-RPV [57]

Acyrthosiphon pisum Pea aphid Enamovirus Pea enation mosaic
virus 1 [58]

Sitobion avenae English
grain aphid Unassigned species Barley yellow dwarf

virus GAV [59]

Persistent-propagative

Thripidae

Frankliniella occidentalis Western
flower thrips

Tospoviridae Orthotospovirus

Tomato spotted
wilt orthotospovirus

[60–64]

Frankliniella fusca * Tobacco thrips [65]

Thrips palmi * Melon thrips Capsicum chlorosis
orthotospovirus [66]

Delphacidae

Nilaparvata lugens Brown
planthopper Rhabdoviridae Alphanucleorhabdovirus Maize mosaic

alphanucleorhabdovirus [67]

Laodelphax striatellus Small brown
planthopper

Phenuiviridae Tenuivirus Rice stripe tenuivirus [68–70]

Reoviridae Fijivirus
Southern rice
black-streaked
dwarf virus

[71]

Sogatella furcifera Whitebacked
planthopper [72]

Peregrinus maidis Corn planthopper
Rhabdoviridae

Alphanucleorhabdovirus Maize mosaic
alphanucleorhabdovirus [73]

Cicadellidae Graminella nigrifrons *
Blackfaced
leafhopper

Gammanucleorhabdovirus Maize fine streak gam-
manucleorhabdovirus [74,75]

Secoviridae Waikavirus Maize chlorotic
dwarf virus [49]

* Organisms for which no genome was available as of December 2021.
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2. Profiling Transcriptional Responses
2.1. Genetic Foundations

RNA sequencing and bioinformatics analyses are powerful techniques for unraveling
the complex interactions between viruses and their vectors. A comparison of transcriptomes
between non-viruliferous and viruliferous vectors can aid in understanding qualitative and
quantitative differential gene expression modulated by the virus. RNA-Seq methods offer
a valuable strategy for sequencing transcripts in rapid, accurate, and informative ways.
Studies focused on the six insect families noted in this review have been steadily increasing
over the past 10 years (Figure S1). Most of the studies conducted on transcriptomic datasets
are based on whole insects rather than specific tissues, mainly due to the limitations of
isolating various tissue types [76–78] (Figure S2).

For experiments that seek to answer questions about gene regulation, the easiest way to
represent how well up or downregulated a gene is to determine the differential expression
profile of a viruliferous group against a non-viruliferous group of organisms. In most cases,
if not all, this produces an accurate example of the expression levels. The Gene Ontology
(GO) database or the Kyoto Encyclopedia of Genes and Genomes (KEGG) database can
assign functions to these proteins [79,80]. Having a reference genome provides high levels
of certainty as to whether a given gene of interest is up or downregulated [81]. A basic
roadmap for the assembly and differential expression analysis is included in Figure 2.

To attain a concrete resolution on the gene expression profile in each insect/vector,
an assembled genome is often an invaluable asset. As sequencing costs are decreasing,
more insect genomes are being assembled and projects such as i5k initiative are enabling
this knowledge base to grow [82,83]. Some insects, such as the sweetpotato whitefly Mid-
dle East-Asia Minor 1 (MEAM1), Bemisia tabaci (Gennadius), have a genome database
with a highly curated draft genome, while there is not always a database for other in-
sect vectors [84]. Several aphid genomes have been assembled and annotated, with the
first one being the pea aphid, Acyrthosiphon pisum (Harris), and its genome database is
known as the AphidBase [85,86]. Additionally, two more aphid genomes have been an-
notated: the soybean aphid, Aphis glycines (Matsumura), and the wooly apple aphid,
Eriosoma lanigerum (Hausmann) [87,88]. Three planthopper genomes have been fully as-
sembled as well; the first was the brown planthopper, Nilaparvata lugens (Stål), followed
by the whitebacked planthopper, Sogatella furcifera (Hovárth), and the small brown plan-
thopper, Laodelphax striatellus (Fallén) [89–91]. Recently, all three planthoppers’ genomes
were revisited with higher resolution from PacBio sequencing [92]. In Thysanoptera, the
genome of the western flower thrips, Frankliniella occidentalis (Pergande), was assembled
and annotated [93].

2.2. Transmission Modes

The successful transmission of plant viruses is dependent on the nature of the interac-
tions between plant viruses, vectors, and host plants [38–40,94–96]. Through modulation
of plant phenotype by altering plant physiology, such as coloration, nutrients, and volatile
organic compounds, plant viruses can influence insect vector behavior and fitness, thereby
favoring their transmission [97–99]. Currently, there are four described major modes of
virus transmission, ranging from non-persistent to persistent-propagative [36,37]. Irre-
spective of the mode of transmission, many plant viruses infecting their host plants tend
to attract their associated vectors [97,100,101]. However, the arrestment duration of their
vectors ranging from a brief period (without providing long-term fitness benefits) to a
prolonged period (with provision of long-term fitness benefits) is dependent on the mode
of transmission [97]. On one end of the spectrum, non-persistent viruses (NPVs), such as
cucumber mosaic virus (CMV), briefly arrest their aphid vectors, thereby facilitating rapid
virus acquisition and vector dispersal, presumably aided by poor host plant quality [98].
On the opposite end of the spectrum, persistent-propagative viruses, such as tomato spot-
ted wilt orthotospovirus (TSWV), arrest the thrips vectors for longer periods to enable
virus acquisition and inoculation thereafter [102,103]. The prolonged feeding by vectors
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of persistently transmitted viruses is linked to improved plant quality in virus-infected
host plants [97,102]. These diverse macro-level effects of plant viruses on their vectors have
led researchers to investigate plant viruses-modulated micro-level effects on their vectors
using transcriptomic and genomic tools (Table 2).
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completed de novo if a genome and gene models are not available. The differential expression profile
is then determined by mapping the raw read sequences to the assembled genome. Additionally, Gene
Ontology term enrichment helps make logical associations between the differentially expressed genes
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Table 2. Summary of insect development stage, number of differentially expressed genes, and
sequencing technology used in the reviewed studies.

Species Developmental
Stage Sampled

AAP:
#Upregulated

Genes

AAP:
#Downregulated

Genes
Sequencing Details Reference

Non-persistent

Myzus persicae Adult 24 hr: 9732 24 hr: 10,818 Paired-end
RNA-Seq-Illumina [45]

Semi-persistent

Bemisia tabaci
(MEAM1)

Adult 24 hr: 447 24 hr: 542
Paired-end

RNA-Seq-Illumina [46]Adult 48 hr: 4 48 hr: 7

Adult 72 hr: 50 72 hr: 160

Bemisia tabaci
(MEAM1)

Adult 24 hr: 0 24 hr: 3
Paired-end

RNA-Seq-Illumina [47]Adult 72 hr: 82 72 hr: 139

Adult 7 d: 49 7 d: 2

Bemisia tabaci (MED) Adult 24 hr: 88 24 hr: 133 Paired-end
RNA-Seq-Illumina [48]

Graminella nigrifrons Fifth-instar
nymph

4 hr: 240 4 hr: 49 Paired-end
RNA-Seq-Illumina

[49]
7 d: 129 7 d: 407

Persistent non-propagative

Bemisia tabaci
(MEAM1) Adult 30 d: 124 30 d: 122 Expressed sequence

tagsSanger sequencing [50]

Bemisia tabaci
(MEAM1) Adult 24 hr: 840 24 hr: 766 Single-end

RNA-SeqIllumina [51]

Bemisia tabaci
(MEAM1) Adult 25 d: 140 25 d: 317 Single-end

RNA-SeqIllumina [52]

Bemisia tabaci
(MEAM1) Adult 24 hr: 15 24 hr: 9 Solexa sequencing [53]

Bemisia tabaci
(MEAM1) Adult

24 hr: 20 24 hr: 18
Paired-end

RNA-SeqIllumina
[54]48 hr: 0 48 hr: 7

72 hr: 16 72 hr: 21

Bemisia tabaci
(MEAM1) Adult 24 hr: 4014 24 hr: 1193 Paired-end

RNA-SeqIllumina [55]

Bemisia tabaci (MED) Adult 24 hr: 43 24 hr: 35 Paired-end
RNA-SeqIllumina [48]

Bemisia tabaci
(MEAM1) Adult

2 hr: 513 2 hr: 242

Paired-end
RNA-SeqBGISEQ-500

[56]
6 hr: 299 6 hr: 288

24 hr: 388 24 hr: 752

48 hr: 391 48 hr: 956

Adult (parental) 5 d: 68 NA
Schizaphis graminum

Adult (F2) 5 d: 14 NA

Two-dimensional
difference gel

electrophoresis
[57]

Acyrthosiphon pisum Adult 2–6 d: 23 2–6 d: 105 RT-PCR and Microarrays [58]

Sitobion avenae Adult Reared
first-instar: 296

Reared
first-instar: 296

Paired-end
RNA-SeqIllumina [59]



Cells 2022, 11, 693 7 of 26

Table 2. Cont.

Species Developmental
Stage Sampled

AAP:
#Upregulated

Genes

AAP:
#Downregulated

Genes
Sequencing Details Reference

Persistent-propagative

Frankliniella occidentalis First-instar larva Combined 12 and
96 hr: 51 NA PCR and Microarrays [60]

Frankliniella occidentalis Adult 3 hr: 10 3 hr: 16 Pyrosequencing454 [61]

Frankliniella occidentalis

First- and
second-instar

larva, pre-pupa
and pupa,
and adult

48 hr: 661 48 hr: 793 Paired-end
RNA-SeqIllumina [62]

Frankliniella fusca

First- and
second-instar larva 3 hr: 219 3 hr: 176

Paired-end
RNA-SeqIllumina

[65]
Pre-pupa and pupa 3 hr: 204 3 hr: 54

Adult 3 hr: 478 3 hr: 84

Frankliniella occidentalis

First- and
second-instar larva 3 hr: 17 3 hr: 161

Single-end
RNA-SeqIllumina

[63]
Pre-pupa and pupa 3 hr: 92 3 hr: 89

Adult 3 hr: 59 3 hr: 68

Frankliniella occidentalis First- and
second-instar larva 1 d: 60 1 d: 101 Paired-end

RNA-SeqIllumina [64]

Thrips palmi Adult 24 hr: 708 24 hr: 681 Paired-end
RNA-SeqIllumina [66]

Nilaparvata lugens Fourth- and
fifth-instar nymph 2 wk: 2 * 2 wk: 2 * RT-qPCR [67]

Laodelphax striatellus Adult Field collected: 453 Field collected: 428 Pyrosequencing454 [68]

Laodelphax striatellus Second-instar
nymph 1 d: 4 * NA Solexa sequencing [71]

Laodelphax striatellus
Adult 8 d: 603 8 d: 1081 Single-end

RNA-SeqIllumina
[69]

Adult 8 d: 146 8 d: 81

Sogatella furcifera Second-instar
nymph 2 d: 278 2 d: 406 Paired-end

RNA-SeqIllumina [72]

Peregrinus maidis Adult 7 d: 76 7 d: 68 Single-end
RNA-SeqIllumina [73]

Laodelphax striatellus Fourth-instar
nymph Field collected: 286 Field collected: 265 Paired-end

RNA-SeqIllumina [70]

Graminella nigrifrons Adult 3 wk: 3 * 3 wk: 4 * Paired-end
RNA-SeqIllumina [74]

Graminella nigrifrons Fifth-instar
nymph 4 hr: 636 4 hr: 121 Paired-end

RNA-SeqIllumina [49]

Graminella nigrifrons Adult 21 d: 7 * 21 d: 3 * RT-qPCR [75]

* Limited expression reported. Abbreviations: AAP– acquisition access period, hr—hours, d—days, and
wk—weeks.

Non-persistent viruses have short acquisition periods and inoculation periods, lasting
only a few seconds, with no latent period [29,104–109]. There are currently two documented
strategies NPVs use to interact with the receptors of their vectors; these are the “capsid,”
and the “helper component” strategies. In the “capsid” strategy, the coat protein (CP) of
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the virus interacts directly with the vector’s binding sites (Figure 3A) [29,108], while in the
“helper component” strategy, the CP interacts indirectly with vector’s binding sites (cell-
surface receptor) through the non-structural helper component protein [29]. Viruses that use
this mode of transmission often are spread by aphids due to their swift probing behavior
associated with assessing host plant suitability [29,104]. NPVs are non-tissue specific
and can be transmitted by insects within a short feeding window [19]. NPVs arguably
possess the least complicated strategy in terms of virus-vector interaction, followed by the
semi-persistent viruses (SPVs). At the time of this review, only one study had examined
the transcriptional responses of vector following the acquisition of a NPV (Figure 4A).
Liang et al. focused on the impact of CMV on the gene expression profile of the green peach
aphid, Myzus persicae (Sulzer) [45].
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Figure 3. Schematic diagram explaining the interactions between plant viruses and their vectors
with respect to different transmission modes viz., non-persistent, semi-persistent, persistent non-
propagative, and persistent-propagative. Modeled after [29,94–96,107]. (A) Non-persistent viruses,
such as cucumber mosaic virus (CMV), are acquired by aphids from the epidermal cells of infected
plants and retained at the tip of its stylet (acrostyle) at the distal end of the common (food/salivary)
duct. (B) Semi-persistent viruses, such as tomato chlorosis virus (ToCV), are phloem-limited in
infected plants, and the virus attaches to the binding site at the vector’s foregut with the help of
the minor capsid protein (CPm). (C) Persistent non-propagative viruses, such as tomato yellow
leaf curl virus (TYLCV), are also phloem-limited and are retained in the midgut upon acquisition.
Through receptor-mediated endocytosis, the virus traverses the midgut barrier into hemolymph
where the endosymbiont protein GroEL interacts with the virion. The virus from the hemolymph
reaches primary salivary glands mediated again via species-specific receptors. (D) Thrips acquire
persistent propagative viruses, such as tomato spotted wilt virus (TSWV), from epidermal cells of
infected plants. Gn/Gc protein supports virus entry into midgut cells, where replication of the virus
occurs. The virus TSWV enters primary salivary glands (PSG) from MG1 through tubular salivary
glands (TSG).
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Despite the prolonged retention of SPVs by their vectors, these viruses share some
similarities with NPVs. For example, SPVs may require helper components to bind to the
vector’s foregut (Figure 3B) [29,104]. NPVs may interact with helper components from
related viruses to facilitate their transmission, which also may occur with SPVs during
co-inoculation [29]. The primary difference between the two transmission strategies is
where viruses localize within the vector. Semi-persistently transmitted viruses such as
maize chlorotic dwarf virus (MCDV) are phloem-limited in their hosts and typically localize
within the foregut of their leafhopper vectors, as opposed to exclusively being stylet-borne
as in the case of NPVs [110,111]. Under semi-persistently transmitted viruses, this review
focuses on two whitefly-transmitted viruses (tomato chlorosis virus (ToCV) and cucurbit
yellow stunting disorder virus (CYSDV)) and one leafhopper-transmitted virus, MCDV. At
the micro-level, transcriptional responses relating to virus acquisition have been explored
in two whitefly cryptic species, B. tabaci (MEAM1) and Mediterranean (MED), as well in
the blackfaced leafhopper, Graminella nigrifrons (Forbes) (Figure 4B). Furthermore, beetles
from the family Chrysomelidae can transmit plant viruses, such as the bean pod mottle
virus (BPMV), semi-persistently [20,109,112]. However, there are no reported studies on
the gene expression level changes induced by viruses in leaf beetles.

Persistent viruses enter their vector through the feeding organs, move through the
midgut lumen, translocate across the walls of epithelial cells into the hemolymph, and
ultimately travel to the salivary glands; from there, the virions are inoculated into non-
infected plants while feeding [19]. This mode of transmission is categorized into non-
propagative and propagative, with viruses in the former being incapable of replicating
within the insect tissues; while in the latter, the viruses multiply within the host tissues,
such as the midgut, salivary gland, and fat body (Figure 3C) [36]. Under the persistent
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non-propagative category, extensive work has focused on two whitefly-transmitted viruses:
tomato yellow leaf curl virus (TYLCV) and tomato yellow leaf curl China virus (TYLCCNV).
Additionally, some aphids, such as the greenbug, Schizaphis graminum (Rodani), and the
English grain aphid, Sitobion avenae (Fabricius), are known to transmit cereal yellow dwarf
virus-RPV (CYDV-RPV) and barley yellow dwarf virus GAV (BYDV-GAV), respectively,
in a persistent and non-propagative manner [57,59]. Most studies in this category have
focused on the transcriptional responses in B. tabaci (MEAM1) (Figure 4C).

In the persistent-propagative category, extensive work has focused on transcriptional
responses in thrips, leafhoppers, and planthoppers (Figure 4D). Persistent-propagative
viruses are thought to have originated from animal-infecting viruses, of which several are
still capable of infecting insects and are also reported to be transmitted vertically to the next
generation [6,111]. Listed below are various pathosystems of persistent-propagative viruses
highlighted in this review. In thrips, the virus is acquired during their first instar stage, and
it is retained throughout the pupal and adult molts (Figure 3D) [113]. TSWV is one of the
most important viruses transmitted by nine thrips species, and gene expression studies have
mainly focused on F. occidentalis and tobacco thrips, Frankliniella fusca (Hinds) [60–65,114].
Capsicum chlorosis virus (CaCV) is another important virus transmitted by the melon
thrips, Thrips palmi (Karny), in Australia and Southeast Asia [115,116]. There are no
transcriptional studies on CaCV-infected and non-infected melon thrips. The maize mosaic
rhabdovirus (MMV) and maize stripe tenuivirus (MSTV) are viruses transmitted by the
corn planthopper, Peregrinus maidis (Ashmead), in a persistent and propagative manner.
The rice stripe virus (RSV) and Southern rice black-streaked dwarf virus (SRBSDV) are
the other persistent and propagative viruses transmitted by L. striatellus and S. furcifera,
respectively [19,117–119].

3. Plant-Virus-Induced Responses in Vectors
3.1. Cell-Surface Reception and Virus Tropism

Virion binding to cell-surface receptors facilitates cell entry. Numerous putative cell
surface receptors have been identified via transcriptomics, and their diversity seems to
vary with virus species and mode of transmission by vectors.

Cuticular proteins present at the stylet tip, such as the stylins of aphids, have been
identified as putative receptors of stylet-borne non-persistent viruses [45,120]. Transcripts
of aphid cuticular protein genes were associated with the cell entry of zucchini yellow
mosaic virus (ZYMV) and with M. persicae and CMV [45,121]. Cuticular protein gene
transcripts were also differentially expressed in vectors associated with the transmission
of semi-persistent viruses. Five cuticular proteins’ encoding genes were upregulated in
B. tabaci (MEAM1) that acquired CYSDV from infected melon, Cucumis melo (L.), plants [47].
In addition to cuticular proteins, extracellular matrix (ECM)-receptors, orphan genes,
neuroactive-ligand receptors, and type 1 serine/threonine kinase receptor proteins were
identified among the DEGs in B. tabaci (MEAM1) that acquired ToCV—another semi-
persistent virus [46]. ECM receptors are transmembrane proteins that are reported as
viral receptors favoring viral recognition, attachment, and entry into the cell [122]. Type 1
serine/threonine kinase receptors are ubiquitous transmembrane proteins involved in cell
entry of viruses, such as rabies virus [123,124]. The ECM receptors were downregulated,
while the neuroactive-ligand and type 1 serine/threonine kinase receptors were upregu-
lated in whiteflies that acquired ToCV [46]. Twenty-one more orphan genes in B. tabaci
(MEAM1) that acquired ToCV and CYSDV were downregulated than in non-viruliferous
insects [47]. Some of the orphan genes in B. tabaci (MEAM1) that acquired CYSDV and
ToCV were speculated to play a role in virus attachment to the vector’s foregut. Orphan
genes were also reported in other arthropods to encode surface antigens that are involved
in interactions between the viruses and their hosts [125].

In whiteflies that acquired the persistent virus, TYLCV, from infected tomato plants,
low-density lipoprotein receptor (LDLR) was upregulated in B. tabaci (MEAM1) [54]. LDLRs
are cell-surface proteins involved in the receptor-mediated endocytosis of viruses such
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as feline leukemia virus (FeLV), hepatitis C virus (HCV), and vesicular stomatitis virus
(VSV) [126,127]. Furthermore, in the midgut of B. tabaci (MEAM1) that acquired TYLCV,
cargo receptors and epidermal growth factor (EGF)-like repeats, such as laminin sub-
unit alpha-1, LDLR and EGF-like domain 8, were upregulated [55]. Cargo receptors are
cell-surface proteins that bind simultaneously to cargo molecules (soluble proteins) and ef-
ficiently recruit them to nascent vesicles [128]. Geng et al. speculated that the upregulation
of cargo receptors in viruliferous B. tabaci (MEAM1) could facilitate TYLCV endocytosis
and crossover from the midgut epithelial cells into the hemolymph [55]. In B. tabaci that
acquired another persistent virus from TYLCCNV-infected tobacco (Nicotiana tabacum L.)
plants, a putative receptor, heparan sulfate proteoglycan (HSPG), was identified among the
upregulated expressed sequence tags [51]. Numerous viruses, such as the herpes simplex
virus, were shown to bind to the HSPG receptor, thereby enhancing virus entry into the
target cell [129].

In thrips (F. fusca), homologs of heparan sulfate were identified upon the acquisition
of a persistent and propagative orthotospovirus (TSWV), but this putative receptor was
not identified in the transcriptome of the non-vector flower thrips, Frankliniella tritici
(Fitch) [114]. Furthermore, in F. fusca, a homolog of aminopeptidase N, a known virus
receptor in aphids, was among the upregulated genes in larvae and adults that fed on
TSWV-infected peanut (Arachis hypogaea L.) plants [65].

Transcriptomic studies have revealed the presence of several putative receptors across
transmission modes, especially in the persistent virus category. A few receptors appeared to
aid in multiple transmission modes. Furthermore, a single virus seems to possess multiple
putative receptors within the vector. These receptors are likely present in multiple tissues
within a vector. The relevance of receptors’ diversity in the transmission mechanics of
most plant viruses remains to be functionally validated. Nevertheless, transcriptomic
resources have been of immense importance in establishing and/or speculating virus–
vector receptor connections.

Besides receptors, numerous other proteins pertaining to virus tropism within vec-
tors have been identified via transcriptomics. As expected, these proteins seem to vary
across vectors and transmission modes. Four myosin genes were upregulated in B. tabaci
(MEAM1) following acquisition of the foregut-borne semi-persistent CYSDV [47]. Myosins
are molecular motors and have been documented to aid in the intracellular movement of
plant viruses, such as tobacco mosaic virus in Nicotiana benthamiana (Domin.) [130]. Their
role in interactions with a tissue-specific (foregut borne) virus as its aphid vector remains to
be characterized. In another example involving a semi-persistent virus, Ding et al. reported
five downregulated facilitative glucose transporters in B. tabaci (MED) adults that acquired
ToCV from infected tomato plants [48]. By contrast, in a different study, 10 glucose trans-
porters were upregulated in B. tabaci (MEAM1) that acquired ToCV [46]. Sugar transporters
are composed of glucose molecules and are known to transport propagative arthropod
viruses, such as Bombyx mori nucleopolyhedrosisvirus (BmNPV), across cells [131]. The role
of transporters associated with a non-propagative and exclusively foregut borne virus, such
as ToCV, in whiteflies remains to be ascertained.

The atrial natriuretic peptide (ANP) receptors, orexin 2 receptor, and sugar and amino
acid transporters were differentially expressed in B. tabaci (MEAM1) that acquired a per-
sistent circulative virus, TYLCV [54]. ANP receptors consist of four distinct domains:
ligand-binding domain, transmembrane region, protein kinase-like homology domain and
guanylyl cyclase domain [132]. Orexin receptors are natriuretic peptides and affect several
circulatory and nervous system functions in higher animals [133,134]. The upregulation of
ANP and orexin receptors in B. tabaci (MEAM1) that acquired TYLCV from infected tomato
plants was implicated in regulating hemolymph circulation favoring virus movement [54].
Up and downregulation of various transporters in B. tabaci (MEAM1) that acquired TYLCV
was linked to facilitating begomovirus movement across the midgut into hemolymph
and into primary salivary glands thereafter [48]. In addition, heat shock proteins (HSPs)
were upregulated in B. tabaci (MED) following TYLCV acquisition [48]. HSPs are reported
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to play a role in cell entry, replication and particle assembly, and movement in several
animal viruses [135]. HSPs also are molecular chaperones responsible for cellular defense
mechanisms against deleterious effects such as protein misfolding, degradation, and insol-
uble aggregation [136]. HSP 70, upregulated upon TYLCV acquisition in B. tabaci, is also
believed to function as a chaperone [137].

Furthermore, in reference to TYLCV, ATP-binding cassette (ABC) transporters and
knottin genes were among the identified DEGs in the midguts of B. tabaci (MEAM1) that
acquired TYLCV [55]. ABC transporters are membrane proteins with diverse biological
functions, including the unidirectional translocation of compounds across cellular mem-
brane [138,139]. Geng et al. speculated that the 16 upregulated and 17 downregulated
ABC transporters in viruliferous B. tabaci (MEAM1) could help TYLCV cross the midgut
epithelial cells into the hemolymph [55]. Knottins are antimicrobial peptides and have been
implicated in the circulative movement of TYLCV in B. tabaci [140,141]. The upregulation
of knottin genes in viruliferous B. tabaci (MEAM1) midguts was speculated to be involved
in TYLCV and TYLCCNV circulative transmission [51,55,140]. Facilitated trehalose and
unknown protein transporters were among the identified upregulated DEGs in B. tabaci
(MEAM1) that acquired TYLCV [56]. These genes were speculated to play a crucial role in
TYLCV transport in the hemolymph [54,55].

A few transport- and/or tropism-pertinent genes were associated with foregut borne
semi-persistent viruses. By contrast, it is logical to identify several genes associated with
these functions with persistent circulative viruses that interact with multiple tissue types
within the vector.

3.2. Virus Replication, Virus-Induced Metabolism, and Other Cellular Functions

Plant viruses’ entry into vector cells induces a multitude of responses. Virus replication
occurs within the cells of insect vectors of persistent-propagative viruses. Consequently,
the presence of viruses in cells modulates several metabolic processes.

In whiteflies that acquired a semi-persistent virus, the Wnt and farnesyl pyrophos-
phate were upregulated in B. tabaci (MEAM1) that acquired ToCV from infected tomato
plants [46]. Wnt transcription factors inhibited replication of human T-cell leukemia virus
type 1 (HTLV-1), and farnesyl pyrophosphate interacted with HTLV-1 proteins [142,143].
In another whitefly cryptic species (B. tabaci (MED)) that acquired ToCV, eukaryotic transla-
tion initiation factor genes were identified among the upregulated DEGs [48]. Those genes
were also reported to inhibit the replication of viruses such as influenza A by upregulating
the expression level of interferon-induced transmembrane protein 3 [144]. The role of
the replication-inhibiting genes indicated above is unclear in the case of semi-persistently
transmitted foregut-borne criniviruses, as criniviruses do not replicate within whiteflies.
In B. tabaci (MEAM1) that acquired another semi-persistent virus (CYSDV) from infected
melon plants, 10 ATPases Associated with cellular Activities (AAA-ATPases) were identi-
fied among the downregulated genes [47]. AAA-ATPases are involved in functions such as
cell-cycle regulation and vesicle-mediated protein transport [138,145].

The acquisition of a persistent-propagative virus, MMV, in the corn planthopper
(P. maidis) resulted in the upregulation of RNA-dependent DNA polymerase (RdRp) genes
in the vector, and RdRp is reported to facilitate virus infection and propagation [73]. In the
case of another persistent-propagative virus, TSWV, Shrestha et al. found virus inhibitory
protein endoplasmic reticulum-associated interferon-inducible (viperin) transcripts in the
non-vector F. tritici but not in the vector F. fusca [114]. Although the role of viperin is not
functionally validated in thrips, viperin is shown to suppress replication of influenza and
rabies viruses as well as lentiviruses [146,147].

The viral activation of cell metabolism provides an increase in the pool of free nu-
cleotides necessary for rapid viral genome replication, as well as increased amino acid
production for rapid virion assembly [148]. In the vectors of persistent-propagative viruses,
the differential regulation of metabolism-related genes was identified. Han and Rotenberg
found that metabolism-associated DEGs, such as putative beta-glucosidase and acyl-CoA
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desaturase, were mostly downregulated in TSWV-infected F. occidentalis [64]. However, in
another congeneric species, F. fusca infected with TSWV, carbohydrate metabolism genes
were upregulated [47,65]. In L. striatellus infected with RSV, another persistent-propagative
virus, glyoxylate and dicarboxylate metabolism genes were upregulated in both the alimen-
tary canal and salivary glands [68,69]. In G. nigrifrons infected with the maize fine streak
virus (MFSV), Cassone et al. found that genes associated with general metabolism were
upregulated [49].

The upregulation of virus replication as well as nutrients’ metabolism gene transcripts
in the case of persistent-propagative viruses falls in line with the accepted paradigm;
however, the differential expression of such genes in the case of non-propagative semi-
persistent viruses indicates an anomaly and remains to be investigated.

4. Immune Responses

Upon the detection of the encapsulation proteins of plant viruses, a suite of vectors’
immune responses can be triggered. Below are the different immune genes and pathways
that were differentially altered in vectors following the acquisition of plant viruses (Figure 5).
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4.1. Inducible Humoral Response

Humoral response is mediated by antibodies, complement proteins, and antimi-
crobial peptides. These responses seem to be widespread, regardless of the mode of
virus transmission.

In B. tabaci (MEAM1) that acquired a semi-persistent virus from CYSDV-infected melon
plants, phosphatidylethanolamine-binding proteins (PEBP) genes were downregulated [47].
PEBPs play an important role in the innate immunity of insects [51,55]. An earlier study
reported the downregulation of PEBP genes in B. mori strain resistant to BmNPV. Wang et al.
speculated that the downregulation of PEBP could induce enhanced apoptosis, thereby
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repressing the ability of BmNPV to infect other cells [149]. In B. tabaci (MED) that acquired
another semi-persistent virus, ToCV, hemocyanin transcripts were downregulated [48].
Hemocyanins are glycoproteins present in the hemolymph and have been associated
with immune responses in insects such as fruit flies, mosquitoes, and psyllids [150–152].
Since semi-persistent viruses are limited to the vector’s foregut and do not cross into the
hemolymph, the role of PEBPs and hemocyanins in whiteflies that acquire CYSDV and
ToCV is rather unclear.

Antimicrobial knottin proteins, platelet-activating factor acetyl hydrolase, and a
26/29-kDa proteinase were other DEGs upregulated in B. tabaci (MEAM1) (whole bodies
and midgut tissues) that acquired a persistent circulative virus from TYLCCNV-infected to-
bacco plants [51,55]. The activation of the knottin protein genes led Luan et al. to speculate
that this was a strategy evolved by B. tabaci (MEAM1) to degrade virions [51]. Platelet-
activating factor acetyl hydrolase gene was reported as a scavenger of oxidized phos-
pholipids produced by pathogens, including viruses [52,153], while the 26/29-kDa pro-
teinase was speculated to be associated with elimination of xenobiotic proteins in flesh
fly, Sarcophaga peregrina (Robineau-Desvoidy) [50,154]. In whiteflies that acquired another
persistent circulative virus from TYLCV-infected tomato plants, hemocyanins and iron bind-
ing genes were among the identified upregulated DEGs through transcriptomics [48,54].
Iron-binding proteins’ main role in insects is iron transport and immunity [155,156]. The
upregulation of hemocyanins and iron binding genes in B. tabaci MEAM1 and MED,
respectively, led researchers to speculate about their role in defense response to virus
infection [48,54].

In thrips that acquired a persistent-propagative virus, TSWV, from infected plants,
several defense and immune response genes, such as apolipophorins, hemocyanins, ser-
ine type endopeptidases, peroxiredoxins, peptidoglycan recognition proteins (PGRPs),
lysozymes, and trypsin were identified among DEGs [60,63,64]. Schneweis et al. showed
that TSWV infection in F. occidentalis increased the expression of phenoloxidase activity
in melanogenesis [63]. Medeiros et al. found that 75% of the DEGs identified in TSWV-
infected F. occidentalis adults were related to immune function [60]. In the Shrestha et al.’s
study, different developmental stages in TSWV-infected F. fusca showed varying regulation
patterns, such as the downregulation of genes associated with proteolysis (serine type
endopeptidase) and antioxidant defense (peroxiredoxin) exclusively in the larval stage [65].
The few upregulated transcripts identified in the pupal stage were associated with PGRP
immune gene homologs [114]. In another example, RSV acquisition in planthoppers caused
an upregulation of PGRP and gram-negative bacteria-binding proteins’ genes in the sali-
vary glands [69]. Furthermore, an increase in the expression of PGRP genes in G. nigrifrons
that fed on MFSV-infected maize within 4 hr of feeding was observed [49]. By contrast, a
noticeable decrease in the expression levels of three of the four PGRP genes in G. nigrifrons
designated as transmitters that fed on a MFSV-infected maize was reported [74].

Vectors of persistently-transmitted viruses (non-propagative and propagative) shared
only one gene: hemocyanin. As expected, the magnitude of the response was greater in the
case of the persistent viruses versus non-persistent viruses, presumably triggered by the
persistence of viruses within vectors and increased interactions with multiple tissues.

4.2. Signaling Responses

Signaling responses are initiated upon the detection of virions, and they range from the
suppression of immune responses to tumorigenesis. Listed below are the various responses
in different vectors upon detecting plant viruses.

In B. tabaci (MEAM1) that acquired ToCV, a semi-persistent virus, several genes
involved in the phosphoinositide 3-kinase-protein kinase B (PI3K-Akt), Hippo signal-
ing, transport and catabolism, and antigen processing pathways were identified [46].
The modulation of PI3-Akt in the influenza A and foot-and mouth disease virus and the
Hippo pathway in Kaposi sarcoma-associated herpesvirus (KSHV) influenced virus pen-
etration into host cells, the promotion of cell death, and tumorigenesis [157,158]. In the
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transport and catabolism category, different sets of lysosome DEGs at 24 hr and 72 hr
post-acquisition led Kaur et al. to link the upregulation of these genes with virus uptake
and downregulation with virus detachment/release post-acquisition [46]. Cathepsins are
proteases that perform several roles, including apoptosis, autophagy, and innate immu-
nity [159–163]. In B. tabaci (MED) that acquired ToCV, transcripts of cathepsins B and F
were downregulated [48]. On the other hand, the annexin gene was among the identified
upregulated genes in B. tabaci (MED) that acquired ToCV [48]. Annexin also was found to
function in the apoptosis pathway [164].

In B. tabaci (MEAM1) that acquired a persistent circulative virus, TYLCCNV, from
infected tomato plants, several genes involved in signaling pathways, such as toll-like
signaling, mitogen-activated protein kinase (MAPK), retinoic acid-inducible gene I (RIG-
I-like) receptor, Notch, and transforming growth factor beta were downregulated [51].
Signaling transduction pathways can trigger antiviral responses in insects [165,166]. The
downregulation of signaling pathways was associated with the suppression of B. tabaci
(MEAM1) immunity, thereby enabling the circulative movement of the virus in B. tabaci
(MEAM1) [51,165,166]. The upregulation of DEGs in MAPK and protein kinase c (PKC)
pathways facilitated immune system activation in whiteflies that acquired TYLCCNV [51].
Furthermore, the MAPK and PKC pathways were implicated in the membrane trafficking
of adenovirus type 2 and influenza virus and the blockage of West Nile virus entry into
mosquito cell line [167–169]. Most autophagy/lysosome genes were upregulated, and
genes were reported to combat virus infection in general [170–172]. The upregulation of
these genes in B. tabaci (MEAM 1) led Luan et al. to conclude that this was an immune
response strategy evolved to offset the deleterious effects of the begomovirus [51]. In addi-
tion, several genes involved in the apoptosis pathway in viruliferous B. tabaci (MEAM1)
were downregulated. Luan et al. associated the downregulation of the apoptosis path-
way to TYLCCNV spread or movement within B. tabaci [51]. In another study by Luan
et al., only three genes encoding lysosomal proteins, cathepsin D, phosphatidylcholine
acyltransferase, and saposin, were downregulated in B. tabaci (MEAM1) that acquired TYL-
CCNV from infected tobacco plants, while the others, such as AP-1, cathepsin B, iduronate
2-sulfatase, protein tyrosine phosphatase, and vacuolar ATP synthase subunit S1, were
upregulated [52].

Cathepsins B and F transcripts were downregulated in another whitefly cryptic species
adults, B. tabaci (MED), that acquired TYLCV from infected tomato plants [48]. B. tabaci
(MEAM1) that acquired another persistent circulative virus, TYLCV, from infected tomato
plants included several DEGs involved in the 5′ adenosine monophosphate-activated pro-
tein kinase (AMPK), interleukin 17 (IL-17), and PI3K-Akt pathways [56]. Li et al. speculated
that the downregulation of signaling pathways in TYLCV-infected B. tabaci (MEAM1) might
aid in the persistence of the virus through the suppression of the vector’s immune sys-
tem [56]. Further, DEGs associated MAPK and PKC pathways were upregulated in the
midgut of B. tabaci (MEAM1) that acquired TYLCV [55].

In F. occidentalis that acquired a persistent-propagative virus (TSWV) from infected
tomato plants, 40S ribosomal protein S3, which is involved in the regulation of apoptosis
and the regulation of factors in the Toll and Imd pathways, was upregulated [61]. RSV,
another persistent-propagative virus, infection in planthopper-repressed genes associ-
ated with MAPK, mTOR, and transforming growth factor beta (TGF-β) pathways [69].
In MMV-infected G. nigrifrons, innate immune genes, such as ankyrin repeat protein and
peroxisomal targeting signal 2, were upregulated [73]. In G. nigrifrons infected with MFSV,
genes associated with the Toll pathway were upregulated [49]. Chen et al. found that
G. nigrifrons infected with MFSV reported a significant suppression of transcripts such as
Toll and spaetzle [74].

Keeping in line with this trend, more signaling pathways were differentially affected
following virus acquisition in the case of persistent viruses as opposed to semi-persistent
viruses. The activation of a multitude of pathways, even in the case of non-propagative
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viruses, suggests robust evidence for an active immune system. The costs of the activation
of these pathways in terms of their vectors’ fitness are not clear.

4.3. Cellular Responses

Following the acquisition of ToCV, the histone H2B gene was upregulated in B. tabaci
(MED) that acquired ToCV [48]. This gene was reported to play a role in DNA repair
inhibition [173].

Following the acquisition of a persistent virus (TYLCV) in B. tabaci (MEAM1), several
DEGs associated with the CD36 family (scavenger receptor class B genes), encapsulation,
and phagocytosis were upregulated in the midgut [55]. In B. tabaci (MED), scavenger
receptor class B genes and sequestosome-1 were among the DEGs identified in viruliferous
B. tabaci [48]. The scavenger class B receptor is a regulator of phagocytosis [55,174], and
its upregulation in TYLCV-infected B. tabaci (MEAM1) was associated with resistance to
the begomovirus [51,53]. The upregulation of sequestome-1, an autophagosome cargo
protein in B. tabaci (MEAM1) that acquired TYLCV, was associated with resistance to the
begomovirus [51,53].

Major components in insect immune defense mechanisms, pathogen-associated molec-
ular patterns (PAMPs), were found to be involved in the initiation of phagocytotic gene
activation [175]. Whitfield et al. found that the expression of autophagy-specific gene
3 (ATG 3), phosphoinositide 3-kinase (PI3K), and tripeptidyl peptidase ii (TPP ii) were
elevated in MMV infected P. maidis [67]. Martin et al. found that autophagy-related genes,
such as the peroxisomal targeting signal 2 receptor, were upregulated in MMV-infected
P. maidis [73]. Evidence for phagocytosis was more commonly detected in the case of
persistent viruses, as opposed to the semi-persistent viruses.

4.4. RNAi Responses

The sequence-specific suppression of gene expression by double-stranded RNA is an-
other generic mechanism insect vectors deploy to defend cells against viruses. Wang et al.
identified the upregulation of bantam and let-7a-5p microRNAs (miRNA) in B. tabaci
(MEAM1) that acquired TYLCCNV from infected tomato plants [53]. The bantam miRNA
was reported to simultaneously stimulate cell proliferation and prevent apoptosis in re-
sponse to patterning cues in Drosophila melanogaster (Meigen) [176]. Wang et al. linked the
enhanced expression level of bantam miRNA to its ability to arrest apoptotic response and
help maintain homeostasis in the presence of the virus in B. tabaci [53].

The immune response regulation in S. furcifera showed that reactive oxygen species
(ROS)-associated genes were suppressed by the presence of a persistent-propagative virus,
SRBSDV [72]. A major component that was silenced was the Dicer-2 (DCR2) and Argonaute-
2 (AGO2), which may have facilitated SRBSDV propagation in the midgut epithelium.
There was a marked reduction of 60 to 70% in the abundance of RNAi-related genes, such
as DCR2 and AGO2, in SRBSDV-infected L. striatellus and S. furcifera cells [71]. Similarly,
Chen et al. found that G. nigrifrons infected with MFSV reported a significant suppression
of transcripts such as DCR-2 and AGO-2 [73].

Comparisons of gene expression levels in non-viruliferous versus viruliferous S. furcifera
showed high downregulation of functionally annotated genes associated with oxidative-
reduction, response to oxidative stress, and translation [72]. Within the total number of 551
DEGs in RSV-infected L. striatellus, only four genes were predicted to be potential binding
sites for the 70 virus-derived small interfering RNAs (vsiRNAs) [70]. Genes such as R3D1
associated with the RNA interference pathway (RNAi) were upregulated in TSWV-infected
F. fusca [62]. The downregulation of these RNAi genes was observed in D. melanogaster and
coincided with reduction in antivirus defense [165].

5. Vector Biological-Fitness-Related Genes

Vitellogenin-B (Vg-B), a gene associated with fecundity, lifespan, and other housekeep-
ing roles, was the only reported downregulated DEG relating to biological fitness in B. tabaci
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(MEAM1) that acquired a semi-persistent virus, ToCV [46]. Reproductive vitellogenin (Vg)
and development-related genes (juvenile hormone inducible protein genes) were differ-
entially expressed in B. tabaci (MED) that fed on ToCV-infected tomato plants [48]. The
upregulation of these genes in B. tabaci (MED) that acquired ToCV pointed to their role in
shorter development time on ToCV-infected tomato plants than on non-infected tomato
plants [177].

Wang et al. reported the upregulation of let-7a-5p microRNAs (miRNA) and linked
it to perturbation of the cell cycle and negative effects on the longevity and fecundity
of B. tabaci (MEAM1) that fed on TYLCCNV-infected tomato plants [53]. Vg genes were
among the upregulated DEGs identified in viruliferous B. tabaci (MED) that acquired
TYLCV, a persistent virus, from infected tomato plants [48]. Su et al. found an upregulation
of two Vg genes in TYLCV-infected B. tabaci (MED) and attributed it to an increase in the
fecundity of viruliferous B. tabaci (MED) [178]. Several genes associated with amino acid,
carbohydrate, and lipid metabolism were differentially expressed in B. tabaci (MEAM1)
that fed on TYLCV-infected tomato plants [56]. The downregulation of these genes was
linked to deleterious effects in B. tabaci, such as reduced fecundity and longevity [179,180].

Shrestha et al. found that Vg and actin were both upregulated in F. fusca infected
with a persistent-propagative virus, TSWV [65]. The majority of the contigs categorized
as being involved in reproduction, embryo development, cell differentiation, and growth
were upregulated in the viruliferous adults and pupae [65]. Cuticular proteins were
among the downregulated transcripts not only in TSWV-infected F. fusca, but also in
S. furcifera and L. striatellus that fed on SRBSDV-infected and RSV-infected rice plants,
respectively [63,70,72]. Cuticular proteins are integral components of the membrane, and
their downregulation implied a slowing-down of T. palmi development to facilitate virus
acquisition [66]. Fifty-four transcripts associated with Vg were among the upregulated
genes in CaCV-infected thrips [66]. Lee et al. found that Vg in viruliferous L. striatellus was
upregulated, indicating that the virus could promote oogenesis to increase the frequency of
transovarial transmission [68,181].

While there is substantial evidence of the upregulation of important reproductive
hormones, such as vitellogenin, in vectors of persistent viruses, their upregulation in
foregut-limiting viruses prompts us to reexamine the correlation. It is not clear how much
of this upregulation is direct virus modulation, as opposed to indirect modulation via
the host plant. Providing a short acquisition access on infected plants and gut clearing
on non-infected plants could be a viable option to exclusively assess persistent virus-
modulated effects, even though, in such scenarios, host effects cannot be completely
excluded. Therefore, it becomes imperative to point out such caveats before studies attribute
these fitness effects to direct virus modulation on their vectors.

6. Discussion
6.1. Vector Expression Profiles

Across a variety of transcriptomic studies considered for this review, 31 studies were
selected, all of which met certain criteria for inclusion. These criteria limited the studies to
those with transcript expression reported in insect vectors in relation to plant-transmitted
viruses. Within all the studies considered in this review, more trends were observed in
some DEGs than in others. Conversely, there were some DEGs that were regulated in the
opposite direction when considering all the insect vectors.

A limited number of shared DEGs in each of the non-persistent, semi-persistent,
and persistent non-propagative, and persistent-propagative categories highlighted in this
review were recorded. This limited number of shared DEGs across several studies could
have been driven by the duration of the interaction between the virus and vector. Under
virus receptor gene families, several DEGs were identified in the different studies reviewed
here; however, only the cuticular and transport-related genes were shared across a few
transcriptome studies [46,54–56,65,70,72]. The orphan genes and glucose transporters
associated with virus infection were the only identified DEGs that were shared across two
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transcriptome studies [46,48]. Among the biological-fitness-related genes, vitellogenin
was the only identified DEG shared across four studies, which were focused on whiteflies
infected with ToCV or TYLCV and thrips infected with TSWV [46,48,56,65]. Overall, the
functional annotations of DEGs in the vectors of plant viruses were based on the gene
functions associated with vectors of propagative animal viruses. Their role might be the
same in the vectors of plant viruses, especially those that are non-propagative.

The observed similarities and differences in the direction of the expression of a given
gene may have a relation to the evolutionary divergence times between the various insect
vectors. Some genes may be more highly conserved than others and account for similarities
in responses to infection. In some cases, the DEGS in non-persistently transmitted viruses
were similar to those found in other modes of transmission. These differences may also
be attributed to the limitations of the techniques used at the time of each study. Another
factor to consider is the limitations of the respective databases and datasets available at the
time of each study. As molecular techniques advance and more curated databases become
available, the expression profiles of more vectors increase our understanding of the effects
attributed to viral infection.

The DEG profile can be challenging to compare across a wide range of insect species
and various methods that are specific to each study. To normalize the comparisons between
each study, the main concepts regarding gene regulation were approached with a few key
features in mind in this review. The genes described were those that were mainly associated
with immune response, development, and reproduction. While the magnitude of expression
is important, this was usually inconsistent across studies, which could in part be due to
differing methods. However, genes that tended to be upregulated or downregulated were
repeatedly mentioned across most of the studies examined in this review. Nevertheless,
transcriptomic studies that point toward the overall picture of expression are as good as
the baseline from which those studies are built. This baseline is the presence or absence of
a well-curated database or genome.

6.2. Implications of the Common Genes/Pathways

A large amount of success has been witnessed in the potential uses of RNAi to disrupt
the regulatory elements in insects [182]. In this review, several genes were discussed
that were found to be involved in virus transmission that could be potential targets for
RNAi. Insects that transmit disease-causing viruses cause significant amounts of damage
every year across a wide range of important agricultural crops and their management is
crucial. One such application involves the use of exogenous dsRNA to bind to regions
of the virus genome and inhibit the production of binding proteins [183]. Techniques or
formulations such as BioClay, which are layered double-hydroxide sheets used to coat plant
leaves and exogenously deliver dsRNA to insect vectors, such as aphids, upon feeding are
gaining traction [183]. Furthermore, exogenous applications are being explored for crop
protection [183,184].

Genome-editing platforms, such as clustered, regularly interspaced, short palindromic
repeats (CRISPR)-Cas9 may not be at the point at which developed technologies can be
immediately or commercially applied in the field. However, techniques such as RNAi have
been studied more, not only in laboratory settings but also in field situations [185]. While it
will take time to understand CRISPR in the same sense, its high specificity and ability to
edit large or small genomic regions of species of interest could provide a way to increase
the effectiveness of RNAi [186–188]. Although RNAi technology looks to be promising,
it also comes with the challenges of determining the most effective delivery method and
screening for off-target effects [182,189,190]. As new genome editing tools are developed,
the foundations of fully sequenced genomes and de novo assembled transcriptomes could
be used to target specific genetic sites. More investigations into the transcriptomic profiles of
insect vectors will help to develop practical applications for controlling vectors’ populations
and/or managing devastating plant viruses in production systems. Future applications
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may result in genetically modified vectors that, by altering or eliminating binding proteins,
could prevent the acquisition of viruses.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cells11040693/s1. Figure S1: Deposition of gene annotation files
uploaded to the National Center for Biotechnology Information (NCBI) gene database over time.
Figure S2: Relative frequency of studies using RNA-Seq data derived from various tissue types.
References [191–197] are cited in the supplementary materials.
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