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Abstract: Gut microbiota is thought to influence host responses to allogeneic hematopoietic stem
cell transplantation (aHSCT). Recent evidence points to this post-transplant for acute graft-versus-
host disease (aGvHD). We asked whether any such association might be found pre-transplant
and conducted a metagenome-wide association study (MWAS) to explore. Microbial abundance
profiles were estimated using ensembles of Kaiju, Kraken2, and DeepMicrobes calls followed by
dimensionality reduction. The area under the curve (AUC) was used to evaluate classification of the
samples (aGvHD vs. none) using an elastic net to test the relevance of metagenomic data. Clinical
data included the underlying disease (leukemia vs. other hematological malignancies), recipient age,
and sex. Among 172 aHSCT patients of whom 42 developed aGVHD post transplantation, a total of
181 pre-transplant tool samples were analyzed. The top performing model predicting risk of aGVHD
included a reduced species profile (AUC = 0.672). Beta diversity (37% in Jaccard’s Nestedness by
mean fold change, p < 0.05) was lower in those developing aGvHD. Ten bacterial species including
Prevotella and Eggerthella genera were consistently found to associate with aGvHD in indicator species
analysis, as well as relief and impurity-based algorithms. The findings support the hypothesis on
potential associations between gut microbiota and aGvHD based on a data-driven approach to
MWAS. This highlights the need and relevance of routine stool collection for the discovery of novel
biomarkers.

Keywords: human gut microbiome; aGvHD biomarkers; metagenome-wide association; next generation
sequencing; pre-transplant screening; taxonomic assignment; deep learning; allo-HSCT

1. Introduction

Acute graft-versus-host disease (aGvHD) is a frequent serious complication in patients
undergoing allogeneic hematopoietic stem cell transplantation (aHSCT) [1]. In aGvHD,
immune cells from the donor attack healthy tissue of the patient, causing an increased
risk of morbidity and mortality. aHSCT offers a potential cure for patients suffering from
hematological diseases (most commonly leukemia), where other treatment options have
been exhausted or are not suitable to tackle the patient’s aggressive disease. Finding ways
to predict aGvHD prior to aHSCT in recipients is an important and still open research
question [2].
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With the advent of high throughput sequencing the potential role of the gut micro-
biome in human disease can be better understood. It is suggested that the risk of developing
aGvHD could, in part, be associated with the recipients’ genetic characteristics and/or
cohabitating microorganisms within the gut microbiome [3]. The gut microbiome offers an
intriguing source of information having recently been suggested to improve aGvHD pre-
diction models [4,5]. Previous studies, mainly using post-transplant samples, have found
that abundancies of specific gut bacteria may provide useful information in predicting
aGvHD [6]. Likewise, several gut bacteria have been associated with an increased risk of
aGvHD and mortality [2]. Based on previous findings suggesting associations between the
gut microbiome and aGvHD [5,7,8], we hypothesized that potential pre-aHSCT biomarkers
of aGvHD could be discovered through a metagenome-wide association study (MWAS).

To test this hypothesis, we focused on species abundances with respect to prospective
aGvHD occurrence. We used three taxonomic classifiers: DeepMicrobes [9], Kraken2 [10],
and Kaiju [11] based on a custom database of the human gut bacteria to estimate species
abundances using high throughput shotgun sequencing data from stool samples of aHSCT
recipients. There was a pre-processing step to choose a configuration to aggregate metage-
nomic data derived from the taxonomic classifiers for downstream analyses. We used a
broad set of statistical and information-theoretic methods to assess potential associations
between gut species abundances and aGvHD.

2. Materials and Methods
2.1. Data Collection and Categorization

Stool samples were collected by the patient or nursing staff using the OMNIgene.GUT
(DNA Stabilized-frozen Inc., Ottawa, Canada) stabilization tube according to the manu-
facturer’s instructions. All samples were frozen a maximum of eight days after sampling
and stored at −80 ◦C until shipment for sequencing. Paired-end sequencing (150 bp) was
done using shotgun metagenomic sequencing—Illumina HiSeq (Illumina, San Diego, CA,
USA). The sequencing reads underwent pre-processing and quality control steps. Using
Trimmomatic [12] and the Illumina HiSeq program, certain adapters were eliminated. Addi-
tionally, Trimmomatic was used for quality trimming, that is, reads were cut if the average
quality of 4 nucleotides was below 30 and nucleotides were trimmed from the start or end
of the read if they had a quality score of less than 30. It also included removal of reads with
<50 base pairs and removal of all reads mapping to the human genome (GRCh38) using
Bowtie2 [13]. Samples with <1 million reads remaining after quality control steps were
removed from further analysis. Samples were categorized into two groups depending on
whether the patient developed aGvHD (grades 2 and above) or not, post transplant (i.e., an
aGvHD group and a non-aGvHD (NaGvHD) group, respectively). A graphical summary
of the cohort and methodology of the study is provided in Figure 1.

2.2. Data Analysis

The data analyses for MWAS were performed in R [14] (v4.1.2). The analyses included
exploring potential associations between clinical variables including prospective aGvHD
occurrence and (normalized) species abundances. Statistical significance was considered
throughout this work at a level of 5% unless otherwise noted. Due to the limited sample
size and our purpose of exploring a large number of candidate species in some of the
analyses, the p values before adjustments for multiple testing are also reported.
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Figure 1. An overview of the study depicting the data distribution for stool samples with trans-
plantation day as reference (day 0). It also depicts the focus of the study and the methodology to
benchmark taxonomic profiling configurations to describe associations between gut microbes before
allogeneic hematopoietic stem cell transplantation (aHSCT) and occurrence of acute graft versus host
disease (aGvHD). The blue block represents the taxonomic classifiers and their combined taxonomic
profiles extracting species counts. Species counts are normalized, and two sets of species are analyzed:
(1) unfiltered or complete species set and (2) filtered or reduced species set. The species set with the
highest classification performance is chosen for metagenome-wide association study (the block in
light gold color).

2.3. Clinical Variables

We used univariable and multivariable logistic regression to find statistically signif-
icant associations of the clinical variables, i.e., conditioning regimen (myeloablative or
non-myeloablative), cyclophosphamide (used or not), disease groups (acute leukemia or
other hematological malignancies), donor-recipient relationship (related or unrelated),
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donor sex, Karnofsky score at day 0 (<90 or ≥90), radiation groups (none or irradiated), re-
cipient age (<60 or ≥60), recipient sex, transplant source (peripheral blood or bone marrow)
with aGvHD as a binary outcome variable (NaGvHD = 0, aGvHD = 1). Myeloablative is a
harsher form of conditioning including high-dose cytotoxic treatment, resulting in patients
becoming neutropenic in the first few weeks post-transplant, whereas non-myeloablative is
less harsh, resulting in higher levels of neutrocytes post-transplant [15]. For the analysis,
Karnofsky score at day 0 was imputed for two patients with the median value of it across
patients with the same outcome. The dichotomization of Karnofsky score and recipient
age was applied to balance their distributions by aGvHD for potential deviation from
normality.

2.4. Taxonomic Classification

Three taxonomic classifiers, i.e., DeepMicrobes (v1.0.0), Kraken2 (v2.1.2), and Kaiju
(v1.7.3) were used to assign the species from a relevant custom reference database [9] to
the reads involved in each metagenomic sample. The database contains 2505 bacterial
species from a bacterial repertoire of human gut microbiota. These taxonomic classifiers
use different methods to assign the species to reads. The main difference is that Deep-
Microbes is based on deep learning and does not require phylogenetic inference for the
classification as a key advantage [9]. We extracted three species abundance profiles given
the three taxonomic classifiers that were used for the downstream analyses. The taxo-
nomic classifiers provided species counts in each sample. The species counts from the
three taxonomic classifiers were aggregated by arithmetic mean (AM) leading to four extra
sets: AM(DeepMicrobes, Kraken2), AM(DeepMicrobes, Kaiju), AM(Kraken2, Kaiju), and
AM(DeepMicrobes, Kraken2, Kaiju). The species counts were normalized to their genome
sizes and total number of reads to compute (relative) species abundances to allow their
comparisons across samples (see Supplementary Material). The methodological variance
unravels potential effects of taxonomic classification on distinguishing samples labeled as
aGvHD from NaGvHD. As a naming protocol, the name of the most recent taxa to each
species is indicated followed by “|” and the taxa identifier from the reference database.
The initials refer to the taxa ranks from which the name comes from (if any): s_: species, g_:
genus, o_ order, f_:family, p_:phylum, c_:class.

2.5. Benchmarking the Taxonomy Profiling Configurations

The samples were classified to aGvHD and NaGvHD using an elastic net in a 2 × 5-
fold cross validation scheme in which the area under the curve (AUC) for receiver operating
characteristic (AUROC) and precision-recall curves are reported to assess the predictability
of aGvHD using each of the seven taxonomy profiling configurations. The classification
was performed using SIAMCAT package (v1.14.0). We applied PERFect: PERmutation
Filtering test [16], an unsupervised dimension reduction method, to find a reduced (filtered)
species set in comparison with the complete (unfiltered) species set (2505 species from the
database) to check whether the filtering increases signal to noise ratios quantified by AUC.
This determines the taxonomy profiling configuration with the highest AUC to present the
results for the downstream analyses.

2.6. Diversity Measures

We computed seven alpha and 10 beta diversity indices derived from species abun-
dances as proxies to explore the patients’ gut ecosystems. Alpha diversity indices specify
how diverse the species communities are within each sample, whereas beta diversity in-
dices quantify the community diversities between samples of the aGvHD and NaGvHD
groups. Alpha diversity indices were Berger-Parker dominance, Simpson’s dominance,
Heip’s evenness, inverse Simpson, richness, Shannon diversity, and Strong’s dominance
as implemented in abdiv package (v0.2.0). Beta diversity indices were Canberra distance,
Chebyshev distance, Clark’s coefficient of divergence, correlation distance, Euclidean dis-
tance, Geodesic metric, Hellinger distance, Horn-Morisita index, Jaccard nestedness, and
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Manhattan distance. We also computed F0 [17] as a k-mer based measure of alpha diversity
in addition to the mentioned alpha diversity indices. The differences in the indices were
tested for statistical significance using Wilcoxon rank-sum test followed by BH adjust-
ment [18] of the p values. To assess bias possibility in group difference test of significance
for beta diversity indices due to different sample sizes, the test was conducted also for
1000 random subsets of the group with larger sample size against the group with smaller
sample size (group-equalized testing).

2.7. Dissimilarity Measures

Species abundances were used to compare microbial dissimilarities in association
with the occurrence of aGvHD. The distances between all pairs of samples were computed
using vegdist function for “robust Aitchison” and “Bray–Curtis” measures. Analysis of
similarities (ANOSIM) test using vegan package (v2.6.2) was conducted with 10,000 permu-
tations for statistical significance of the dissimilarity measures. Permutational multivariate
analysis of variance (PERMANOVA) using adonis2 function from vegan package (v2.6.2)
was also performed with 10,000 permutations to assess the between-group dissimilarity of
the relative abundances of samples based on the distance measures. The contributions of
disease group, recipient age and sex to bacterial community composition were determined
with PERMANOVA. The betadisper function was used to test the assumption of homo-
geneity of multivariate dispersion. To partly compensate for the sensitivity to unbalanced
designs [19], the PERMANOVA and ANOSIM tests with robust Aitchison distance were
also conducted for an adjusted balance setting based on Majority Weighted Minority Over-
sampling TEchnique (MWMOTE) algorithm [20] implemented by R package imbalance
(v1.0.2.1), in which, oversampling is applied to the group with smaller sample size to
generate synthetic samples resembling the distributions of the original samples.

In addition, indicator species analysis was performed using indicspecies package
(v1.7.12) on species abundances to identify the species available more frequently in one
group (aGvHD) compared to NaGvHD [21]. Using this analysis, group-equalized point-
biserial correlation coefficients (r.g) and indicator value (IndVal.g) were used to identify the
species that could be used to distinguish groups [22,23]. IndVal.g quantifies associations
between aGvHD and species abundances by indicating both fidelity (sensitivity or coverage
within a group) and specificity (being exclusive to a group). The specificity and fidelity
are two quantities acting as probabilities ranging from 0 to 1 in which the higher the value
represents higher probability of a species being exclusively found in a specific group and
the species being found in all samples of the group. Furthermore, a permutation-based
test (10,000 permutations) implemented by signassoc function was applied to identify the
species with higher abundance in the aGvHD group compared to NaGvHD. The adjusted
p values by BH or Sidak’s method for multiple testing are also reported.

2.8. Information-Theoretic Measures

Mutual information as implemented in infotheo package (v1.2.0.1) was used to quan-
tify the association between species abundances and the occurrence of aGvHD conditioned
by statistically significant confounders determined by PERMANOVA. This quantity allows
measuring an estimated amount of information species abundances may contain with
respect to the outcome given that the significant confounders are known.

2.9. Relief and Impurity-Based Algorithms for Metagenomic Feature Ranking

We used 13 feature ranking (selection) algorithms to identify most relevant features
(species) with respect to our outcome (aGvHD vs. NaGvHD). The algorithms are based on
extensions to Relief [24], impurity [25] or their combinations all implemented in CORElearn
package (v1.56.0). The Relief-based algorithms differ on parameters such as number of
neighbors (K) and strategies to calculate feature importance [26], all of which, lead to the
following algorithms: equally assigned weights to K nearest neighbors (ReliefFequalK),
exponentially decreasing weights with increasing ranks (ReliefFexpRank), K selection per
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feature (ReliefFbestK), myopic ReliefF (MyopicReliefF), merit-based ReliefF (ReliefFmerit),
and weighting by inverse distance to selected instance (ReliefFdistance) in addition to the
original Relief algorithm (Relief). The impurity-based algorithms are gain ratio (GainRatio),
minimum description length (MDL), DKM index named after its authors (Dietterich,
Kearns, and Mansour), information gain with uniform priors (UniformInf), Hellinger
distance with equal weighting (EqualHellinger), and Euclidean distance (DistEuclid). The
median rank of each species across algorithms was used to find the most relevant species
in association with aGvHD.

3. Results
3.1. Cohort Characteristics: Clinical and Metagenomic Data

Our cohort consisted of 181 pre-transplant stool samples from 172 patients receiving
aHSCT between January 2016, and August 2020 at Rigshospitalet, Copenhagen University
Hospital, Denmark (Figure 1). Among the 181 samples, 42 were from patients who later
developed aGvHD (grade II-IV according to the modified Glucksberg-Seattle criteria [27,28])
with a median (Q1–Q3) time from aHSCT to aGvHD of 33 (27–55) days within 100 days of
post-aHSCT, where Q1 is the first quartile and Q3 is the third quartile. Of the 181 samples,
172 (95%) were collected within 30 days pre-aHSCT, with the median (Q1–Q3) sampling
time being 20 (14–22) days prior to aHSCT. For an overview of patient characteristics, see
Supplementary Table S1. There were nine patients (three who later developed aGvHD)
who had two samples each, median 0 (range 0–61) days in between. Here, the sample
closest to aHSCT was selected. For the patients with two samples on the same day, the
samples were merged by the average of their normalized species abundances.

3.2. Clinical Variables in Association with aGvHD

Myeloablative conditioning was marginally associated with increased risk of aGvHD
(p = 0.054) according to the multivariable logistic regression (Table 1). None of the other
clinical features were found to have a statistically significant association with aGvHD.
The statistical significance did not appear for the conditioning in the univariable logistic
regression (Supplementary Table S2).

3.3. Benchmarking the Taxonomy Profiling Configurations

The abundance of classified reads (mean% ± SD) across all three taxonomic classifiers
in species level from lowest to highest were DeepMicrobes (21 ± 11), Kaiju (57 ± 7), and
Kraken2 (74 ± 13). The classification performances of the best performing elastic net
models based on the reduced species set and the complete species set across profiling
configurations are outlined in Figure 2. The best performing models for both complete
and reduced species sets were based on the combination of the three taxonomic classi-
fiers, i.e., AM(DeepMicrobes,Kraken2,Kaiju). The highest classification performance was
found for the reduced species set with AUROC = 0.672 consisting of 1443 species (57.6%
of total number of species from the database). We achieved the highest performance,
AUROC = 0.652 for AM(DeepMicrobes,Kraken2,Kaiju), across the seven taxonomy profil-
ing configurations when using the complete set of species. The reduced species set had
greater AUC of the precision recall curves compared with the complete set. Eubacterium
biforme species was found to have the strongest association with aGvHD compared to
other species (see Supplementary Figure S1). On the other hand, a species from Eggerthella
genus (UMGS854) exhibited the greatest median weight towards NaGvHD in the elas-
tic net model. The results in the following sections are based on the reduced set from
AM(DeepMicrobes,Kraken2,Kaiju) as it was found to have the highest AUROC.
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Table 1. Multivariable logistic regression with aGvHD as dependent variable (NaGvHD:0, aGvHD:1)
and clinical variables as its predictors (features). Base (reference) and alternate levels for categorical
features are mentioned. Number of samples were N = 172 (NaGvHD = 39, NNaGvHD = 133). Model
fit information: Pseudo-R2 (Cragg-Uhler) = 0.07, Pseudo-R2 (McFadden) = 0.04, AIC = 198.37,
BIC = 232.99.

Variable Base Level Alternate Level β Coefficient 95% CI β (SE) z p VIF

(Intercept) −3.517 (−6.829 −0.777) 1.533 −2.295 0.022
Conditioning non-myeloablative myeloablative 1.759 (0.069 3.694) 0.913 1.926 0.054 5.921

Cyclophosphamide none used −0.476 (−2.662 1.638) 1.07 −0.445 0.656 3.243

Disease group acute leukemia other hematological
malignancies −0.235 (−1.037 0.587) 0.411 −0.571 0.568 1.154

DR relationship related unrelated 0.318 (−0.566 1.293) 0.469 0.677 0.498 1.065
Donor sex male female 0.606 (−0.358 1.59) 0.494 1.228 0.219 1.702

Karnofsky D0 <90 90≥ 0.166 (−0.631 0.943) 0.399 0.417 0.677 1.075
Radiation group none irradiated 1.204 (−0.479 3.126) 0.907 1.327 0.184 4.983

Recipient age <60 60≥ 0.186 (−0.662 1.072) 0.439 0.423 0.672 1.388
Recipient sex male female −0.29 (−1.278 0.655) 0.49 −0.592 0.554 1.709

Transplant source bone marrow peripheral blood 0.441 (−1.237 2.294) 0.88 0.501 0.617 1.896

b) complete set

a) reduced set
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Figure 2. Classification performance in terms of the area under the curve (AUC) using
the species abundances based on (a) reduced species set and (b) complete species set in
AM(DeepMicrobes,Kaiju,Kraken2). Mean AUC (darker curves) is presented based on the cross
validations in receiver operating characteristics (ROC) and precision-recall curves. On the right panel,
top 20 most contributing species to the predictions according to their median weight from the elastic
net model is provided as well as a heatmap of the abundances matched to the distribution of clinical
features including the outcome (aGvHDClass) where black:1 and white (base):0 (levels are the same
as in the PERMANOVA). The initials are the closest known taxonomy level (if any) assigned to species
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from the reference database, that is s_:species, g_:genus, o_:order, f_:family, and c_:class. The
robustness of features refers to the percentage of times the models selected a specific feature. The
result is based on N = 172 (133 NaGvHD and 39 aGvHD) samples.

3.4. Species Diversity in Association with aGvHD

Alpha and beta diversity indices for the aGvHD and NaGvHD groups are illustrated in
Figure 3. No significant differences were found between groups in any of the alpha diversity
indices, according to Wilcoxon rank-sum tests. The most distinguishing alpha diversity
albeit not statistically significant was k-mer diversity (F0) in which greater diversity in
median value for NaGvHD group exists compared to aGvHD group (approx. 14% lower
in aGvHD group than the NaGvHD group by fold change of the mean values). There
were statistically significant differences between groups in the beta diversity indices as
outlined in 10 beta diversity indices where beta diversity was greater for NaGvHD group
as compared with the aGvHD group. The greatest difference in beta diversity indices was
found by Jaccard’s nestedness in which it was 37% lower in the aGvHD group by mean
fold change than the NaGvHD group. By simulating group-equalized tests of significant
difference between beta diversity measures of the groups, we found that the statistical
significance based on adjusted p-values with greater diversity in the NaGvHD group
existed in at least 39.4% of the random subsets for Canberra distance, and the most for
76.9% of the subsets for Chebyshev distance.

3.5. Dissimilarity Measures

According to PERMANOVA (Table 2), species composition was significantly explained
by disease group (p < 0.001, 5.2%), recipient sex (p = 0.014, 2.1%), and aGvHD group
(p = 0.045, 1.1%). By using Bray–Curtis distance for PERMANOVA, the statistical sig-
nificance remained only for disease group (p < 0.001, 3.4%) and recipient sex (p = 0.035,
1.4%).

Oversampling of the minority group (i.e., aGvHD) resulted in an increase of NaGvHD
from 39 to 120 and imbalance ratio (NaGvHD/NNaGvHD samples) from 0.29 to 0.90 (ap-
proaching to balanced design with imbalance ratio = 1). This adjustment revealed statistical
significance for aGvHD group (p < 0.001, 2.8%), disease group (p < 0.001, 5.8%), recipient sex
(p < 0.001, 2.2%), and marginally for recipient age (p = 0.055, 0.6%). By including interaction
terms for aGvHD when the oversampling was applied in independent PERMANOVA
tests, there were significant interactions between aGvHD and disease group (p = 0.011,
1.0%), aGvHD and recipient age (p = 0.016, 0.9%), as well as aGvHD and recipient sex
(p = 0.012, 0.9%). According to the ANOSIM tests, there were significant associations
of species compositions with aGvHD group only when the oversampling was applied
(R = 0.031, p = 0.002).

Several species were found to associate with aGvHD based on Wilcoxon’s tests
(Figure 4a and Supplementary Table S3). The indicator species analysis based on r.g,
also yielded the identification of 152 species in total in which 41 species were statistically
significant indicators of aGvHD and 111 species being NaGvHD indicators (Figure 4b and
Supplementary Table S4). Our analysis based on mutual information (Figure 4c) yielded
the identification of the species UMGS807 from Clostridiales order to have the highest
conditional mutual information with aGvHD as conditioned by the disease group (acute
leukemia vs. other hematological malignancies). The species with second highest con-
ditional mutual information with aGvHD was UMGS66 from Mollicutes class, in which
it had higher mutual information with aGvHD than acute leukemia. As per Spearman
correlation (Figure 4d), the species Eubacterium biforme had the highest positive correlation
with aGvHD, and relatively low correlation with the disease group. The correlation co-
efficient for top 10 negatively correlated species resides in the interval of (−0.23 −0.20).
The species UMGS602 from Fusobacterium genus stands out in Figure 4d for being highly
correlated to aGvHD and Leukemia. The species of UMGS431 from Eggerthella genus was
commonly found in the shortlists of top 20 highly correlated and highly associated species,
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respectively based on Spearman and conditional mutual information, in which it indicates
that the species is more abundant in patients with no prospective aGvHD (NaGvHD).
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Figure 3. Alpha (a) and beta (b) diversity measures for AM(DeepMicrobes,Kaiju,Kraken2) with the
reduced species set. Signs: p < 0.0001 displayed as ****, p < 0.001 as ***, and ns for not significant, p
values are adjusted for multiple testing by BH adjustment. Each plot indicates the distribution of an
index with a central marker for the median of the data and a box indicating the interquartile range
(IQR) with tails extended to (1.58× IQR)/

√
n as 95% confidence interval where n is the number of

samples. The result is based on N = 172 (133 NaGvHD and 39 aGvHD) samples.

Table 2. The results of PERMANOVA on robust Aitchison distance for AM(DeepMicrobes, Kaiju,
Kraken2) with the reduced species set (1443 species) based on N = 172 (133 NaGvHD and 39 aGvHD)
samples.

Variable Df Sum Sq R2 F p

aGvHD group (aGvHD vs. NaGvHD) 1 5932 0.011 2.001 0.045 *
Disease group (acute leukemia vs.
other hematological malignancies) 1 28,525 0.052 9.621 <0.001 ***

Recipient age (<60 vs. 60≥) 1 4183 0.008 1.411 0.147
Recipient sex (male vs. female) 1 11,783 0.021 3.974 0.014 *

Residual 167 495,129 0.899
Total 171 550,634 1

*** p < 0.001, * p < 0.05.
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Figure 4. Univariable association analyses of the pre-transplant gut microbes (species abundances)
with prospective aGvHD for AM(DeepMicrobes,Kaiju,Kraken2) with the reduced species set. (a) vol-
cano plot using p values from Wilcoxon tests of significantly associated species with aGvHD where
the x-axis presents effect size as log2fold change of the proportion of mean species abundance. (b) vol-
cano plot depicting species potentially specific to either aGvHD or NaGvHD as found from indicator
species analysis (r.g). X-axis displays the effect size in terms of point-biserial correlation. (c) heatmap
of top 20 species found to have the highest conditional mutual information (in bits) with aGvHD
conditioned by disease group (acute leukemia vs. others), (d) heatmap of Spearman’s correlation
coefficients (rho) of the top 20 species (greatest positive and negative rho values) in association with
aGvHD. p values on volcano plots are not adjusted for multiple testing and the labels for a subset of
significant points are shown to avoid overlapping (see Supplementary Tables S3 and S4 for complete
lists of significant species). The result is based on N = 172 (133 NaGvHD and 39 aGvHD) samples.

Using the permutation-based test in species indicator analysis, we found 157 species
were significantly associated with aGvHD (Supplementary Table S5). Based on the indicator
species analysis using IndVal.g, 65 species were found to be significant indicator of aGvHD
(Supplementary Table S6). The test was done on a filtered set of species to include species
with the minimum fidelity (sensitivity) and specificity of 0.2 and 0.5, respectively, leading
to 457 remaining species.

3.6. Relief and Impurity-Based Algorithms for Feature Ranking

The result of running 13 algorithms based on relief and impurity provided ranking for
each species. The most relevant species in association with aGvHD are depicted Figure 5.
The most relevant species from this analysis is UMGS2051 from genus Prevotella.

We found 10 bacterial species that were simultaneously determined by species indica-
tor analysis, Wilcoxon’s test, as well as relief and impurity-based algorithms to associate
with aGvHD. The species are as follows: “g_Prevotella|UMGS2051”, “f_Porphyromonadaceae
|UMGS211”, “g_Bacteroides|13470_2_62”, “g_Peptoniphilus|20298_3_36”, “s_Eubacterium
biforme|GCF_000156655”, “s_Bacillus timonensis|GCF_000285535”, “s_Bacillus sp. JC6|G
CF_000311725”, “s_Bacteroides neonati|GCF_000499785”,”s_Lascolabacillus massilien-
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sis|GCF_001282625”, and “g_Parabacteroides|UMGS1514”. The taxa names follow the
naming protocol mentioned in the method section.
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Figure 5. Top ranking species in association with (prospective) acute graft versus host disease
(aGvHD). The species are sorted from top to bottom by their median ranks across 13 different variants
of the relief and impurity algorithms. The result is based on AM(DeepMicrobes,Kaiju,Kraken2) with
the reduced species set. The distribution of rankings across algorithms for each species is shown by
boxplots. On the y-axis the name of the most recent taxa to each species is indicated followed by taxa
identifier from the reference database. The initials refer to the taxa ranks from which the name comes
from (if any): s_: species, g_: genus, o_ order, f_:family, p_:phylum. The result is based on N = 172
(133 NaGvHD and 39 aGvHD) samples.

4. Discussion

We investigated potential associations of human gut species abundances in aHSCT re-
cipients before transplantation with subsequent occurrence of aGvHD through MWAS. We
further presented candidate taxa and models that yielded the best predictive performance
for aGvHD. This is the first study, to our knowledge, that utilizes metagenomics on stool
samples from aHSCT patients to test the association of the abundances of gut bacteria prior
to transplantation with prospective aGvHD occurrences. The identification of potential
biomarkers of aGvHD prior to transplantation may confer significant advantage to clinical
planning. We found potential prognostic biomarkers of aGvHD consistently standing out
across multiple methods in MWAS.

Based on the predictive performances of the models, the reduced species set based
on the ensemble method (configuration) to aggregate the taxonomic profiles seems to
improve signal to noise ratio with regard to the prediction of aGvHD. This could partly be
due to the different algorithms used to identify and extract species counts in which one
method could outperform others depending for example on genomic characteristics of
each species such as reference genome lengths. On the basis that the metagenomic samples
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are informative for the prediction of aGvHD, the results may suggest that the ensemble
method would provide robust predictions. Notably, we used the data collected prior to
transplantation whereas other studies [4,29,30] involved post transplantation data that
is temporally and clinically closer to possible aGvHD incidences. The relatively small
sample size and imbalanced classes were perhaps the main bottlenecks to capture stronger
predictive signals, although, this does not demolish the relative strength in the power
gained from gut flora measures. In a future study focused on machine learning, more
complex models could be utilized to explore the possibility to improve current prediction
performance and develop a deployable model.

We found conditioning being associated with aGvHD with a marginally significant
effect from the multivariable logistic regression model. It may reflect that the conditioning
effect on aGvHD depends on the presence of the other covariates. The association is in
agreement with previous findings in which myeloablative conditioning has been shown
to increase the risk of aGvHD [31,32]. The study included a limited set of variables
where for example diet and ethnicity were lacking. Along with the clinical variables,
metagenomic data could be obtained in the pre- and post-aHSCT periods to reveal the role
of the treatments in associations with microbial compositions, and other clinical variables.
For example, in post-aHSCT period, computational components derived from metagenomic
data such as metabolic functions have also shown to indicate the effect of conditioning on
gut microbiome for aHSCT patients [33].

Our statistical analyses revealed several species potentially associate with aGvHD.
In particular, significant differences in multiple beta diversity indices gave support to the
hypothesized association of the gut microbes with aGvHD. The highest difference in alpha
diversity was achieved based on the k-mer measure which underlines the importance
of including reference-less methods to reduce risks of biased inference due to limited
list of taxa in reference databases as a common limitation for taxonomy-based methods.
Another notable finding regarding species compositions was that the gut microbiome was
strongly affected by the underlying disease, that is acute leukemia. This was revealed
by PERMANOVA in which the disease group significantly associated with the difference
in the species abundances and the effect size was seemingly higher than the association
of recipient sex with species abundances. This underlined the importance of the effect
of leukemia as the underlying disease to a higher extent and recipient sex to a lesser
extent in the assessment of the risk of aGvHD prior to aHSCT based on metagenomics
data. The lack of significant association between the bacterial compositions and aGvHD
reflected in PERMANOVA and ANOSIM, as observed mainly for Bray–Curtis distance,
may not necessarily rule out the presence of individual bacteria in significant association
with aGvHD. It might be explained by the sensitivity of PERMANOVA and ANOSIM to
unbalanced designs. The oversampling approach as an adjustment for the unbalanced
design as well as the use of robust Aitchison distance with demonstrated stability to
subsetting and aggregation [34] seemed effective to reveal significant associations. As such,
the oversampling results suggested presence of interactions of aGvHD with recipient sex,
recipient age, and disease group on independent PERMANOVA tests. The inference on
the interactions is constraint to the oversampling with limitations of synthetic data to fully
represent the original samples.

There are previous findings in line with the current study in which a subset of 10
bacteria were consistently determined to associate with aGvHD. As such, bacterial species
from the genera Prevotella [5,35], Bacteroides [36], Parabacteroides [37] were found to be
associated with aGvHD. The studies referred to for the bacteria are not necessarily inclusive
taking into account different names available for the same species and may require a
systematic review to cover the details. For example, Holdemanella biformis is an alternative
name for the species Eubacterium biforme according to national library of medicine (NCBI)
that was found in this study to associate with aGvHD and has been studied in relation
to antibiotic shifts in aHSCT patients [38]. Some of the species such as Lascolabacillus
massiliensis [39] found in this studies to associate with aGvHD are discovered in recent
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years that may explain why they are not found in the literature frequently. Bacteria from
genus Eggerthella has been previously shown to significantly change in abundance from
pre-aHSCT to post-aHSCT in a similar population [8], this may underline the significance
of the species from this genus found in relation to aGvHD. In addition, higher abundance
of bacteria from genus Fusobacterium with its unique pattern found from the correlation
analysis may occur to characterize a specific immune profile of a subset of individuals
with Leukemia as underlying disease to have higher risk of the occurrence of aGvHD. The
notion of statistical significance should be taken cautiously in this context with regard to
false discoveries especially for the species that were not found consistently to associate
with aGvHD and that calls for a larger sample size and more diverse population for
generalization purposes.

5. Conclusions

In summary, our study provides an MWAS approach to enrich abundance data derived
from taxonomic classification of the human gut microbiome to improve pre-transplant risk
estimation of developing aGvHD. The results reveal the potential of the methods to process
complex metagenomic data to extract relevant information regarding the associations of
the gut microbiome and clinical factors in the study of aGvHD from pre-aHSCT perspec-
tive. The work provides prognostic measures of aGvHD prior to aHSCT highlighting the
possibility to take advantage of this new information to improve treatment and prevention
strategies. In this sense, microbial information provides an enticing opportunity to enhance
individualized prognostication and stratification of aGvHD risk groups.

Supplementary Materials: The supporting information can be downloaded at: https://www.mdpi.
com/article/10.3390/cells11244089/s1, Figure S1: abundances of the top-20 species contributing
to the prediction of aGvHD as well as their associations with aGvHD and NaGvHD quantified in
terms of generalized fold change, prevalence shift, and feature AUCs based on SIAMCAT package.
Species names are formatted as beginning with their closest known taxonomy level assigned to
them from s_:species, g_:genus, o_:order, f_:family, and c_:class or none when there is no assigned
name for the species followed by the species identifier from the reference database.; Table S1: study
population including 172 patients of two groups: allogeneic hematopoietic stem cell transplantation
(HSCT) recipients diagnosed with acute-versus host disease (aGvHD) and HSCT recipients without
aGvHD (NaGvHD); Table S2: Univariable logistic regression with aGvHD as dependent variable
(NaGvHD:0, aGvHD:1) and clinical variables as predictors (features). Base (reference) and alternate
levels for categorical features are mentioned. Number of samples were N = 172 (39 aGvHD and
133 NaGvHD); Table S3: list of 143 differentially abundant species according to the Wilcoxon’s test.
p values are not adjusted for multiple testing. Species are ordered by p values in ascending order;
Table S4: list of 152 differentially abundant species according to indicator species analyses based
on group-equalized point-biserial correlation coefficients (r.g). Species are ordered by p values in
ascending order; Table S5: list of 157 differentially abundant species according to the permutation test
against the null hypothesis that the abundance of each species is not higher in one group (aGvHD)
than others (NaGvHD). p values are adjusted for multiple testing using Sidak’s method. Mean fold
change in percentage is also presented as an effect size. Species are ordered by p values in ascending
order; Table S6: list of 65 differentially abundant species according to indicator species analyses based
on group-equalized indicator value (indval.g). Species are ordered by p values in ascending order;
Table S7: R packages used for all the analyses described in the article. The codes were compiled based
on R version 4.1.2 in RStudio.
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