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Abstract: The VosA-VelB hetero-dimeric complex plays a pivotal role in regulating development
and secondary metabolism in Aspergillus nidulans. In this work, we characterize a new VosA/VelB-
activated gene called vadH, which is predicted to encode a 457-amino acid length protein containing
four adjacent C2H2 zinc-finger domains. Mutational inactivation of vosA or velB led to reduced mRNA
levels of vadH throughout the lifecycle, suggesting that VosA and VelB have a positive regulatory
effect on the expression of vadH. The deletion of vadH resulted in decreased asexual development
(conidiation) but elevated production of sexual fruiting bodies (cleistothecia), indicating that VadH
balances asexual and sexual development in A. nidulans. Moreover, the vadH deletion mutant ex-
hibited elevated susceptibility to hyperosmotic stress compared to wild type and showed elevated
production of the mycotoxin sterigmatocystin (ST). Genome-wide expression analyses employing
RNA-Seq have revealed that VadH is likely involved in regulating more genes and biological path-
ways in the developmental stages than those in the vegetative growth stage. The brlA, abaA, and
wetA genes of the central regulatory pathway for conidiation are downregulated significantly in the
vadH null mutant during asexual development. VadH also participates in regulating the genes, mat2,
ppgA and lsdA, etc., related to sexual development, and some of the genes in the ST biosynthetic gene
cluster. In summary, VadH is a putative transcription factor with four C2H2 finger domains and is
involved in regulating asexual/sexual development, osmotic stress response, and ST production
in A. nidulans.

Keywords: Aspergillus nidulans; velvet regulators; C2H2 transcription factors; development;
sterigmatocystin; stress response

1. Introduction

Aspergillus spp. are widely distributed in nature and closely related to human life.
public health, the fermentation and food processing industry including A. oryzae and
A. niger, as well as some plant and human pathogens such as A. flavus and A. fumigatus [1].
The production of conidia is the primary mode of reproduction in the genus Aspergillus.
Conidial formation is an elaborate process, which involves cell differentiation, gene expres-
sion, and signal transduction [2]. Conidia are an important carrier for the transmission
and infection of Aspergillus, and its developmental process is also related to mycotoxin
biosynthesis [3]. Therefore, elucidating the regulatory network of conidial development
and exploring the functions of critical regulatory proteins are crucial for understanding the
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law of growth and development of Aspergillus, rational utilization of beneficial industrial
strains and effective control of pathogens.

Aspergillus nidulans is an important model organism for studying fungal development,
secondary metabolism, and its regulatory pathway. The mechanism of conidiation has
been well studied in A. nidulans [4,5]. In A. nidulans, BrlA, AbaA, and WetA constitute
the central regulatory pathway of conidial formation, which can sequentially activate
conidial development and control the expression of specific genes involved in asexual
development [2]. The activation of BrlA is a fundamental step to initiate conidiation [4,6].
Then, BrlA can activate AbaA, which controls the differentiation and function of phialide [7].
In the late stage, WetA is activated by AbaA, which regulates the expression of several
spore-specific genes and conidial wall synthesis [8]. In addition, it is reported that velvet
family proteins also play an essential role in the asexual development of A. nidulans [9,10].

Velvet family proteins are fungal-specific proteins with the velvet domain, including
VosA, VeA, VelB and VelC, which are highly conserved in filamentous fungi [10,11]. In
Aspergillus, velvet proteins participate in regulating growth and development, pigmen-
tation, primary and secondary metabolism [9,12,13]. These proteins often form various
complexes, such as VosA-VelB, VelB-VeA-LaeA, VosA-VelC and VelB-VelB, which play
different roles in coordinating the growth, differentiation, and secondary metabolism of
Aspergillus [12,13]. Among these complexes, the VosA-VelB complex plays a crucial role in
regulating conidia maturation and germination, trehalose biosynthesis and conidial wall
synthesis [13–15].

The VosA-VelB protein complex has a DNA-binding domain similar to that of mam-
malian NF-κB transcription factor, which can recognize the cis-acting motif specifically
in the promoter region of its target genes [15]. Chromatin immunoprecipitation (ChIP)
showed that VosA-VelB could bind to promoter sequences of more than 150 genes, in-
cluding genes activated by VosA-VelB, such as tpsA and treA genes related to trehalose
synthesis [15]. Another VosA/VelB-activated gene, vadA, is a novel bifunctional regulatory
factor in A. nidulans, which is involved in regulating conidial germination, trehalose synthe-
sis, β-glucan synthesis, oxidative stress, and sterigmatocystin synthesis [16]. In addition,
VosA-VelB also has negative regulatory effects on many genes, including brlA and wetA
in the central regulatory pathway of conidia, and it can also inhibit β-glucan synthesis in
conidia and ascospores by directly binding to the promoter region of fksA gene encoding
β-1, 3-glucan synthase [17].

While several target genes of VosA-VelB have been functionally characterized, many
remain to be investigated. In this study, we have identified another VosA-VelB target gene
vadH (VosA/VelB-Activated Developmental gene H; AN6503 AspGD). The promoter re-
gion of vadH is bound by both VosA and VelB in conidia. The vadH gene is predicted to
encode a highly conserved transcription factor (VadH) harboring four C2H2 zinc finger
domains. The homologous proteins of VadH are universal in the fungal kingdom, and
some have been well characterized. Saccharomyces cerevisiae Azf1, a homolog of VadH, par-
ticipates in activating the genes related to carbon and energy metabolism when glucose
exists, and switches to maintaining cell wall integrity when glucose is depleted [18]. In
Magnaporthe oryzae, Cos1 is involved in regulating the development of conidiophores and
melanin biosynthesis [19]. The VadH homolog CgAzf1 coordinates melanin production, conid-
ium development, appressorium formation and virulence in Colletotrichum gloeosporioides [20].
In this work, the biological functions of vadH have been characterized by gene knockout,
overexpression, and transcriptome analyses.

2. Materials and Methods
2.1. Strains and Culture Conditions

All fungal strains used in this study are listed in Table S1 [13,21,22], and media are
prepared as previously described [9]. Briefly, minimal media with glucose (MMG) and
MMG with 0.5% yeast extract (MMYE) were used for general purposes, and sexual medium
(SM) was used for enhancing sexual development. To determine the number of conidia
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and cleistothecia, the wild type (WT: A. nidulans FGSC4), mutants, and complemented
strains were inoculated and cultured on solid MMG, MMYE or SM for seven days at
37 ◦C. Micrographs were taken by a Zeiss M2Bio microscope. For the overexpression of
vadH under the niiA promoter, strains were inoculated on a non-inducing medium (MMG
containing 0.2% ammonium tartrate as a nitrogen source) or an inducing medium (MMG
containing 0.6% sodium nitrate as a nitrogen source) and incubated at 37 ◦C for three days.

2.2. Nucleic Acid Isolation and Manipulation

Total RNA isolation was performed as previously described [23]. For asexual and
sexual development, cultures from mutants and WT were collected and transferred on solid
MMG and SM, respectively. Then, the plates were exposed to air for asexual developmental
induction or tightly sealed and blocked from light for sexual developmental induction. For
asexual development, samples were collected at 18 and 36 h for RNA isolation. Samples
were harvested at 36 and 72 h after transfer for sexual development. For vegetative
growth, one milliliter of conidial suspension (106 conidia/mL) was inoculated in 100 mL
liquid MMG and incubated at 37 ◦C. The mycelium was collected at 18 and 36 h post-
inoculation (hpi) for RNA isolation. Quantitative reverse transcription-PCR was used to
analyze the expression levels of vadH. The primers were listed in Table S2. The quantitative
reverse transcription PCR (qRT-PCR) was carried out by the Fast SYBR Green Master Mix.
Gene expression levels were normalized using the endogenous control gene actin. The
average normalized expression level was calculated using the 2−∆∆Ct method [24]. All the
experiments were repeated three times.

2.3. Target Deletion of VadH

Genomic DNA extraction was performed as previously described [25,26]. The primers
used in this section are listed in Table S2. The vadH-deletion mutant strain (∆vadH) was
generated by double-joint PCR (DJ-PCR) as previously described [23]. The up- and down-
stream sequences of the vadH gene were amplified from A. nidulans FGSC4 genomic DNA
the by PCR using the primer pairs OXL-1/OXL-2 and OXL-3/OXL-4. The A. fumigatus pyrG
marker was amplified using the primer pair OHS-694/OHS-695 from A. fumigatus AF293
genomic DNA. The vadH deletion cassette was amplified with primer pair OXL-5/OXL-6
and introduced into A. nidulans RJMP1.59 [21]. Protoplasts were generated from A. nidulans
RJMP1.59 by the Vinoflow FCE lysing enzyme (Novozymes) [25]. For the complementation
of ∆vadH, the vadH gene sequence, including its predicted promoter, was amplified with
the primer pair OXL-15/OXL-16 and attached to a pHS13 vector [13]. To generate the
overexpressing strain, the vadH ORF derived from the genomic DNA was amplified using
the primer pair OXL-31/OXL-32. The PCR product was then attached into pHS11 and
introduced into A. nidulans RJMP1.59. The vadH-overexpressing strains were screened
by qRT-PCR.

2.4. Spore Viability Determination

To test spore viability, conidia obtained from two-day-old cultured WT, mutant and
complementary strains were spread on solid MMG and cultured at 37 ◦C. Then, conidia
were collected after culturing for seven days. About 100 conidia were coated onto solid
MMG and incubated at 37 ◦C for 48 h in triplicate. Survival rates were determined as the
ratio of the number of viable colonies to the number of conidia inoculated.

2.5. Osmotic Stress Assays

For stress tests, the strains were inoculated on the solid MMG medium includ-
ing sorbitol (1.0 M), glycerol (1.0 M) and NaCl (1.0 M) and grown at 37 ◦C for seven
days. Moreover, ten microliters of serially diluted conidia suspensions (10 to 105 coni-
dia/mL) were spotted on the solid MMG medium including sorbitol (1.0 M), glycerol
(1.0 M) and NaCl (1.0 M), and incubated at 37 ◦C for 48 h. The plates without the stress
factors served as controls. The inhibition rates were calculated as follows: Inhibition
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rate (%) = (Dck − Dt)/Dck × 100%. Where Dck is the colony diameter of the strain in the
control, and Dt is the colony diameter of the strain in the treatment group.

2.6. Sterigmatocystin (ST) Determination

ST extraction and determination were performed as previously described [16]. Briefly,
106 conidia from the strains were inoculated in 2 mL liquid MMG and cultured at 37 ◦C
for seven days. ST was extracted by adding 2 mL of CHCl3. The organic phase (CHCl3)
was separated through centrifugation and transferred to a new glass bottle. The extracting
solution was evaporated in a fume hood and dissolved in 1 mL acetonitrile:methanol (50:50,
v/v). After filtering through a millipore filter (0.45 µm), the samples were analyzed by
high-performance liquid chromatography with diode-array detection (HPLC-DAD, Agilent
Technologies, Waldbronn, Germany).

2.7. RNA Sequencing (RNA-Seq)

The isolation of RNA samples was performed as previously described [23]. RNA-Seq
analyses of VadH include three aspects: vegetative growth, asexual and sexual development.
The preparation of samples in three stages was conducted as previously described [9].
Samples for vegetative growth were collected at 18 hpi, and samples for asexual and sexual
development were obtained at 18 and 36 hpi, respectively. A MGISEQ-2000 platform (BGI,
Shenzhen, China) was used to analyze the samples. The genome of A. nidulans FGSC
A4 from AspGD (http://www.aspergillusgenome.org/, accessed on 1 Septemper 2020)
was used as a reference. Data processing and analyses were performed as described
previously [27]. The results of RNA-Seq were verified by qRT-PCR according to the
published method [27].

2.8. Statistical Analysis

Statistical differences between WT and mutant strains were evaluated by Student’s un-
paired t-test. Data are reported as mean ± SD, and statistical significance was
defined as p < 0.05.

3. Results
3.1. Characterization of VadH

The gene vadH (AN6503) is predicted to encode a 457-amino acids (aa) protein, which
contains four adjacent C2H2 zinc-finger domains from the position 239 to 352 (Figure 1A). The
homologous proteins of VadH are ubiquitous in fungi, and all of them harbor four C2H2-type
domains (Figure 1A,B). VadH is homologous with CgAzf1 in Colletotrichum gloeosporioides [20],
Cos1 in Magnaporthe oryzae [19], and Azf1 in Saccharomyces cerevisiae [18].

To evaluate the effects of VosA and VelB on the expression of vadH, mRNA levels
of vadH were determined in the ∆vosA and ∆velB strains. As shown in Figure 2A, the
expression levels of vadH in ∆vosA and ∆velB are significantly lower than those of WT in
different stages, suggesting that VosA and VelB can positively regulate the expression of
vadH. In the wild type, the expression levels of vadH during asexual and sexual development
are apparently higher than those in the stage of vegetative growth (Figure 2B).

3.2. VadH Balances Asexual and Sexual Development

To study the function of vadH, we generated the vadH-deletion mutant (∆vadH) and
the complemented strain (C’vadH), and the results related to the verification of the mutant
were shown in Figure S1. For colony growth, no significant difference was found between
∆vadH and the wild type on MMG and MMYE, whereas the colony color of ∆vadH was
much lighter than that of strain WT (Figure 3A,B). ∆vadH produced fewer conidia than
WT on both MMG and MMYE (Figure 3C), and the spore viability of ∆vadH was also
slightly lower than that of the WT (Figure 3D). Compared with WT, the mutant ∆vadH
exhibited significantly decreased conidial germination (Figure S2). For sexual development,
WT, ∆vadH and C’vadH were inoculated on SM, and the number of cleistothecia was

http://www.aspergillusgenome.org/
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determined (Figure 3E). As shown in Figure 3F, the mutant ∆vadH produced significantly
more cleistothecia than WT and ∆vadH on MMG, and MMYE, suggesting that VadH is
involved in regulating sexual development in A. nidulans. However, there was no significant
difference in cleistothecia yields on SM between WT and ∆vadH.
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Figure 1. Overview of the VadH protein. (A) Protein domain analysis of VadH. The pink rect-
angle is a region of low compositional complexity. The below figure presents the alignment
of C2H2 zinc-finger domains from A. nidulans VadH (Ani: AN6503) and its homologs from
other fungi. (B) Phylogenetic analysis of VadH. The phylogenetic tree was constructed using
Clustal_W and MEGA 6.0 with homologous sequences of VadH from A. flavus (Afl: AFL2T_05677),
A. oryzae (Aor: AO090701000019), A. fumigatus (Afu: Afu6g05160), Colletotrichum gloeosporioides
(Cgl: AUS82351.1), Verticillium dahlia (XP_009658472.1), Fusarium oxysporum (EWZ45422.1),
Trichoderma harzianum (KKP06506.1), Beauveria bassiana (XP_008598185.1), Metarhizium anisopliae
(KFG78752.1), Magnaporthe oryzae (Mor: XP_003719876.1), Neurospora crassa (XP_961139.2) and
Saccharomyces cerevisiae (Sce: NP_014756.3).
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Figure 3. Developmental phenotypes of the ∆vadH mutant. (A,B) Colony morphology of WT, ∆vadH,
and the complemented strain on MMG (A) or MMYE (B) and grown for 7 days. The bottom panel
shows close-up views of the colony in the top panel (Bar = 0.5 mm). (C) Statistical analyses of conidial
yields on MMG and MMYE. (D) Statistical analyses of spore viabilities. (E) Colony morphology of
WT, ∆vadH, and the complemented strain on SM and grown for 7 days. The bottom panel shows
close-up views of the colony in the top panel (Bar = 0.5 mm). (F) Statistical analyses of cleistothecia
on MMG, MMYE and SM. The asterisks represent significant level (* p < 0.05, ** p < 0.001).
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3.3. Disruption of VadH Led to Elevated Sensitivity to Osmotic Stress

For osmotic stress assays, the strains were inoculated on the solid MMG including
sorbitol (1.0 M), glycerol (1.0 M) and NaCl (1.0 M), and cultured at 37 ◦C for 7 days. As
shown in Figure 4A,B, ∆vadH was more sensitive to hyper-osmotic stress than WT, and
it had an obvious difference in colony color on the stress plates. ∆vadH hardly formed
conidia on the MMG with 1.0 M NaCl and produced noticeably fewer conidia than the wild
type on the MMG with 1.0 M glycerol and 1.0 M sorbitol. Regarding conidial suspension
assays, 102 conidia of ∆vadH could not form a colony on the MMG plates with glycerol
(1.0 M), sorbitol (1.0 M) and NaCl (1.0 M) (Figure 4C). These results propose that the vadH
gene is involved in regulating osmotic stress response of A. nidulans.
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Figure 4. Effects of the hyperosmotic medium on the growth of WT, ∆vadH and the complemented
strain. (A) Comparison of the growth of strains on the MMG added with 1.0 M Sorbitol, 1.0 M
Glycerol and 1.0 M NaCl and cultured at 37 ◦C for 7 days. The bottom panel shows close-up views of
the colony in the top panel (Bar = 0.5 mm). (B) The inhibition rate of stress factors against WT, ∆vadH
and the complemented strain. The asterisks represent significant level (* p < 0.05). (C) The growth
of serially diluted conidia on the MMG added with 1.0 M Sorbitol, 1.0 M Glycerol and 1.0 M NaCl,
culturing at 37 ◦C for 2 days.

3.4. Deleting VadH Leads to an Increase in ST Production

To test the effect of vadH on ST production, ST was extracted from WT, ∆vadH and
C’vadH and analyzed using HPLC. As shown in Figure 5, the ∆vadH mutant produced more
ST than WT and C’vadH, suggesting that VadH may negatively regulate ST production
in A. nidulans.
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3.5. Overexpression of VadH Suppresses Sexual Development

As mentioned above, the deletion of vadH leads to enhanced sexual development
on MMG and MMYE. To further validate the function of VadH in fungal development,
we generated the vadH-overexpression strain (OEvadH) and analyzed its phenotypes
(Figure 6A). On the non-inducing medium, there was no significant differences in the
number of conidia and cleistothecia between OEvadH and WT (Figure 6B,C). However,
when induced, overexpression of vadH led to significantly reduced production of cleistothe-
cia (Figure 6C). The expression level of vadH in OEvadH on the inducing medium was
verified by qRT-PCR (Figure S3). Collectively, these results suggest that VadH is essential
for sexual development, and it may act as a suppressor of sexual development.
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cultured at 37 ◦C for 7 days. The bottom panel shows close-up views of the colony in the top panel
(Bar = 0.5 mm). (B) Statistical analyses of conidial yields under non-induced and induced conditions.
(C) Statistical analyses of cleistothecia under non-induced and induced conditions. The asterisk
represents significant level (* p < 0.05).

3.6. Transcriptomic Analyses of VadH

Genome-wide expression analyses of WT and ∆vadH under three stages were per-
formed by employing RNA-Seq. The related data have been submitted to GenBank
(PRJNA905844). For the vegetative growth stage, 895 DEGs were obtained, in which
328 DEGs were upregulated and 567 DEGs were downregulated. Nevertheless, for asex-
ual and sexual development stages, more than 1200 DEGs were identified, suggesting
that VadH is involved in regulating more genes in the developmental stages than those
in vegetative growth (Figure 7A). The Venn diagram indicates that 126 DEGs, including
63 up-regulated and 63 down-regulated DEGs, participate in the vegetative growth, asexual
and sexual development stage simultaneously (Figure 7B). The RNA-Seq results in the
three stages were verified by qRT-PCR, and the expression levels of selected DEGs from
three stages showed the same trend as those in RNA-Seq with all the correlation coefficients
being more than 95% (Figure S4).
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Venn diagram of DEGs in the three stages. (C) A heatmap of partial DEGs involved in asexual/sexual
development and ST production.

Based on the RNA-Seq results, we further analyzed the expression of DEGs related to
sporulation and ST biosynthesis. As shown in Figure 7C, brlA, abaA and wetA in the central
regulatory pathway are downregulated significantly in the asexual development stage of
∆vadH, especially abaA. In the process of sexual development, the genes mat2 and ppgA
related to sexual sporulation are upregulated, and lsdA, vadJ and vadZ are downregulated
in ∆vadH; some of the genes (stuA, stuL, stuO, stuQ, stuS, stuU) in the gene cluster of ST
biosynthesis are also upregulated to varying degrees.

Then, we performed the KEGG pathway analysis for DEGs in three stages (Figure 8).
In the vegetative growth stage, six significant enrichment pathways were obtained, which
were mainly related to amino acid metabolism and aflatoxin biosynthesis (Figure 8A).
Regarding asexual and sexual development, more biological pathways were affected
by VadH, including some pathways related to the metabolism of fatty acid, nitrogen
and carbohydrate (Figure 8B,C). The numbers of significant enrichment pathways in the
asexual and sexual development are more than twice as much as those in the vegetative
growth stage.
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4. Discussion

The velvet proteins are fungal-specific transcript factors that coordinate both develop-
ment and secondary metabolism [11,15]. Previous studies indicated that the target genes
regulated by VosA/VelB complex could be divided into VosA/VelB-activated developmen-
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tal genes (VADs) and VosA/VelB-inhibited developmental genes (VIDs), and many VADs
and VIDs are regulatory factors involved in the development process of A. nidulans [15,17].
Here, we characterized a new VAD gene vadH in A. nidulans, which encodes a zinc finger
protein with four adjacent C2H2-type domains. The expression levels of vadH were notice-
ably decreased in the mutants ∆vosA or ∆velB, suggesting that both VosA and VelB have a
positive regulatory effect on vadH. It is observed that the homologous proteins of VadH can
play various roles in different fungi [18–20]. In A. nidulans, VadH is involved in asexual
and sexual development, osmotic stress response and ST production.

Our study indicated that VadH could balance the asexual and sexual development
of A. nidulans. VadH could inhibit conidial production and stimulate sexual development
on MMY and MMYE, and overexpression of vadH obviously suppresses the formation of
cleistothecia. VadH can negatively regulate the expression of two genes related to sexual
development, mat2 and ppgA, which may affect cleistothecium formation to a certain extent.
It has been reported that Mat2 and PpgA can act as activators in the sexual development of
A. nidulans [28]. In addition, VadH can also positively regulate the expression of lsdA, vadJ
and vadZ, which have proved to function as repressors in sexual sporulation [29–31]. In
A. nidulans, the central regulatory pathway activates conidial development and regulates
the expression of specific genes in conidiation. In the mutant ∆vadH, the genes brlA, abaA,
and wetA are all downregulated in the asexual development stage, which will inhibit the
conidial production of ∆vadH. Especially abaA related to the differentiation of phialide is
downregulated dramatically, which may affect the formation of conidia to a great extent.
Therefore, VadH may function as a positive regulator in asexual sporulation and a negative
one in sexual development. It is reported that VadA (AN5709), a member of VADs, also
participates in the balance between asexual and sexual development [16]. The ∆vadA
mutant exhibits increased production of cleistothecia, and overexpression of vadA leads
to increased conidial production. Similar to vadH, the other two VADs, VadJ (AN3214,
a histidine kinase) and VadZ (AN8774, a C6 transcription factor) also act as activators
of asexual development and repressors of sexual development [30,31]. Interestingly, one
member of VIDs, VidA (AN2498) proved to be essential for proper asexual and sexual
development in A. nidulans. Deletion of vidA can lower the production of conidia, and
slightly increases the yield of cleistothecia [32]. These reported genes regulated directly
by the VosA-VelB complex all have a function of balancing asexual and sexual develop-
ment, suggesting that the complex does play a crucial role in the development process
of A. nidulans.

VadH participates in the osmotic pressure response of A. nidulans. Deletion of vadH
leads to elevated sensitivity to hyperosmotic stress, and the asexual sporulation of ∆vadH
is also suppressed significantly on the hyperosmotic media. The KEGG analysis shows
that the expression of more than 60 genes in the mitogen-activated protein kinase (MAPK)
signaling pathway is influenced by VadH, and many of them are involved in cell wall
integrity and high osmolarity pathways. We speculate that deleting vadH may change cell
wall integrity, subsequently affecting the osmotic pressure response of A. nidulans. In S.
cerevisiae, Azf1 also have the function of maintaining cell wall integrity when glucose is
depleted [18]. However, the VadH orthologues, Cos1 and CgAzf1 are not related to osmotic
pressure response in M. oryzae and C. gloeosporioides, respectively [19,20]. Further study will
be needed to elucidate the precise mechanism of VadH coordinating the hyperosmotic stress.
Regarding secondary metabolism, VadH proves to be involved in regulating ST production.
Disruption of vadH leads to elevated ST production, and the RNA-Seq results also indicate
that VadH can negatively regulate the expression of several genes related to the biosynthesis
of ST. It has been found that Cos1 and CgAzf1 are also relevant to secondary metabolism,
and both of them can regulate melanin production [19,20]. Similar to vadH, the VADs, vadA,
vadJ and vadZ, also exhibit the function of suppressing ST production [16,30,31], whereas
the VID gene vidA is not involved in the biosynthesis of ST [32].
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5. Conclusions

Taken together, we propose a working model for VadH regulating asexual/sexual
development and secondary metabolism (Figure 9). The VosA-VelB complex can posi-
tively regulate the expression of vadH. Then, VadH functions as a positive regulator for
asexual sporulation through the central regulatory pathway, and it also acts as a negative
regulator for the production of cleistothecia and sterigmatocystin. In summary, a newly
identified VAD gene vadH is predicted to encode a C2H2-type transcription factor, which
is involved in balancing asexual/sexual development and regulating osmotic stress and
sterigmatocystin production. These findings provide further evidence for the crucial roles
of VADs in the development and secondary metabolism of A. nidulans. Understanding the
mechanism of VadH will contribute to revealing the precise regulatory networks of the
VosA-VelB complex.
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