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Abstract: Smooth muscle cells (SMCs), present in the media layer of blood vessels, are crucial in
maintaining vascular homeostasis. Upon vascular injury, SMCs show a high degree of plasticity,
undergo a change from a “contractile” to a “synthetic” phenotype, and play an essential role in
the pathophysiology of diseases including atherosclerosis and restenosis. Integrins are cell surface
receptors, which are involved in cell-to-cell binding and cell-to-extracellular-matrix interactions. By
binding to extracellular matrix components, integrins trigger intracellular signaling and regulate
several of the SMC function, including proliferation, migration, and phenotypic switching. Although
pharmacological approaches, including antibodies and synthetic peptides, have been effectively
utilized to target integrins to limit atherosclerosis and restenosis, none has been commercialized
yet. A clear understanding of how integrins modulate SMC biology is essential to facilitate the
development of integrin-based interventions to combat atherosclerosis and restenosis. Herein,
we highlight the importance of integrins in modulating functional properties of SMCs and their
implications for vascular pathology.

Keywords: integrins; smooth muscle cell; phenotype switching; neointimal hyperplasia; restenosis;
extracellular matrix; fibronectin

1. Introduction

Vascular smooth muscle cells (SMCs), present in the media layer of arteries, are critical
to maintain the vascular tone of resistance arteries through synergic action between va-
sodilators/vasoconstrictors and vascular SMC contractility. SMCs exist in a differentiated,
contractile, non-proliferative state in healthy arteries and exhibit an elongated myocyte
morphology. Differentiated SMCs are characterized by the expression of a repertoire
of smooth muscle-specific contractile and cytoskeletal proteins (e.g., SM-myosin heavy
chain (MYH11), smooth muscle alpha-actin (ACTA2), SM22α (TAGLN), calponin (CNN1), h-
caldesmon (CALD1), and smoothelin (SMTN)), all of them required to maintain the integrity
of the arterial wall [1]. Unlike other differentiated cells, SMCs are not terminally differen-
tiated and have the flexibility to shift from a contractile to a proliferative, pro-migratory,
synthetic phenotype, exhibiting a rhomboid morphology. These de-differentiated SMCs
are characterized by reduced expression of contractile proteins [2]. The transition of SMCs
from a “contractile” to a “synthetic” phenotype is known as SMC phenotypic modulation
or switching, which contributes to SMC proliferation, and migration, and thereby plays a
vital role in the progression of atherosclerosis, in-stent restenosis, and other cardiovascular
hyperplastic disorders. Additionally, platelet-derived growth factor (PDGF), transforming
growth factor-beta (TGF-β), cytokines, integrins, angiotensin II, nitric oxide, reactive oxy-
gen species, and the components of the extracellular matrix (ECM) are known to modulate
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SMC phenotype [3–6]. These dedifferentiated SMCs re-enter the cell cycle and secrete
ECM components, including fibronectin, which contributes to vascular remodeling. In
fact, lineage-tracing experiments suggest that phenotypically modulated SMCs within
lesions can comprise about ~30% of the total cell count [7]. In healthy arteries, SMCs are
surrounded by ECM components including laminin, collagen type IV, and heparan sulfate
proteoglycan. Following injury, SMC activation is associated with marked changes in
ECM composition, such as the disappearance of laminin and other basement membrane
structures, and the appearance of abundant deposits of fibronectin and vitronectin around
proliferative cells in the media and intima [8,9], suggesting a functional role of ECM in SMC
activation. Integrins are the primary ECM receptors that regulate cell–cell and cell–ECM
interactions. Furthermore, the adhesion, proliferation, and migration of SMCs are regulated
by the interaction of integrins with ECM components [10].

2. Integrins: A Brief Overview

Integrins are transmembrane heterodimeric receptors that bind to cytoskeletal proteins
of SMCs, including talin, vinculin, α-actinin, and filamin, and play a key role in SMC
biology and in the development, maintenance, and remodeling of the vasculature [11–13].
The integrin family includes 18 alpha (α) and 8 beta (β) subunits that form 24 distinct
αβ heterodimers. Each integrin heterodimer consists of a large extracellular domain
region, two single-pass transmembrane helices (one in each subunit), and short cytoplasmic
tails [14,15]. Integrins are known to adopt three central conformational states: inactive (low
affinity, predominant state), active (high affinity, intermediate state), and ligand occupied
(active state). Integrins can transmit signals from inside the cell to outside (inside-out
signaling) and from outside to inside the cell (outside-in signaling). The process involves
intracellular binding of ligands to the cytoplasmic domain, which causes a major change in
the extracellular domain of the integrin receptor, leading to a high affinity for extracellular
ligands [16,17]. Integrin outside-in signaling regulates cell growth, cell survival, and SMC-
ECM interaction [2,16]. The activation of cell surface receptors, including growth factor
receptors and cytokine receptors, also results in some conformational change in integrin
receptors that, in turn, modulates its ligand-binding characteristics.

Depending on their ligand recognition pattern, integrins are classified as laminin-
binding integrins (α3β1, α6β1, α7β1, and α6β4), collagen-binding integrins (α1β1, α2β1,
α10β1, and α11β1), leukocyte-binding integrins, and Arg-Gly-Asp (RGD) binding inte-
grins [14]. Laminin-binding integrins mediate the adhesion of cells to basement membranes;
collagen-binding integrins mediate the adhesion of cells to collagen and chondroadherin;
leucocyte-binding integrins bind intercellular adhesion molecule (ICAM) and plasma pro-
teins. In contrast, RGD-binding integrins recognize three amino acid motifs, the ‘arginine-
glycine-aspartic acid’ sequence commonly found in several ECM components, including
vitronectin, fibronectin, fibrinogen, and von Willebrand factor [14]. Among the 24 human
integrin subtypes known to date, eight integrin dimers recognize the tripeptide RGD motif
within ECM proteins, namely: αvβ1, αvβ3, αvβ5, αvβ6, αvβ8, α5β1, α8β1, and αIIbβ3.

3. Role of Integrins in SMC Biology

Integrin signaling plays an essential role in SMC biology by regulating adhesion,
migration, proliferation, contraction, and differentiation [10,16,18–21]. Several proteins
such as integrin-associated protein, integrin-linked kinase, focal adhesion kinase (FAK),
tetraspanin CD9, and urokinase-type plasminogen activator receptor modulate integrin-
mediated cell motility and adhesion in SMCs [10,22–25]. Integrin signaling in SMC also
involves growth factor receptors that crosstalk between signaling pathways [17,26]. Several
studies suggest that synergism may occur between integrin and downstream signaling
molecules [17,27]. For example, integrin-mediated adhesion to ECM can enhance growth
factor signaling on its receptor. In some cases, interactions with ECM may aid in the effective
presentation of the growth factors to their receptors [28]. Additionally, integrin activation
includes receptor tyrosine phosphorylation [29]. For instance, integrin–ligand adhesion
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triggers FAK auto-phosphorylation at tyrosine (Tyr) 397, which prompts FAK association
with steroid receptor coactivator (Src). Src then phosphorylates other tyrosine residues that
contribute to the full activation of FAK [25]. The activated FAK/Src complex facilitates
various key signaling cascades, including the activation of serine-threonine protein kinase
(AKT), extracellular signal-regulated kinase (ERK), and p38 mitogen-activated protein
kinase (MAPK) pathway [30,31], all of which are known to regulate SMC proliferation and
migration. A schematic summary of the proposed mechanism is shown (Figure 1).
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Figure 1. Schematic showing the signal transduction pathways regulated by integrins in smooth
muscle cells (SMC). Depending on the type of integrin and its expression on SMCs, they can trigger
signals promoting synthetic or paradoxically a contractile SMC phenotype. Many of the reported SMC-
specific integrins promote synthetic SMC phenotype. For example, integrin binding to extracellular
matrix (ECM) or activation of growth factor receptors (GFr) facilitates downstream signaling events
via FAK-Src, Akt, or ERK pathway, resulting in SMC proliferation and migration and neointimal
migration hyperplasia. Abbreviations: ERK: extracellular signal-regulated kinase; ECM: extracellular
matrix; EDA: extra domain A; FAK: focal adhesion kinase, Fn: Fibronectin; IGFR: insulin-like growth
factor receptor; LN: Laminin; OPN: Osteopontin; PDGFR: platelet-derived growth factor receptor;
VEGFR: vascular endothelial growth factor receptor; VN: Vitronectin.

Integrin–ligand interactions play a crucial role in remodeling of the injured vessel
wall during wound healing, arterial stent injury, and in maintaining typical vascular struc-
ture [32]. Several integrins contribute to SMC activation. The major α-integrin subunits
present in SMC are α1, α3, α5, α8, and α9 [10,33], whereas β subunits are β1, β3, and β5.
The expression of integrins is dynamic and varies dramatically in SMC with different pheno-
types [21,33]. Few integrins are upregulated in activated SMC, while expression levels are
very low or undetectable in differentiated quiescent SMCs [21]. For example, integrin α1β1
is a collagen-binding integrin that is highly expressed in resting SMCs, and its expression
is significantly downregulated in culture conditions [34]. Similarly, integrin α8β1 is overex-
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pressed in SMCs that display a contractile phenotype, and its expression is downregulated
after vascular injury [35]. Studies have demonstrated that the downregulation of integrin
α8β1 causes actin filaments (a hallmark feature of contractile SMC phenotype) to dissociate
and subsequently disintegrate, favoring a synthetic SMC phenotype [12]. Other integrins,
including α2β1, α5β1, α5β3, and α4β1, are often expressed on the surface of SMCs in a
low-affinity ligand-binding conformation [18,19,36–39]. The α5β1, which is a receptor for
fibronectin, is poorly expressed in quiescent vessels in vivo. Following injury, fibronectin
and integrin α5β1 expression is upregulated [18]. Another integrin subunit β3 is also
known to be upregulated in response to stimuli, such as mechanical injury and neointimal
hyperplasia, whereas blocking β3 attenuates SMC migration [40]. Several other integrins,
including α2β1, α5β1, α5β3, and α4β1, are known to contribute to SMC migration and
synthetic phenotype [38,41], whereas α1β1 [42] and α7β1 [20] were shown to mediate the
phenotypic switch of SMCs.

4. Role of Integrins in Neointimal Hyperplasia

Neointimal hyperplasia refers to post-intervention, pathological vascular remodeling
due to the proliferation and migration of SMCs into the intimal layer, resulting in vascu-
lar wall thickening. During neointimal recruitment, SMCs are exposed to various ECM
proteins, and integrin-ECM signaling has been shown to drive smooth muscle fibroprolif-
erative remodeling. Several integrins are also known to promote neointimal hyperplasia,
and evidence suggests that blocking integrins such as αIIbβ3 [43] and α4β1 [44,45] pre-
vents neointimal hyperplasia. Besides these, the current literature strongly supports a
role of signaling through αvβ3 in SMCs during neointimal hyperplasia [32]. In humans,
αvβ3 is present in normal arteries and at the sites of SMC accumulation in atherosclerotic
plaques. Several studies have shown that targeting αvβ3 integrin limits neointimal hy-
perplasia in small animal models of restenosis, including rat, rabbit, hamster, and guinea
pig carotid angioplasty models [32,40,46,47]. In addition, an antibody to β3 integrin was
demonstrated to prevent the development of intimal hyperplasia in wild-type diabetic
mice [48]. Although β3-integrin blockade effectively reduces neointimal hyperplasia in
animal models, the genetic ablation of β3 was found not to be effective for preventing
intimal hyperplasia in animal models [49]. Therefore, it was speculated that the genetic loss
of β3 might result in compensatory increases in the number and affinity of other adhesion
receptors. In contrast, such compensation probably cannot occur with acute inhibition of
αvβ3. In addition, the absence of β3 may affect signaling mediated by other integrins by
decreased binding of intracellular proteins involved in signaling that ordinarily bind to the
cytoplasmic domain of the missing integrin. Besides its detrimental role, some integrins
are also known to prevent neointimal hyperplasia, such as α8β1 [50] and α7β1 [51]. The
expression of different integrins on SMC, their ECM ligand, and their possible role in SMC
function and neointimal hyperplasia are summarized in Table 1.

Table 1. Table representing the expression of different integrin subunits, their implication in smooth
muscle cell (SMC) function and disease conditions such as atherosclerosis and neointimal hyperplasia,
and integrin-directed drugs used in clinics. Collagen, Col; Laminin, LN; Fibronectin, Fn; Vascular cell
adhesion molecule, VCAM; Osteopontin, OPN; Tenascin, TN; Vitronectin, VN; Fibrinogen, Fib; EDA,
extra domain A.

Integrin ECM SMC Expression SMC Function
Implication in
Atherosclero-
sis/Restenosis

Integrin-Targeting
Agents in Clinics Reference

α1β1 Col 1-IV, LN

High expression in
resting SMCs.

Downregulated in
culture conditions and

during neointimal
hyperplasia

Promotes SMC
adhesion and

contractile
phenotype

α1β1 deletion
induces a stable

plaque phenotype
SAN-300 [10,34,42,52–55]
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Table 1. Cont.

Integrin ECM SMC Expression SMC Function
Implication in
Atherosclero-
sis/Restenosis

Integrin-Targeting
Agents in Clinics Reference

α2β1 Col 1 and IV,
LN

Undetectable levels in
normal human SMCs,
and high expression in

cultured SMCs

promote
chemotaxis of
arterial SMCs

α2β1 deletion had
no effect on

atherosclerosis
Vatelizu-mab [16,39,42,52,56]

α3β1 Col 1, Fn, and
LN

Detectable levels in
normal human SMCs,
and high expression in

cultured SMCs

No conclusive reports [10,33]

α4β1 Cellular-Fn,
VCAM, OPN

Undetectable levels in
normal human SMCs,
expressed in SMCs in
culture and in intimal

atherosclerotic
thickening

Induction of SMC
differentiation

blocking α4β1
prevents

neointimal
hyperplasia

Natalizu-mab
AJM300 [38,44,45,52]

α5β1 Fn and LN

Low levels in normal
human SMCs, and high
expression in cultured

SMCs and during
neointimal hyperplasia

Promote SMC
proliferation and

migration

Mediates early
atherosclerosis

Volocixi-mab
ATN61 [41,57,58]

α7β1 LN

High levels in normal
SMCs, and low

expression in synthetic
SMC

Promotes
contractile SMC

phenotype

α7 deletion
promotes

neointimal
hyperplasia

No conclusive
reports [20,51,59,60]

α8β1 Fn, TN, VN

Overexpressed in SMCs
that display a

contractile phenotype
low expression in

synthetic SMC
phenotype and during
neointimal hyperplasia

Promotes
contractile SMC

phenotype.
Prevents SMC

proliferation and
migration

α8 deletion
aggravates

intimal
thickening

No conclusive
reports [12,35,50,61]

α9β1 Fn-EDA, TN,
VCAM

Expression increases in
synthetic SMC

phenotype

Promotes SMC
proliferation,

migration, and
synthetic

phenotype.

α9 deletion
prevents NH ASP5094 [21,62]

αvβ1 VN, Fn

Weakly expressed in
normal SMCs, and

upregulated in SMCs
cultured on fibronectin

Inhibits
contractility in

SMC exposed to
serum

No conclusive
reports

PLN-74809
PLN-1474 [41,63,64]

αvβ3 VN, OPN, Fn

Weakly expressed in
normal SMCs, and

upregulated in SMCs
cultured on fibronectin
and during neointimal

hyperplasia

Promotes SMC
adhesion,

proliferation and
migration

Promotes
neointimal
hyperplasia

LM609, Abcixi-mab
(c7E3Fab; ReoPro),

Vitaxin,
Intetumu-mab,

Cillengitide

[16,41,65–68]

αvβ5
Fib, Fn,
OPN
VN

highly abundant in
cultured SMCs,

upregulated upon
vascular injury

Promotes SMC
adhesion and

migration

Promotes
neointimal
hyperplasia

LM609
Intetumu-mab [67,69]

5. Integrin α9- An Overlooked Integrin

Several ECM proteins, which are generally expressed at low levels in normal adult
tissues, are highly expressed during vascular remodeling [36,70]. Examples of such pro-
teins include OPN, Tenascin-C, and cellular fibronectin containing EDA (Fn-EDA), all of
which are known to promote SMC proliferation and neointimal hyperplasia [71–73]. It is
important to note that Fn-EDA contains a non-RGD sequence known to interact with inte-
grin α9 [74]. Furthermore, α9 and its matrix protein ligands associate with and synergize
signaling from several growth factors, including PDGF-BB, to promote cell adhesion and
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motility [31,75,76]. In addition, α9 is known to be expressed by SMC [77], suggesting an
essential role of α9 in SMC biology. In humans, α9 is encoded by the ITGA9 gene, located in
the 3p21.3–22.2 segment of a chromosome, which encodes the polypeptides of 1035 amino
acids and has a size of 114.5 KD [78]. The structure of α9 consists of a ligand-binding
large N-terminal extracellular domain, a transmembrane segment, and a short C-terminal
cytoplasmic domain that specifically binds to intracellular proteins [78]. α9 exclusively
heterodimerize with β1 subunit, generating α9β1 heterodimer. Unlike other integrins
that recognize RGD sequence, α9β1 recognizes a Met-Leu-Asp sequence, and it forms a
unique subfamily with α4β1. Initially, due to many shared ligands, α9 was thought to have
similar functions to those of α4; however, genetic ablation studies in mice revealed that
phenotypes do not overlap, suggesting different functions in vivo [79]. Besides SMCs, inte-
grin α9 is widely distributed throughout airway epithelium, skeletal muscle, endothelial
cells, smooth muscle, hepatocytes, neutrophils, and cancer cells and has been shown to
have an important role in regulating cell adhesion, migration, wound healing, thrombosis,
angiogenesis, and inflammatory and immune responses [80–83].

6. Role of α9β1 in SMC Proliferation and Neointimal Hyperplasia

In recent years, α9β1 has gained particular attention because of its involvement in
many diseases, including rheumatoid arthritis and multiple sclerosis [84]. In quiescent
murine and human aortic SMCs, α9 is expressed at low levels and is mainly restricted
to a membrane lining. After stimulation with PDGF-BB, which is known to modulate
the membrane mobility and trafficking of integrins [85], a higher expression of α9 was
detected in the cytoplasm (Figure 2) [21]. SMC-specific deletion of α9 significantly reduces
SMC proliferation, migration, phenotypic switching, and injury-mediated pathological
remodeling [21]. Previously, it was demonstrated that integrin and growth factor receptors
activate the GSK3β signaling pathway [86]. GSK3β is known to phosphorylate β-catenin,
the central signaling molecule of the canonical Wnt pathway, making it available for pro-
teasomal degradation [87]. Nuclear-localized β-catenin interacts with TCF/LEF family of
transcription factors and promotes its target gene expression. α9 deficiency was associated
with higher GSK3β activity [86]. Studies suggest that integrin α9β1 utilizes the common
integrin signaling proteins, including FAK, Src, and ERK [30,31]. Utilizing human coronary
and mouse aortic SMCs, SMC-specific α9-deficient mice, and blocking antibody to the α9
subunit, we demonstrated that α9 activates FAK, Src, ERK, and p38 pathway and regulates
nuclear translocation of β-catenin. Although the precise molecular mechanism of α9β1-
induced FAK-Src activation remains to be elucidated, we speculate that Src may directly
interact with the cytoplasmic tail of α9. Recently, Kurotaki et al. developed anti-integrin α9
antibody (clone 55A2C), which was shown to have an inhibitory effect on the binding of
α9/NIH3T3 cells to the synthetic peptides AEIDGIEL, a sequence similar to the EDGIHEL
sequence present in the EDA segment of fibronectin [88]. 55A2C has been shown to have an
inhibitory effect on arthritis and multiple sclerosis progression in murine models [84]. We
demonstrated that pretreatment with 55A2C suppressed PDGF-induced SMC proliferation
and migration and inhibited injury-induced neointimal hyperplasia [21].
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Figure 2. Integrin α9 expression in murine aortic smooth muscle cell (SMC). Serum-starved murine
aortic SMC was stimulated with or without platelet-derived growth factor-BB (PDGF-BB) for 24 h.
The left panels show representative double immunostaining for α9 (red) and αSMA (green) in SMCs
stimulated with or without PDGF-BB. Boxed regions are magnified. Scale bars: 30 µm. The right panel
shows the quantification of α9 fluorescence intensity (n = 6/group). Statistical analysis: unpaired
Student’s t-test.

7. Role of Cellular Fibronectin Containing EDA Domain in α9 Mediated
SMC Activation

The predominant isoforms of fibronectin found in the ECM, known as cellular fi-
bronectin (cFn), are dimeric or cross-linked multimeric structures containing either al-
ternatively spliced extra domain A (EDA) or extra domain B (EDB) or both, in varying
proportions [89,90]. cFn containing EDA (Fn-EDA) in the ECM is synthesized by vascular
cells, including endothelial cells, and its expression levels are upregulated during the devel-
opment of neointima [71,91]. Recently, we demonstrated that PDGF-BB upregulates cellular
Fn-EDA in stimulated SMCs, promotes phenotype switching and proliferation via TLR4,
and promotes neointimal hyperplasia [71]. Furthermore, using RGDS peptide, we found
that Fn-EDA mediates SMC proliferation and migration partially through integrins that
are not recognized by RGDS peptide [71]. Notably, α9β1 regulates the functional activity
of SMC through a variety of several non-RGD sequences such as SVVYGLR in OPN [92],
AEIDGIEL in Tenascin-C [93], and PEDGIHELFP in cellular Fn containing EDA [88]. In line
with these observations, studies using α9-deficient SMCs and recombinant EDA-containing
or EDA-lacking peptides found that integrin α9 mediates SMC proliferation, migration,
and phenotypic switching partially via Fn-EDA. These studies unequivocally support a
causal connection between integrin α9 and FN-EDA in SMC proliferation and neointimal
hyperplasia exacerbation.

8. Anti-Integrin Therapies in SMC Proliferation and Injury-Induced
Neointimal Hyperplasia

Many studies have focused on targeting integrins as an intervention for aberrant SMC
proliferation (Table 1). Studies with α5β1- and αvβ3-specific antagonists, RGD peptide, or
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integrin blocking antibody in a variety of preclinical models demonstrated that targeting
of these integrins inhibit proliferation and migration of SMC and prevented neointimal
hyperplasia [33,94,95]. Early clinical trials found that Abciximab/c7E3 (a mouse/human
chimeric Fab portion of the IgG), integrilin/eptifibatide (an RGD based inhibitor), and
AGGRASTAT/Tirofiban (a non-peptide tyrosine derivative) improved early adverse cardiac
events after percutaneous coronary interventions (PCI) [47,96–99]. However, subsequent
clinical trials did not meet expectations and demonstrated that these antagonists did not
prevent intimal hyperplasia [47,100,101]. It is important to note that in these clinical
trials, integrin antagonists were infused for the short term that primarily inhibited platelet
activation. There is a possibility that such a short-term infusion could not block αvβ3 during
vascular restenosis. Therefore, clinical trials specifically designed to assess the long-term
effect of integrin-blocking on clinical restenosis are required. Another study tested the safety
and efficacy of abciximab-coated stents in native human coronary artery lesions [102]. The
6-month intravascular ultrasound analysis showed that the area of neointimal hyperplasia
was significantly smaller in the abciximab-coated stent group than in the control stent
group, which indicated abciximab-coated stents to be safe and effective in the prevention of
coronary restenosis [103]. Unfortunately, in a 2-year follow-up, abciximab-coated stents did
not show superior clinical outcomes over bare-metal stents. Further studies are warranted
to confirm these results in large-scale, prospective randomized trials.

Although the results of initial clinical trials with some integrins were disappointing, a
study found that stents coated with peptide targeting αvβ3 decreased neointimal growth
and improved vessel healing and reendothelialization in iliac arteries of New Zealand
white rabbits [46]. Other preclinical studies demonstrated that targeting integrins with
RGD peptides results in reduced neointimal growth [40,104]. Still, the clinical develop-
ment of RGD-based integrin inhibitors has faced significant challenges, as many of these
linear peptides have bioavailability and selectivity issues. In addition, many non-RGD
recognizing integrin heterodimers contribute to SMC biology. Examples of such integrins
include α4β1, α4β7, and α9β1. Blocking VCAM-1 and α4β1 interaction using anti-α4
integrin antibody or α4 integrin inhibitor (ELN 457946) was shown to attenuate neointimal
formation [105] and in-stent restenosis [45].

9. Clinical Perspective

Balloon angioplasty followed by stent implantation remains the treatment of choice
for treating obstructive coronary arteries. However, the procedure is hampered by in-stent
restenosis (ISR), a phenomenon mainly characterized by local inflammation leading to
aggressive SMC proliferation and late neoatherosclerosis [106]. Though recent drug-eluting
stents (DES) have reduced ISR incidence, DES is not immune to restenosis. Routine an-
giographic data after using newer-generation devices demonstrates rates of angiographic
restenosis of approximately 5–10% [107]. Current guidelines recommend that patients
who develop clinical restenosis after DES implantation be considered for repeated PCI
with balloon angioplasty or DESs containing the same drug or an alternative antiprolifera-
tive drug [108]. Therefore, new therapeutic interventions are required to target vascular
pathologies such as atherosclerosis and restenosis and improve clinical outcomes following
PCI. Combining targeted integrin therapy with PCI procedures may prevent the recurrence
of stent-induced restenosis. Currently, several approaches are available to target integrins,
including monoclonal antibodies, peptide inhibitors, and RGD-mimetic small-molecule
inhibitors. However, none of them are commercialized for cardiovascular indications
because of limitations. First, preclinical small animal models of neointimal hyperplasia do
not mimic clinical settings and could be one of the major contributing factors to the lack of
reproducibility of preclinical findings. Second, regulation of integrins is a very complex,
dynamic, and quick process [109]. The levels of different integrin heterodimer such as
αvβ3, αvβ5, or α5β1, expressed by SMCs may differ during the process of neointima
formation, leading to a dynamic change in integrin pattern. By understanding the regional
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and temporal regulation of integrin expression’s during SMC migration and phenotypic
modulation, we may see more success in developing new interventions.

10. Conclusions and Future Perspectives

Integrins are cell surface receptors that are involved in mediating cell–cell interac-
tion and cell–ECM interactions. SMCs express several integrins, which are differentially
expressed depending on the phenotypic state. Multiple mechanisms regulate integrin
bi-directional signaling in SMC, enabling them to proliferate, migrate, and differentiate into
synthetic phenotype. Previous preclinical and clinical studies emphasizing αvβ3 and αvβ5
for inhibition of restenosis were met with failures. Nevertheless, understanding the role of
other integrins in SMC biology could lead to new interventions to combat restenosis.
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