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Abstract: In recent years, there has been a great deal of interest in the ectopic roles of olfactory
receptors (ORs) throughout the human body. Especially, the ectopic function of OR in the skin is one
of the most actively researched areas. Suberic acid, a scent compound, was hypothesized to increase
collagen synthesis in the ultraviolet B (UVB)-irradiated human dermal fibroblasts (Hs68) through a
specific olfactory receptor. Suberic acid ameliorated UVB-induced decreases in collagen production
in Hs68 cells. Using in silico docking to predict the binding conformation and affinity of suberic
acid to 15 ectopic ORs detectable in Hs68, several ORs were identified as promising candidates. The
effect of suberic acid on collagen synthesis in UVB-exposed dermal fibroblasts was nullified only by a
reduction in OR10A3 expression via specific siRNA. In addition, using the cells transiently expressing
OR10A3, we demonstrated that suberic acid can activate OR10A3 by assessing the downstream
effector cAMP response element (CRE) luciferase activity. We examined that the activation of OR10A3
by suberic acid subsequently stimulates collagen synthesis via the downstream cAMP-Akt pathway.
The findings support OR10A3 as a promising target for anti-aging treatments of the skin.
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1. Introduction

Collagen is a family of extracellular matrix molecules with multiple physiological
functions, including the regulation of cell growth, migration, and differentiation [1–3].
Collagen constitutes the majority of skin and is the most abundant extracellular structural
protein in the dermis (80 percent of skin weight). Dermal fibroblasts produce procollagen
and release it into the extracellular milieu, where it is converted to collagen [4,5]. Notably,
solar ultraviolet (UV) radiation is a major contributor to the inhibition of procollagen
formation, which leads to a decrease in collagen; therefore, extrinsic aging is often referred
to as photoaging.

Olfactory receptors (ORs) are the biggest subfamily of G-protein-coupled receptors
(GPCR), and it was previously believed that they existed exclusively in olfactory tissue [6].
Recent research has shown, however, that ORs are present in a range of tissues (e.g., skin,
muscle, prostate, and liver), where they operate as sensitive chemoreceptors that regulate
a number of physiological processes. Particularly, skin is one of the most intensively
researched tissues regarding OR’s ectopic functions [6–8]. For instance, OR10G7 and
OR2AT4 are highly expressed in epidermal keratinocytes, and stimulation of these receptors
by their ligands (eugenol and sandalwood) mediates inflammatory response and wound
healing, respectively [9,10]. In addition, stimulation of melanocytes with the OR51E2 ligand
β-ionone inhibited cell proliferation significantly [11]. These results suggest that ectopically
expressed ORs merit further investigation.

Suberic acid is a dibasic acid that is crystalline, colorless and has the chemical formula
C8O4H14. It is abundant in several plants, including castor, vernonia galamensis, and
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hibiscus syriacus [12,13]. In addition to being produced by plants, suberic acid is also
produced endogenously in the human body. Moreover, patients with several diseases, such
as diabetes, fatty acid oxidation disorders, and medium-chain acyl-CoA dehydrogenase
deficiency, had significantly higher suberic acid excretion in urine than healthy subjects,
suggesting that suberic acid serves a specific function under adverse conditions [14–16].
In a previous study, it was shown that dietary suberic acid protects hairless mice against
UVB-mediated skin aging by increasing collagen content and collagen synthesis genes,
such as collagen type I alpha 1 chain (COL1A1) [17].

The molecular target of suberic acid is largely unexplored, but a few studies suggest
that the dicarboxylic acid series including suberic acid may interact with the OR in mam-
malian cells [18,19]. On the basis of the observation that several ORs are also expressed in
human dermal fibroblasts, it is hypothesized that suberic acid stimulates collagen synthesis
in UVB-irradiated human dermal fibroblasts by means of a novel OR.

2. Materials and Methods
2.1. Cell Culture

The human dermal fibroblast cell line (Hs68) was acquired from American Type
Culture Collection (ATCC; Manassas, VA, USA). The cells were grown in Dulbecco’s
modified Eagle’s medium (DMEM; Gibco, Eggenstein, Germany) supplemented with 10%
fetal bovine serum (FBS; Gibco), 1% penicillin-streptomycin (Gibco) at 37 ◦C, and 5%
carbon dioxide.

2.2. Quantitative Assessment of Procollagen Secretion

The secretion of procollagen in the medium was determined using a commercially
available enzyme-linked immunosorbent assay (ELISA) kit (Takara, Shiga, Japan) according
to the manufacturer’s instructions. In brief, cells were seeded and grown overnight in a
24-well plate at 75,000 cells/well. The collected medium was centrifuged to remove debris,
and then type I procollagen was measured absorbance at 590 nm using an Infinite M200
microplate reader (Tecan, Männedorf, Switzerland). Results of procollagen I secretion were
normalized to total cell protein, as measured by the Bradford protein assay method (BioRad,
Hercules, CA, USA).

2.3. Determination of Cell Viability

For cytotoxicity measurements, cells were plated at a density of 5000 cells/well in
a 96-well plate and grown for 24 h. Cells were then exposed to vehicle (dimethyl sul-
foxide, DMSO; Sigma-Aldrich, St. Louis, MO, USA) control or 12.5–400 uM suberic acid
(Sigma-Aldrich), and incubated for an additional 24 h. Cell viability was determined using
the cell proliferation reagent water-soluble tetrazolium salt (WST-8; Sigma-Aldrich), as
recommended by the manufacturer.

2.4. Next Generation Sequencing (NGS)

To produce mRNA sequencing libraries, the NEBNext Ultra II Directional RNA-Seq
Kit (New England BioLabs, Hitchin, UK) was used. Briefly, total RNA was used using the
Poly(A) RNA Selection Kit to isolate mRNA (Lexogen, Vienna, Austria). After purification,
the mRNA was chemically fragmented into small fragments, which were then employed
as a template for cDNA synthesis using reverse transcriptase, followed by short fragment
removal from another purification procedure. After end repair, adapter ligation, and the
addition of index codes to samples, PCR amplification was conducted. After adapter
ligation and PCR amplification, adapters that were not aligned were eliminated twice.
The library quality was examined by Agilent 2100 bioanalyzer DNA high sensitivity
kit and the library quantitation was measured by StepOne Real-Time PCR System (Life
Technologies, Carlsbad, CA, USA). The libraries were paired-end 100 sequenced on a HiSeq
X10 sequencing system (Illumina, San Diego, CA, USA).
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2.5. Molecular Docking Analysis

The structure data file (SDF) format of suberic acid was retrieved from Pubchem [20].
The 3D structure of the target protein is acquired from AlphaFold, which is a DeepMind-
developed artificial intelligence system that predicts a protein’s 3D shape from its amino
acid sequence [21]. Additionally, docking of suberic acid to the ORs was conducted using
CB-Dock molecular docking software [22]. CB-Dock predicts the binding activities of
proteins to chemicals and determines the cavity’s center and size. After identifying the
coordinates of the docking pocket, molecular docking and conformational scoring were
carried out. The lower the scores, the more stable the compound’s binding to the target,
which can be used for a preliminary assessment of the binding affinity of the molecule to
the receptor.

2.6. Measurement of mRNA Expression

Total RNA was isolated from cells using the TRIzol reagent (Invitrogen, Carlsbad, CA,
USA) and measured with a NanoDrop spectrophotometer (Tecan). mRNA expression levels
were determined by quantitative real-time polymerase chain reaction (qPCR). qPCR was
conducted using SsoAdvanced Universal SYBR Green Supermix (BioRad) and the CFX Real-
Time System (BioRad), and mRNA levels were normalized to those of the glyceraldehyde
3-phosphate dehydrogenase (GAPDH) gene. Relative expression was calculated using the
2−∆∆CT method. Semi-quantitative PCR was performed using 2X PCR MasterMix (Intron,
Seoul, Korea) and the GeneMax thermal cycler (BIOER; Hangzhou, China) to visually
identify the OR10A3 gene expressed in human embryonic kidney cells (HEK293T; ATCC).
The primer sequences used for quantitative PCR are listed in Table 1.

Table 1. Primer sequences used for RT-PCR.

Gene Description Sequences (5′→3)

Collagen type I alpha 1 chain (COL1A1)
F: ACATGTTCAGCTTTGTGGACC

R: TGTACGCAGGTGATTGGTGG

Olfactory receptor family 1 subfamily L
member 8 (OR1L8)

F: GCCCTGTGCTGAAATTGTCC

R: GGCTTTGCGTTTCCCAGAAG

OR2H2
F: CCATCTCACTGTGGTCACCCTCTTC

R: GAATGCCCTGGTTACCTCCTTGTTC

OR10A3
F: ATCTGGCTACTCACCCGAAAC

R: AGATGAGCGGATTGAGCAGAG

OR10A4
F: CACCTCTTGGTTGTCTCTCTCTTC

R: CCTTCAGTTTCCATCTAAGCCAATC

OR10A6
F: GTCAACAGAGAAAGGTTCGGG

R: TGGTGTCTTGGATAGATCACTG

Glyceraldehyde-3-phosphate
dehydrogenase (GAPDH)

F: GACAGTCAGCCGCATCTTCT

R: CGCCCAATACGACCAAATC

2.7. Small Interfering RNAs (siRNAs) Transfection

Hs68 cells were seeded in 24-well microplates at the density of 75,000 cells/well. After
24 h, the cells were transfected with 100 mM siRNA (Dharmacon, Lafayette, CO, USA)
of each OR gene or non-targeting siRNAs (NT) at a final concentration of 100 nM using
lipofectamine 3000 reagent (Invitrogen) in Opti-minimal essential medium (Opti-MEM;
Thermo Fisher Scientific, Bremen, Germany), as per the manufacturer’s instructions. After
incubation for 24 h, the Opti-MEM medium was replaced with the fresh DMEM medium
containing 10% FBS, and cells were cultured for another 24 h. The siRNA sequences are
provided in Table 2.
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Table 2. siRNA sequences used for gene silencing.

Gene Name siRNA Sequence (Sense [S], Antisense [A])

OR1L8

#1 S: CGUCUCACCUUCUGUGACU
A: AGUCACAGAAGGUGAGACG

#2 S: CCUACGCUGUCAAGGACCA
A: UGGUCCUUGACAGCGUAGG

OR2H2

#1 S: CUGUUUCACCACGAGUUGU
A: ACAACUCGUGGUGAAACAG

#2 S: GUCAUUGGGCUAGUGGAGU
A: ACUCCACUAGCCCAAUGAC

OR10A3

#1 S: CUCUGAACUACCCAGUGAU
A: AUCACUGGGUAGUUCAGAG

#2 S: CUCAUCUAUAGCUUACGAA
A: UUCGUAAGCUAUAGAUGAG

OR10A4

#1 S: CUGAUCAUUCAAGACACAA
A: UUGUGUCUUGAAUGAUCAG

#2 S: CUCUCUCUUCUAUAGCACU
A: AGUGCUAUAGAAGAGAGAG

OR10A6

#1 S: CUGAAUCUGCUUAUCUACA
A: UGUAGAUAAGCAGAUUCAG

#2 S: CAUCCUCUCAACUACCAAA
A: UUUGGUAGUUGAGAGGAUG

Non-targeting siRNA (NT) S: GAACUGAUGACAGGGAGGC
A: GCCUCCCUGUCAUCAGUUC

2.8. Cyclic Adenosine Monophosphate (cAMP) Measurement

After removing the media, the cells were rinsed with phosphate-buffered saline (PBS)
and treated for 5 min with 0.1 M hydrochloric acid. The concentrations of cAMP in
the collected lysates were then measured using a cAMP ELISA kit (Enzo Life Sciences,
Farmingdale, NY, USA) according to the manufacturer’s instructions. Briefly, the lysates
were neutralized and the cAMP conjugate was added to the binding sites on an IgG-coated
microplate in order to compete with cAMP. The unbound cAMP was then eliminated by
three washes with PBS. The substrate was then carefully added to each well in order to
determine the enzyme’s bound activity. After stopping the reaction, the relative optical
density at 450 nm was estimated using a microplate reader. The cAMP concentration was
normalized to the total intracellular protein concentration, which was obtained using the
Bradford reagent (Biorad).

2.9. Western Blot

The cells were harvested and lysed using a protein extraction solution (PRO-PREP;
iNtRON, Seoul, Korea). After centrifugation at 13,000× g for 20 min at 3 ◦C, 25 µg of protein
in the lysates were separated on 12.5% polyacrylamide gels. Protein was transferred to
nitrocellulose membranes (Whatman, Maidstone, UK) by electrophoresis. Membranes were
blocked with 5% BSA in tris-buffered saline containing 0.1% Tween-20 (TBST). Primary anti-
bodies (Cell signaling, Danvers, MA, USA) were incubated with polyvinylidene difluoride
membrane for 1 h at room temperature. Blots were washed five times with TBST solution
and incubated with an appropriate secondary antibody for 1 h at 20 ◦C. After washing three
times with TBST, the blots were developed with an electrochemiluminescence detection
reagent (Biomax, Seoul, Korea) and were scanned by using Light-capture (ATTO, Tokyo,
Japan). The intensities of specific bands were quantified and normalized using GAPDH as
a marker for loading control.



Cells 2022, 11, 3961 5 of 16

2.10. Plasmid Construct, Transfection, and Dual Luciferase Reporter Assay

The human gene encoding OR10A3 was purchased from Novoprolabs (Cat# 746761-
1; Shanghai, China) and subcloned into the pcDNA3.1 vector (Promega, Madison, WI,
USA). Then, HEK293T cells were seeded into a 24-well plate (100,000 cells/well) and
cultured for 24 h. The recombinant plasmid containing the OR10A3 was subsequently
co-transfected into the HEK293 cells with (1) Renilla luciferase reporter plasmid (pRL-TK;
Promega, Madison, WI, USA), (2) cAMP response element firefly luciferase construct (pCRE-
luc; Promega), and (3) accessory proteins that facilitate the translocation of the olfactory
receptor to the cell membrane (RTP1S, Ric8B, and Golf; gifts from Hiroaki Matsunami
at the University of Duke in the USA and Cheil Moon at Daegu Gyeongbuk Institute of
Science and Technology (DGIST) in Korea), using lipofectamine 3000 transfection reagent
(Thermo Fisher Scientific). 48 h after transfection, cells were treated with vehicle control or
suberic acid (100 uM), incubated for further 6 h, and harvested for dual-luciferase assay
using a Dual-Glo Luciferase assay system (Promega). The firefly luciferase signal was
measured first and followed by Renilla luciferase in the same sample using a GloMax 20/20
luminometer (Promega).

2.11. Statistical Analysis

The Student’s t-test was used to assess the significance of the differences between
the two groups. SPSS 25 was used to conduct statistical analysis (Chicago, IL, USA). In
all statistical tests, differences with p values of 0.05 or less were regarded as statistically
significant.

3. Results
3.1. Ultraviolet B (UVB) Inhibits Procollagen Synthesis in Hs68 Cells

To determine the optimal UVB dose which caused a reduction in collagen synthe-
sis, several doses of UVB (5, 10, 15, 20, and 25 mJ/cm2) were irradiated in Hs68 cells.
At UVB doses of 10 mJ/cm2, procollagen concentration began to decrease significantly
(Figure 1). Consequently, this UVB dose was chosen as the suitable UVB dosage for further
experiments in the current study.
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Figure 1. Ultraviolet B (UVB) inhibits procollagen synthesis in Hs68 cells. The cells were irradiated for
24 h with various doses of UVB (5, 10, 15, 20 and 25 µM). Procollagen concentration was determined
by enzyme linked immunosorbent assay (ELISA) assay. Data are presented as mean ± standard error
of the mean (SEM) of three independent experiments. Statistically significant differences are marked
as * p < 0.05, ** p < 0.01, *** p < 0.001; ns, not significant.

3.2. Suberic Acid Attenuated the Reduction of Collagen Production in UVB-Irradiated Hs68 Cells

The molecular structure of suberic acid is presented in Figure 2A. To test the effect
of suberic acid on the cell viability of Hs68, WST-8 assay was conducted. Suberic acid
treatment until 400 µM did not show any cytotoxicity compared with vehicle (DMSO)-
treated control (Figure 2B). In addition, to investigate the effect of suberic acid on collagen
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production in UVB-treated Hs68 cells, the procollagen concentration in the culture super-
natants of Hs68 cells was quantified. UVB exposure significantly decreased procollagen
production in Hs68 cells. In contrast, suberic acid increased the production of procollagen
in a dose dependent manner (Figure 2C). Since the effect of suberic acid on the collagen
synthesis seemed to saturate at around 100 uM, all further experiments were performed
with 100 uM suberic acid concentration. Additionally, treatment with suberic acid (100 uM)
did not result in an increase in the synthesis of procollagen in control cells that had not
been exposed to UVB. (Figure 2D).

Cells 2022, 11, 3961 6 of 16 
 

 

standard error of the mean (SEM) of three independent experiments. Statistically significant 
differences are marked as * p < 0.05, ** p < 0.01, *** p < 0.001; ns, not significant. 

3.2. Suberic Acid Attenuated the Reduction of Collagen Production in UVB-Irradiated Hs68  
Cells 

The molecular structure of suberic acid is presented in Figure 2A. To test the effect of 
suberic acid on the cell viability of Hs68, WST-8 assay was conducted. Suberic acid 
treatment until 400 μM did not show any cytotoxicity compared with vehicle (DMSO)-
treated control (Figure 2B). In addition, to investigate the effect of suberic acid on collagen 
production in UVB-treated Hs68 cells, the procollagen concentration in the culture 
supernatants of Hs68 cells was quantified. UVB exposure significantly decreased 
procollagen production in Hs68 cells. In contrast, suberic acid increased the production of 
procollagen in a dose dependent manner (Figure 2C). Since the effect of suberic acid on 
the collagen synthesis seemed to saturate at around 100 uM, all further experiments were 
performed with 100 uM suberic acid concentration. Additionally, treatment with suberic 
acid (100 uM) did not result in an increase in the synthesis of procollagen in control cells 
that had not been exposed to UVB. (Figure 2D). 

 
Figure 2. Suberic acid attenuated the reduction of collagen production in UVB-irradiated Hs68 cells. 
(A) The molecular structure of suberic acid. (B) Cell viability of Hs68 cells treated with various 
concentrations of suberic acid (SA; 25–400 μM) for 48 h. (C) Procollagen concentrations in the 
supernatant of Hs68 cells treated with various doses of suberic acid (6.25–400 μM) for 48 h after 10 
mJ/cm2 UVB exposure. (D) Hs68 cells were treated with vehicle or 100 μM suberic acid for 48 h in 
the absence of UVB irradiation and the concentrations of procollagen in the supernatant were 

Figure 2. Suberic acid attenuated the reduction of collagen production in UVB-irradiated Hs68 cells.
(A) The molecular structure of suberic acid. (B) Cell viability of Hs68 cells treated with various
concentrations of suberic acid (SA; 25–400 µM) for 48 h. (C) Procollagen concentrations in the
supernatant of Hs68 cells treated with various doses of suberic acid (6.25–400 µM) for 48 h after
10 mJ/cm2 UVB exposure. (D) Hs68 cells were treated with vehicle or 100 µM suberic acid for 48 h
in the absence of UVB irradiation and the concentrations of procollagen in the supernatant were
evaluated. The results are shown as means SEM (n = 3). Significant differences between groups are
indicated by * p < 0.05; ** p < 0.01; ns, not significant.

3.3. Suberic Acid Increased the Production of Collagen through OR10A3 in UVB-Exposed
Hs68 Cells

It was hypothesized that the ORs could be a target of suberic acid. We analyzed the
expression profiles (FPKM) of OR genes in Hs68 cells based on NGS sequencing data and
found that at least 15 OR were clearly expressed in Hs68 cells (FPKM > 0.01). Then, we
conducted a virtual screening of suberic acid-ORs binding affinities using autodock vina
program. As a result, the top five ORs, OR1L8, OR2H2, OR10A3, OR10A4, and OR10A6,
were selected (Table 3).
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To confirm the knockdown efficiency, two siRNAs (siRNA #1 and siRNA #2) targeting
different regions in the respective five ORs were designed, and the ORs expression was
measured in Hs68 cells transfected with NT, OR siRNA #1 or #2. All siRNAs used in the
present study achieved over 80% reduction of each gene expression (Figure 3A).
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Figure 3. Suberic acid increased the production of collagen through OR10A3 in UVB-exposed Hs68
cells. (A) The cells were treated with or without siRNA against 5 ORs (OR1L8, OR2H2, OR10A3,
OR10A4 and OR10A6). After treatment for 24 h, the relative mRNA expression of 5 ORs was analyzed.
Significant differences between groups are shown as ** p < 0.01; *** p < 0.001 vs. NT siRNA. (B) Hs68
cells were treated with suberic acid (SA; 100 uM) or the vehicle after being exposed to UVB. The siRNA
against 5 ORs or NT siRNA were pre-treated for 1 h before the suberic acid treatment. Procollagen
contents in the supernatant were analyzed. Significant differences between groups are shown as
* p < 0.05 vs. Con; ## p < 0.01 vs. UVB; ns, not significant. Results are shown as means ± SEM (n = 3).
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Table 3. The expression profiles (FPKM) of 15 candidates olfactory receptor (OR) genes detectable in
Hs68 cells and virtual screening of suberic acid-ORs binding affinities using autodock vina program.

Olfactory Receptor (OR) Name FPKM Vina Score

OR1L8 0.035 −5.5

OR2A1/42 0.192 −4.8

OR2A4/7 0.413 −4.9

OR2AE1 0.254 −4.4

OR2B2 0.070 −4.7

OR2H2 0.029 −5.7

OR6A2 0.041 −5.2

OR10A3 0.035 −5.7

OR10A4 0.032 −5.8

OR10A5 0.017 −5.1

OR10A6 0.034 −5.6

OR51B5 0.063 −4.9

OR51I1 0.581 −4.5

OR52DI 0.274 −4.6

OR56B4 0.026 −5.2

To determine whether ORs are involved in the formation of collagen by suberic acid
treatment, the procollagen concentrations in the culture supernatants of UVB-exposed Hs68
cells transfected with NT siRNA or two different siRNAs #1 and #2 against 5 ORs were
measured after treatment with suberic acid (100 uM). Notably, the effect of suberic acid on
collagen production was abolished only in OR10A3 siRNA-transfected cells (Figure 3B).

3.4. The Treatment with Suberic Acid Led to the Activation of OR10A3

After establishing that suberic acid’s effect on collagen production is mediated by
OR10A3, we sought to confirm that suberic acid directly activates OR10A3 and modulates
downstream signaling. To test this hypothesis, HEK293T cells were transfected with the
plasmids encoding the olfactory receptor OR10A3 and the accessory proteins (RTP1S, Golf,
and Ric8b) that aid in transporting the olfactory receptor to the cell membrane, pCRE-luc,
and pRL-TK. We first verified by a semi-quantitative RT-PCR that the overexpression of the
OR10A3 gene was achieved in the HEK293T cell line (Figure 4A). Since it is well known
that the cAMP/PKA/CREB signaling cascade is activated when a scent compound binds to
an olfactory receptor, the activity of the CRE promoter in response to suberic acid treatment
was assessed to determine whether suberic acid indeed binds to and activates OR10A3 [23].
In the presence of suberic acid (100 uM; the concentration of significant collagen stimu-
lating effect), HEK293T cells transfected with a plasmid encoding the OR10A3 showed a
significant increase in CRE-luciferase activity than those transfected with the empty vector
(Figure 4B).
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with vehicle control or suberic acid (SA; 100 uM) for 6 h, and CRE promoter activity was analyzed
using the dual-luciferase assay. The results are expressed as the mean SEM of three independent
experiments. ** p < 0.01.
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Due to the fact that OR10A3 belongs to the G protein-coupled receptor superfamily, the
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with suberic acid (100 uM) resulted in a significant increase in cAMP levels (Figure 5A).
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Figure 5. The activation of OR10A3 by suberic acid increased the production of collagen via down-
stream cAMP in UVB-exposed Hs68 cells. (A) The cells were treated with suberic acid (SA; 100 uM)
or the vehicle and then intracellular cAMP levels were analyzed. (B) Procollagens concentrations in
the supernatant of UVB-exposed Hs68 cells treated with suberic acid (100 uM) and SQ22,536 (50 uM)
for 24 h. Results are shown as means ± SEM (n = 3). Significant differences between groups are
shown as * p < 0.05; ** p < 0.01; ns, not significant.
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To investigate whether elevated intracellular cAMP concentration by suberic acid
mediates collagen production in UVB-exposed Hs68 cells, the procollagen concentration
was analyzed in UVB-exposed Hs68 cells after treatment with suberic acid and the cAMP
inhibitor (SQ22,536). The treatment with SQ22,536 (50 uM) completely blocked the effects
of suberic acid on procollagen production (Figure 5B).

3.6. Suberic Acid Increased Collagen Production in UVB-Exposed Hs68 Cells through the
Akt-Dependent Signaling Pathway

To study the suberic acid-mediated downstream effector of the cAMP pathway, we
queried the pattern of gene expression alterations following suberic acid treatment in the
NGS dataset using the connectivity map bioinformatics platform. Notably, the pattern of
gene expression altered by suberic acid treatment showed the greatest negative correlation
with the pattern of phosphatidylinositol-3-kinase (PI3K) inhibitor treatment, suggesting
that suberic acid may serve as a PI3K activator (Table 4).

Table 4. Connectivity results between suberic acid-modulated genes in Hs68 cells and compounds in
the connectivity map platform.

Name Description Score

BRD-75430629 PI3K Inhibitor −97.92

Etilefrine Adrenergic recetptor agonist 94.47

2-(4-methoxybenzylthio)-6-
methylpyrimidin-4-ol Matrix metalloproteinase inhibitor 93.53

Iloprost Prostanoid receptor agonist 91.53

UNC-0321 Histone lysine methyltransferase inhibitor −90.10

To confirm whether suberic acid treatment activates PI3K, the phosphorylation of its
downstream effector Akt was analyzed in UVB-exposed Hs68 cells after treatment with
suberic acid, OR10A3 siRNA and SQ22,536. Suberic acid treatment significantly increased
phosphorylation of Akt in UVB-exposed Hs68 cells. In contrast, each OR10A3 siRNA and
SQ22,536 treatment (50 uM) attenuated the effects of suberic acid on Akt phosphorylation
(Figure 6A). Furthermore, the PI3K inhibitor (LY294002) treatment (50 uM) nullified the
effects of suberic acid on procollagen production (Figure 6B). Interestingly, suberic acid
treatment did not increase the phosphorylation of Akt in UVB-unexposed control cells
(Figure 6C).

3.7. The Activation of OR10A3 by Suberic Acid Enhanced Gene Expression of Akt Downstream
Transcription Factor SP1 and Its Target Gene COL1A1 in UVB-Exposed Hs68 Cells

To investigate how the Akt signaling pathway contributes to the production of colla-
gen, the gene expression of Akt downstream transcription factor, SP1 and its target gene,
COL1A1 was measured. Suberic acid treatment (100 uM) enhanced gene expression of SP1
in UVB-exposed Hs68 cells, in contrast, OR10A3 siRNA treatment abolished the effects of
suberic acid on SP1 gene expression (Figure 7A). Likewise, COL1A1 mRNA expression
was elevated in Hs68 cells treated with suberic acid compared to those treated with ve-
hicle. The stimulatory effect of suberic acid on COL1A1 mRNA was completely blocked
by OR10A3 siRNA (Figure 7B). We further verified that suberic acid increased COL1A1
levels through OR10A3 at the protein level (Figure 7C). Taken together, the activation of
the OR10A3-cAMP-Akt pathway is a likely mechanism contributing to collagen synthesis
effects of suberic acid in UVB-exposed dermal fibroblasts (Figure 8).
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Figure 6. Suberic acid increased collagen production in UVB-exposed Hs68 cells through the Akt-
dependent signaling pathway. Hs68 cells were treated with suberic acid or the vehicle after being
exposed to UVB. (A) The OR10A3 siRNA or SQ22,536 (50 uM) was pre-treated for 1 h before the
suberic acid treatment (SA; 100 uM). Then, Akt phosphorylation was analyzed. (B) The LY294002
(50 uM) was pre-treated for 1 h before the suberic acid treatment. Procollagen contents in the
supernatant were analyzed. (C) Suberic acid-mediated Akt phosphorylation was analyzed without
UVB exposure. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was used as an internal
control. Data are presented as mean± SEM of three independent experiments. Statistically significant
differences are marked as * p < 0.05, ** p < 0.01; ns, not significant.
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Figure 7. The activation of OR10A3 by suberic acid enhanced gene expression of Akt downstream
transcription factor and its target gene COL1A1 in UVB-exposed Hs68 cells. The cells were treated
with suberic acid (SA; 100 uM) or the vehicle after being exposed to UVB. The OR10A3 siRNA or NT
siRNA was pretreated for 1 h before the suberic acid treatment. (A) The mRNA expression of SP1
was analyzed. (B,C) The mRNA and the protein expression of COL1A1 were analyzed. GAPDH was
used as an internal control. Data are presented as mean ± SEM of three independent experiments.
Statistically significant differences are marked as * p < 0.05; ns, not significant.
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4. Discussion

G-protein-coupled receptors have long been of interest as molecular targets because
they regulate diverse physiological processes and have surface-accessible binding sites;
more than 30 percent of US Food and Drug Administration-approved drugs target
GPCRs [24–27]. Notably, ORs account for nearly half of the GPCRs in humans; how-
ever, these ORs were largely excluded as potential molecular targets for human therapy
because they were believed to be solely associated with smell-related functions. Currently,
ORs are thought to be intimately involved in a variety of physiological processes and could
therefore represent a promising therapeutic target class; however, their application remains
challenging. Factors contributing to the limited targeting of ORs include the fact that 90%
of orphan ORs lack ‘tool compounds’ to aid in defining their functional roles, as well as
an incomplete understanding of signaling mechanisms [6,28,29]. This study deorphanized
OR10A3 with a natural ligand (suberic acid) and identified a related downstream signaling
pathway, allowing the functional characterization of OR10A3 in human dermal fibroblasts.

Even though ORs are ectopically produced in a variety of non-olfactory organs, doubts
have often been raised concerning the potential functions of the ectopic receptors owing to
the typically low levels of the transcripts [7]. Notably, the Human Protein Atlas, a public
database of protein expression profiles, indicates that OR10A3 is highly expressed in two
tissues, the skin and brain (cerebral cortex, cerebellum, etc.) [30]. The current data provide
additional support for the hypothesis that the OR expression profile in human tissues
provides insight into OR’s unknown functions. In the future, it will be intriguing to explore
the possible functions of OR10A3 in the brain.

cAMP is a second messenger that regulates a wide variety of intracellular processes in
biological systems. It has been reported that cAMP signaling controls various downstream
signaling pathways, both directly and indirectly, depending on the situation, such as the
type of upstream GPCR and cell status; the complex nature of cAMP makes it difficult
to investigate the cAMP-triggered downstream events [31–35]. To address this issue, this
study utilized the connectivity map [36], a bioinformatics tool that searches for similarities
between a target signature and a reference collection of expression profiles, and discovered
that OR10A3-induced cAMP signaling activates the well-known Akt pathway for collagen
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synthesis. In accordance with the findings of this study, the Akt pathway has frequently
been implicated in OR/cAMP-mediated signaling pathways. A synthetic sandalwood
odorant, for example, increases human hair growth by activating the OR2AT4/cAMP/Akt
pathway [10]. Furthermore, activation of OR10J5 in response to odorant lyral promotes
angiogenesis by increasing cAMP levels and Akt phosphorylation [37].

Collagen in the skin is essential not only for cosmetic purposes, including wrinkles,
flexibility, etc. but also for pathological events. Specifically, collagen is recognized as a
crucial role in wound healing, since collagen, a fundamental component of the extracellular
matrix, plays a pivotal role in the control of the stages of wound healing either in its native,
fibrillar conformation or as soluble components in the wound environment. Impairments
in any of these stages result in a chronic, nonhealing wound that, in most cases, requires
some type of intervention to restore the process to its normal condition. Collagen, which is
central to the control of these processes, has been exploited as an adjunct to wound therapy
to promote healing [38,39]. Unfortunately, the role of OR10A3 in the wound could not
be confirmed in the current in vitro system. Further studies using in vivo models would
warrant extending the beneficial effects of OR10A3 on wound healing.

After examining the function of OR10A3 at the in vitro level, the authors attempted
to explore its function in an in vivo model, which could be more physiologically relevant
than the culture of specific cell types or cell lines. Several studies on the ectopic function
of OR have used specific gene knockout mice; however, it is not a simple task to identify
the murine ORs corresponding to the human genes. Since the OR gene family is extremely
large and their number varies by species (e.g., 1000 members in mice and 400 members
in humans), the murine ortholog for specific human OR is frequently unclear [40]; it is
even doubtful that one-to-one ortholog pairs exist between human OR and mouse OR. In
the case of OR10A3, at least five mouse genes (olfr512, 514, 516, 517, 518, and 519) show
more than 75% similarity to the human OR10A3 gene [41], implying that one of those
murine genes is the true OR10A3 ortholog, or those genes may have a one-to-many or
many-to-many ortholog relationship with OR10A3. This complex issue will be further
investigated in the future.

5. Conclusions

In summary, the present study revealed that human dermal fibroblasts express OR10A3,
a subtype of GPCR. The activation of OR10A3 by suberic acid increases the cAMP/Akt
signaling pathway, which contributes to the increased production of collagen in dermal
fibroblasts exposed to ultraviolet light. To our knowledge, this is the first report of an
ectopic OR playing a significant role in collagen synthesis. These results suggest that
OR10A3 could be a therapeutic target for anti-aging of the skin.
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