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Abstract: Artificial intelligence (AI), a field of research in which computers are applied to mimic
humans, is continuously expanding and influencing many aspects of our lives. From electric cars
to search motors, AI helps us manage our daily lives by simplifying functions and activities that
would be more complex otherwise. Even in the medical field, and specifically in oncology, many
studies in recent years have highlighted the possible helping role that AI could play in clinical and
therapeutic patient management. In specific contexts, clinical decisions are supported by “intelligent”
machines and the development of specific softwares that assist the specialist in the management of
the oncology patient. Melanoma, a highly heterogeneous disease influenced by several genetic and
environmental factors, to date is still difficult to manage clinically in its advanced stages. Therapies
often fail, due to the establishment of intrinsic or secondary resistance, making clinical decisions
complex. In this sense, although much work still needs to be conducted, numerous evidence shows
that AI (through the processing of large available data) could positively influence the management of
the patient with advanced melanoma, helping the clinician in the most favorable therapeutic choice
and avoiding unnecessary treatments that are sure to fail. In this review, the most recent applications
of AI in melanoma will be described, focusing especially on the possible finding of this field in the
management of drug treatments.

Keywords: metastatic melanoma; targeted therapy; immunotherapy; artificial intelligence;
precision medicine

1. Introduction

In recent decades, new therapeutic perspectives for cancer treatment have shifted
toward precision medicine, personalized to patient characteristics. The continuous dis-
covery of new molecular markers and the use of innovative techniques make possible a
more delineated view of the tumor and less harmful treatments [1]. The molecular and
biochemical analyses and high-resolution medical images are a precious source of infor-
mation that are not always easy to decode and use. Artificial intelligence (AI) allows one
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to amalgamate all these data to obtain new information about the possible prognosis and
patients treatment [2]. Systems based on AI are entering the medical field at an impressive
speed, assisting the clinician in choosing the most appropriate therapies with the highest
success rate [3]. Clearly, this leads to better management of the oncology patient in terms
of quality of life and cost reduction. Metastatic melanoma is, certainly, one of the patholo-
gies that seems to benefit from modern mathematical and computational data processing
approaches. Some interesting studies, indeed, have shown that the use of appropriate
algorithms has allowed a greater and significant accuracy in the diagnosis of melanoma
than the clinician’s experience alone, contributing to earlier diagnoses [4,5]. These results
are particularly encouraging because the metastatic melanoma still represents, today, a
particularly aggressive form of cancer characterized by unfavorable prognosis. Melanoma
is characterized by highly heterogeneous properties and is supported by many genetic
alterations and by a microenvironment highly favorable to the development of metastases,
even in distal sites [6]. If not recognized at an early stage, melanoma is the skin cancer
with the highest mortality rate [7]. In addition, melanoma is characterized by high inter-
tumoral and intratumoral heterogeneity. This implies that clones of the same tumor may
harbor different mutations and originate different metastases from the primary lesion. All
this, of course, results in complex diagnosis and less accurate treatment. The need for a
personalized approach in treating the melanoma patient requires a deep understanding of
intratumoral and intertumoral heterogeneity at the genomic, transcriptomic, and proteomic
levels [8]. In this context, the application of AI technologies can improve and standardize
the management of the melanoma patient by the clinician. Indeed, AI (encompassing
computer science and technology) is a rapidly evolving field that is revolutionizing many
aspects of our lives, including the medical area. Through the ability to interpret and re-
late a wide range of information, AI allows a more complete view of the disease and all
possible therapeutic scenarios. Obviously, this also applies to complex and multifactorial
pathologies such as melanoma.

In this review, we will focus particular attention on the new AI applications for the
melanoma patient management. Indeed, we will describe, specifically, how new technolo-
gies can help clinicians in therapeutic choices (targeted therapy and immunotherapy) and
in the randomization of patients.

2. New Frontiers in Melanoma Treatments: An Overview

Metastatic melanoma treatment has undergone profound changes in recent decades,
thanks mainly to the introduction of molecular therapies and immunotherapy into the
clinical setting [9]. These treatments, which are specific against only tumor cells, have
occupied more and more space in the therapies of patients with melanoma, supplanting,
in many cases, chemotherapy that is not very selective and has numerous side effects.
Progress in survival and quality of life has been very satisfactory, but the phenomenon of
treatment resistance has not yet been resolved [6]. A large percentage of patients, indeed,
develop resistance to therapies and undergo disease progression. Thus, the identification
of new biomarkers (molecular or imaging) that are potential targets for new therapies or
prognostic factors of response to treatments is to be hoped for.

2.1. Targeted Therapy

Mitogen-activated protein kinase (MAPK) is the most dysregulated pathway in
melanoma, and about 50–60% of all melanoma’s somatic mutations are located at the
v-Raf murine sarcoma viral oncogene homolog B (BRAF), where valine replaced by a
residue of glutamic acid (V600E) is the most representative [10]. In this context, BRAF
represents the standard therapeutic targets, and several preclinical studies have shown
that its blockade allows a reduced cell growth and induction of apoptotic process [10–12].
Vemurafenib (or PLX4032), dabrafenib (or GSK2118436), and encorafenib (or LGX818),
approved by the Food and Drug Administration (FDA) in 2011, 2013, and 2018, respectively,
have significantly improved patients’ life expectancy, both in terms of overall survival (OS)
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and quality of life, compared to the chemotherapy [13–15]. Moreover, the therapeutic com-
bination between BRAF and mitogen-activated protein kinase (MEK) inhibitors (cobime-
tinib/trametinib/binimetinib) promotes, for metastatic melanoma, a more durable response
to treatments over time, preventing the paradoxical MAPK pathway re-activation [16–19].

2.2. Immunotherapy

Melanoma, in its primary form, is characterized by the presence of a relevant lympho-
cytic component and, for this reason, the immunotherapy has produced comforting results
in terms of survival. Although several drugs are in the trials, only the immune checkpoint
inhibitors (ICIs) have been approved and used in the clinical setting for the melanoma
treatment (Table 1).

Table 1. Schematic representation of the principal melanoma immunotherapeutic agents.

Inhibitor Target Class Reference(s)

Ipilimumab
(MDX-010) CLT-4 Selective human IgG1

monoclonal antibody [20]

Nivolumab (BMS-936558, MDX-1106) PD-1 Selective human IgG4
monoclonal antibody [21]

Pembrolizumab (MK-3475) PD-1
Selective humanized

IgG4 monoclonal
antibody

[22]

Pidilizumab (CT-011) PD-1
Selective humanized

IgG1 monoclonal
antibody

[23]

BMS-936559 (MDX-1105) PDL-1 Selective human IgG4
monoclonal antibody [24]

Atezolizumab (MPDL3280A) PDL-1
Selective humanized

IgG1 monoclonal
antibody

[25]

Durvalumab (MEDI4736) PDL-1
Selective humanized

IgG1 monoclonal
antibody

[26]

Avelumab (MSB0010718C) PDL-1
Selective humanized

IgG1 monoclonal
antibody

[27]

ICIs are monoclonal antibodies developed against specific targets, such as T-lymphocyte
antigen 4 (CTLA-4), programmed cell death protein 1 (PD-1), and PD-1 ligand (PDL-1) and
are designed to eliminate the blockage of T-cell activity against tumors [28,29]. Ipilimumab
(MDX-010) is the most important specific monoclonal antibody against CTLA-4 approved
by FDA and the European Medicines Agency (EMA) in 2011, alone or in combination
with PD-1 inhibitors. Several melanoma clinical trials have shown that, compared with
chemotherapy, ipililumab results in better OS outcomes [30–32]. PD-1/PDL-1 axis repre-
sents a key therapeutic target on which several drugs have been developed [33–35]. In
the metastatic melanoma treatment, two anti-PD-1 drugs have been approved in 2014
by the FDA: nivolumab (BMS-936558, MDX-1106) and pembrolizumab (MK-3475). Both
are involved in T-cell function reactivation by blocking the PD-1/PDL-1 interaction, and
several studies have shown that, alone or in combination with ipilimumab, they promote
better results in terms of OS in metastatic melanoma patients [36–39]. Several molecules
relating to anti PDL-1 have also been developed: BMS-936559 (MDX-1105) is involved in
inhibition of the binding between PDL-1 and its receptor; atezolizumab (MPDL3280A),
durvalumab (MEDI4736) and avelumab (MSB0010718C), instead, are related to three anti-
bodies with high affinity and specificity to PDL-1, which are involved in several clinical
trials for melanoma metastatic treatment [40].
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3. Artificial Intelligence in Oncology

Artificial intelligence (AI), developed since 1956, is a field of informatics that through
complex systems, allows machines to learn from experience, mimicking the capabilities of
the human mind [41]. In particular, AI is able to process and manipulate a large amount of
data and extrapolate correlations between them in a way that the human brain would not
recognize (Figure 1). AI’s application fields are innumerable and have revolutionized and
improved the management of many activities [42]. Medicine, too, in its many aspects, is
now exploiting the great potential of AI to improve health care delivery, clinical decision-
making, and delineate patient treatment [43–45].

1 
 

 

Figure 1. AI main fields are depicted in Figure 1. Machine learning is the heart of AI, and its more
promising research area is represented by so-called deep learning, an evolution of the artificial neural
network basic approach.

Machine learning (ML) is focused on the creation of AI programs that learn or improve
performance based on the data they use. It enables algorithm creation that can learn and
make predictions. In the medical field, especially for oncological pathologies, ML has
allowed experts to produce personalized treatment predictions by using and schematizing,
in a rigorous way, databases obtained from many patients. All this has resulted, of course,
in a better approach to decision-making for the clinicians [46]. The two main machine learn-
ing algorithms used are supervised and unsupervised, and their difference is essentially
determined by how each algorithm learns the data to make predictions [46]. Supervised
ML is certainly the most frequently used algorithm and is characterized by the intervention
of an operator who “teaches” the machine using data sets already available. Unsupervised
ML, instead, provides the ability of the machine to learn complex models without necessary
constant intervention on the part of an operator. A third category of algorithms is char-
acterized by reinforcement learning, when the machine independently apprehends from
the environment without being taught explicitly [47]. Deep learning (DL) is an algorithm
type that uses a multi-layer neural network architecture to learn representations of data
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automatically [48]. It simulates the human brain in processing and the sub-division of
complex data into interconnected steps. In recent years, DL has also been under constant
development in the medical field and will become essential for predicting drug response
and optimizing drug dosages. All this will be possible through the analysis and interpreta-
tion of complex molecular, biochemical, and clinical datasets [49]. As mentioned above, the
AI application areas are many, and all are directed to simplify our lives and decisions. In
recent decades, the medical world has also increasingly relied on AI to assist in the inter-
pretation of data and to improve performance and clinical decisions [50]. AI has certainly
found fertile ground in oncology, where it has enabled improved interpretation of clinical
images and subsequent diagnoses. A striking example was the approval by the FDA of
two softwares able to quickly process mammogram images for the early detection of breast
cancer and to identify colon cancer [51–53]. Diagnosis, prognosis, and treatment of the
oncological patient, specifically the melanoma patient, involves the interplay of information
derived from different omics sciences (genomics, transcriptomics, radiomics, etc.) [1]. In
this intricate background, AI plays a key role in the interpretation and management of
these multiple data and contributes to precision medicine as new frontier in the treatment
of the cancer patient. In recent years, the discovery that the tumor is not an “isolated”
mass, but an elaborate system that interacts with the surrounding microenvironment, has
established the basis for an important concept: each patient has different characteristics that
drive different responses to therapies [1]. Melanoma is certainly one of the cancer forms
in which precision medicine is most relevant. Indeed, it is an extremely complex disease
characterized by many genetic mutations and by an immune microenvironment that favors
drug resistance and disease progression [6]. For melanoma, but not only melanoma, AI
is greatly assisting the clinicians in their therapeutic choices, as it has made it possible to
rapidly study, process, and analyze personal variability in response to treatments [54–56].
A tumor’s qualitative and quantitative analysis goes through the study of multiple genetic,
molecular, and biochemical features. All of these allow adaptation and/or improvement
of treatments for the individual patient while also predicting, where possible, the efficacy
of therapies. In melanoma, an example is the preliminary assessment of BRAF status, an
important indicator of targeted therapy response [57].

AI and Radiomics

The current development of omics sciences (genomics, transcriptomics, proteomics,
metabolomics, and radiomics) has resulted in detailed knowledge of pathways,
microenvironment-tumor interactions, genetic alterations, etc. that contribute to failure
and/or response to cancer therapies [1]. Amongst all omics sciences, radiomics represents
a field that is rapidly expanding and promises to be a valuable tool in the identification
of imaging biomarkers contributing to precision medicine (both in terms of prevention
and treatment) [58]. This new field of medicine is, therefore, responsible for translating
radiological images into quantitative data on which to obtain biological information. This
is possible thanks to AI, which, by exploiting the massive imaging datasets, can train
diagnostic and prognostic models for a variety of tumor types [55,59,60]. In recent years,
many radiomics studies have been developed with the primary purpose of improving the
management of the cancer patient. In the melanoma context, a large part of the studies
involved therapy management through radiological identification of predictive biomarkers
in treatment response. A recent study analyzed the predictive role of radiomic analy-
sis of magnetic resonance images (MRI) in response to immunotherapy in patients with
melanoma brain metastases. The authors, after drawing the volumes of interest, performed
univariate Cox regression for each radiomic feature analyzed followed by Lasso regression
and multivariate analysis. They retrospectively analyzed MRI images of 196 patients with
melanoma brain metastases and observed that higher-order MRI radiomic features were
associated with a better response to treatments [61]. Basler and collaborators [62] have,
on the other hand, highlighted the potential predictive role of radiomics, in association
with biological markers, in pseudoprogression of disease in patients with melanoma and
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treated with immunotherapy. They, indeed, observed in 112 patients with metastatic
melanoma, that noninvasive PET/CT-based radiomics and LDH/S100 are, in combination,
good markers for detecting disease progression within a three-month time frame. This
information obtained can be exploited to delay or anticipate immunotherapy treatments.
However, several other studies have combined radiomic analysis with biological markers
to potentiate the tumor information. Recently, for example, radiomic imaging of 15 pa-
tients with metastatic melanoma was combined with circulating tumor DNA (ctDNA) to
assess disease progression. This study suggests the possibility of combining radiomics and
liquid biomarkers to analyze changes in tumor characteristics [63]. An interesting study
investigated the possible correlation between texture analysis on pre-treatment contrast-
enhanced computed tomography (CT) images and OS and progression-free survival (PFS)
in patients with metastatic melanoma treated with pembrolizumab (monoclonal antibody
anti-PD-1). The retrospective study was conducted on 31 patients undergoing treatment
with pembrolizumab, and a total of 74 metastatic lesions were analyzed. AI analyses
conducted showed that tumor skewness derived from pre-treatment CT texture analysis
can be considered a good predictive biomarker of OS and PFS for metastatic melanoma
treated with pembrolizumab. Indeed, skewness values greater than -0.55 were significantly
associated with both lower OS and lower PFS after pembrolizumab administration [60].
In general, AI is responsible for analyzing and cataloging the multitude of data obtained
in a manner that human intervention alone cannot do. The use of specific algorithms has
resulted in the identification of new biomarkers, as well as has driven gene sets in cancer
and the subsequent design of new drugs [64] (Figure 2).

1 
 

 

Figure 2. Schematic representation of biobanking and analysis of cancer data.

In oncology, disease progression is a highly complex process because many factors,
which can affect or not affect the cancer cells’ transformation, are involved. It is, therefore,
difficult for the clinician to specifically delineate a disease course. One AI application
example finds fertile ground in this particular field, where the application, analysis, and
study of complex mathematical system can predict whether or not the disease will evolve.
A very interesting work that extensively investigated this aspect of AI was performed by
Jeffrey West and collaborators in 2016 [65]. The authors of the study showed that early
tumor analysis (subclinical phase), when the tumor mass is not yet visible, could help in
understanding the metastatic process, which is still obscure in many ways today. Studying
the early interactions of heterogeneous cell populations and how they compete for their
surroundings could give a picture of how tumor progression develops before the tumor is
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clinically detectable. To understand how a tumor acts before it is detectable, a mathematical
model was used to analyze the relationships between tumor and healthy cells competing
for dominance. The authors, following an evolutionary game from the 1950s called the
“Prisoner’s Dilemma”, assigned payoffs to each cell population, considering healthy cells
cooperators while cancer cell defect. From the analysis of various aspects, such as death
rate, point mutations, heredity, etc., the study showed, through mathematical analysis, that
natural selection can push toward contexts in which the cancerous aspect prevails. The
analysis of how malignant cells prevail and the trend of tumor progression, of course, could
bring crucial information for the correct drug treatments. Therapies started in the early
stages of tumor mass development certainly show better responses than those undertaken
in the later stages, as described by simulated drug strategies and therapeutic response. A
very recent study, on the other hand, used coordination games to assess and understand
cellular interactions. The authors proposed some aspects of cancer as results of coordination
games and exploited the results for better coordinate therapies. According to this strategy,
cell populations playing a coordination game converge on a predominant phenotype,
eliminating all competing ones. According to the authors, this can be exploited for the
setting of proper therapy, as clinicians could design treatment plans aimed at keeping
tumor size and composition under control. Obviously, when two cellular phenotypes
compete, new therapeutic regimens can be designed to maintain heterogeneous tumor
composition [66].

4. Metastatic Melanoma Management: Artificial Intelligence Implications

The clinical choice to perform a specific treatment involves the oncologist’s analysis
and study of many factors, such as disease grade, mutational status and, of course, the
patient’s condition. Such choices, although linked to standard treatment regimens, are
often difficult to interpret in many cancer contexts, such as metastatic melanoma. There-
fore, the constant development of AI methods, applicable to the medical area, capable
of interpreting and analyzing a massive amount of data, could help the clinician in the
management of the melanoma patient and the most appropriate therapeutic choice. In
addition, such methods could help in the prediction of possible disease recurrence and
response to standard treatments, thus hypothesizing different treatment scenarios [67]. Our
focus is to represent the most interesting and recent studies in which AI has been used to
improve the management of the patient with advanced melanoma.

Goussalt et al. [68] have developed and validated four machine learning models to
predict the response to immunotherapy and targeted therapy in stage IIIc or IV melanoma
patients. The work was conducted on data from 10 centers participating in the French
network for Research and Clinical Investigation on Melanoma (RIC-Mel), launched in 2012,
with about 935 patients, corresponding to 1978 systemic treatments have been extracted
from RIC-Mel database. Several data were considered in this study, including age, sex,
melanoma type, spontaneous regression, number of invaded lymph nodes, extracapsular
extension, mutational status, melanoma stage, number of metastasis sites, lines of treat-
ments, etc. Complete/partial response and stable disease were defined as class 1, while
progressive disease was defined as class 2. The algorithm performances were evaluated on
the test set by the percentage of treatments correctly classified in class 1 or 2. The authors of
this scientific paper identified and validated, for both types of treatment (immunotherapy
and targeted therapy), four predictive algorithms for drug response. These machine learn-
ing models confirmed, for melanoma, the validity of several predictor variables of response
to treatments, already found in the literature. Shofty et al. [69] designed and analyzed
machine learning methods for genetic background analysis in melanoma brain metastases.
Indeed, genetic characterization of brain metastases, to date, is only possible by tissue
analysis, which may lead to risks and complications. This study made it possible to identify
the mutational status of brain metastases (specifically BRAF status) by using software that
exploited conventional MRI images and correlated them with BRAF mutations. Specifically,
the preoperative MRI analysis of 53 patients with melanoma brain metastases (with or
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without BRAF mutations) was used to predict the mutational status of the gene by ana-
lyzing 195 radiomic features associated with BRAF status. The data obtained had a mean
accuracy = 0.79 ± 0.13, mean precision = 0.77 ± 0.14, mean sensitivity = 0.72 ± 0.20, and
mean specificity = 0.83 ± 0.11, confirming that radiomics-based genetic characterizations
can be viable alternatives to in situ biopsies. One of the questions that is still difficult
to answer in melanoma, but not only melanoma, concerns predicting the development
of metastasis in a specific patient. Mancuso et al. [70], in a recent study, exploited the
enormous potential of machine learning to identify possible markers that can be associated
with disease progression as the early stages of melanoma. The authors initially recruited
448 melanoma patients, 323 of whom were diagnosed with stage I-II disease. By means of
ELISA assays, they assessed the expression levels of known cytokines involved in metasta-
sis and, using machine learning and Kaplan-Meier techniques, analyzed the data obtained
to define an algorithm capable of stratifying patients enrolled in the study according to
their risk (low or high) of developing metastasis. The data obtained were analyzed using
machine learning and Kaplan-Meier techniques to define an algorithm capable of accurately
classifying early-stage melanoma patient with high and low risk of developing metastasis.
The results obtained correlated serum levels of dermicidin (DCD), interleukin-4 (IL-4), and
granulocyte-macrophage colony-stimulating factor (GM-CSF) with an increased probabil-
ity of developing metastasis. Predicting the outcome of clinical treatment would greatly
help the work of clinicians who could better stratify their patients to whom they would
target specific and diversified therapies. One way to proceed, according to Johannett et
collaborators [71], involves the analysis of patients’ histologic characteristics as potential
markers for predicting response to a given treatment. Specifically, the authors developed
a platform in which clinical data were integrated by deep learning on histologic samples
to predict, in metastatic melanoma, response to immunotherapy. Obviously, to obtain
such results, the study had to involve a training cohort of patients and a validation cohort.
The classifier stratified patients into high and low risk of disease progression and, indeed,
patients with a higher risk of PFS than those classified as lower risk were examined [71].
ML was also exploited in another study that identified a composite cytokine signature
at baseline, associated with OS in metastatic melanoma. In this study, Wang et al. [72]
used machine learning models to analyze clearance data and cytokine levels of patients
with metastatic melanoma treated with nivolumab in two phase III trials. Prediction of
clearance (high vs. low) by cytokine signature was significantly associated with OS in all
two studies (p < 0.01), regardless of treatment (nivolumab vs. chemotherapy). For advanced
melanoma, but in general for solid tumors, the outcome of treatment is mainly evaluated
by observation of the reduction or non-reduction of the tumor mass. A very recent study
suggests, however, that radiomics imaging could provide the clinician with additional and
more detailed information (of mass size alone) that could help in patient management [73].
Indeed, according to the study authors, being able to accurately predict therapeutic sur-
vival benefit could also improve the therapy selection. In this study, CT images at baseline
and at first follow-up of patients with metastatic melanoma, and who were treated with
immunotherapy, were analyzed by exploiting radiomics and machine learning techniques.
The metastatic sites detected were lymph nodes (53.0%), lungs (38.5%), liver (19.0%), and
adrenal gland (11.2%). The radiomic signature arose from the set of four imaging features
and, in the validation set, exceeded in predictions the standard method based on tumor
diameter (Response Evaluation Criteria in Solid Tumors 1.1 (RECIST 1.1)). The results
obtained, therefore, demonstrated that the in-depth analysis of a radiomic signature could
predict response to treatment (in this case to pembrolizumab) in advance, giving physicians
the ability to evaluate the use of alternative therapies at an early stage [73].

5. Future Perspectives from Artificial Intelligence in Melanoma

To date, the information we have about the characteristics of a tumor is numerous,
partially due to the development of increasingly sensitive and precise technologies. Omics
sciences provide a comprehensive view of the cancerous mass from molecular, metabolic,
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and imaging perspectives, leading to a deeper knowledge of the pathology. Melanoma
is one of the cancers that, given its characteristics, has benefited from the development
of these new technologies. The next step will be the reprocessing of all the data obtained
through the use of complex AI software and is related to the ability that machines have
to “learn” from experience. Information sharing and the ability of machines to quickly
interpret data will allow the creation of precise treatment protocols. Treatment times will
be able to be modulated by the clinician based on patient characteristics, experience, and
based on information obtained and processed by advanced software.

6. Conclusions

Erroneous choices in terms of treatment approaches may affect the patient’s quality
of life, which is incurred in side effects (often avoidable if unnecessary). In addition, the
great expectations placed on treatments not functioning, from a psychological point of
view, could negatively impact the normal conduct of a patient’s life. AI’s main purpose
is to improve human performance. Indeed, the machine, after learning information from
massive data pools, is able to apply the acquired knowledge to new data never processed
before [74]. This highly intuitive and revolutionary concept enables, and will enable, a
more precise and rational approach in many contexts of daily life, including research and
health. Obviously, this will result in improvements in administration, timing, and costs
related to patient management. While this revolutionary approach to study in medical
practice promises to simplify the diagnostic and treatment process, it also needs to be
further validated through the development of specific and pathology-dependent studies. In
addition, the incorporation of all these complex analyses into clinical practice could certainly
implement the myriad of information we have for individual diseases, contributing to the
creation of up-to-date databases aimed at stratifying patients and assisting the clinician in
the most appropriate diagnosis and treatment choice for the individual patient. Despite
the immense potential of AI, to date its applications in oncology are still in the early stages
and have not yet undergone major validation processes [75]. Although, as discussed in
this review, there are many possible applications for melanoma, breast, lung, and prostate
cancers, which represent the tumor forms now receiving the greatest benefits from AI-based
devices [76]. With important early goals achieved, new further research is needed to ensure
the analytical and clinical validity of AI approaches [77].
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MEK Mitogen-activated Protein Kinase
ML Machine Learning
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PD-1 Programmed Cell Death Protein 1
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RECIST 1.1 Response Evaluation Criteria in Solid Tumors 1.1
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