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Abstract: Somatic cells are reprogrammed with reprogramming factors to generate induced pluripo-
tent stem cells (iPSCs), offering a promising future for disease modeling and treatment by overcoming
the limitations of embryonic stem cells. However, this process remains inefficient since only a small
percentage of transfected cells can undergo full reprogramming. Introducing miRNAs, such as
miR-294 and miR302/3667, with reprogramming factors, has shown to increase iPSC colony forma-
tion. Previously, we identified five transcription factors, GBX2, NANOGP8, SP8, PEG3, and ZIC1,
which may boost iPSC generation. In this study, we performed quantitative miRNAome and small
RNA-seq sequencing and applied our previously identified transcriptome to identify the potential
miRNA–mRNA regulomics and regulatory network of other ncRNAs. From each fibroblast (N = 4),
three iPSC clones were examined (N = 12). iPSCs and original fibroblasts expressed miRNA clusters
differently and miRNA clusters were compared to mRNA hits. Moreover, miRNA, piRNA, and
snoRNAs expression profiles in iPSCs and original fibroblasts were assessed to identify the potential
role of ncRNAs in enhancing iPSC generation, pluripotency, and differentiation. Decreased levels of
let-7a-5p showed an increase of SP8 as described previously. Remarkably, the targets of identifier
miRNAs were grouped into pluripotency canonical pathways, on stemness, cellular development,
growth and proliferation, cellular assembly, and organization of iPSCs.

Keywords: noncoding RNAs; miRNAs; piRNAs; snoRNAs; iPSCs; reprogramming; pluripotency;
differentiation

1. Introduction

The generation of induced pluripotent stem cells (iPSCs) is dependent on the repro-
gramming of somatic cells by forced introduction of the reprogramming factors into the
cell [1]. However, the efficiency of this induced reprogramming is still low, and different
factors have been reported to be implicated in determining the efficacy of this process [2,3].
One of these factors is non-coding RNAs (ncRNAs), described as RNA molecules that
are not translated into proteins but are widely recognized as housekeeping molecules
and master regulators of gene expression transcriptionally and post-transcriptionally [4,5].
NcRNAs can either be classified according to the transcript size or their function into
two types; (i) small ncRNAs (sncRNAs; <200 nucleotides) and long ncRNAs (lncRNAs;
>200 nucleotides) or (ii) housekeeping/structural ncRNAs and regulatory ncRNAs [6].

Among the sncRNAs, miRNAs are short non-coding transcripts of ~22 nucleotides
that act as negative regulators for post-transcriptional gene expression. This action can
be done by forming an RNA-induced silencing complex that binds to the 3′ untranslated
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region (UTR) of the target messenger RNAs (mRNAs), which further causes either mRNA
degradation or translational inhibition [7]. Another type of sncRNAs is the piwi-interacting
RNAs (piRNAs), a class of animal-specific small silencing RNAs of ~21–35 nucleotides [8,9],
which can function only if they are associated with PIWI proteins. This association forms
the piRNA-induced silencing complexes, hence, silencing their targets at transcriptional
and post-transcriptional levels [5]. In addition, most animals have a defending mechanism
through a subset of piRNAs against transposon mobilization to preserve the germline
genome [5,8]. A further type of small ncRNAs is called small nucleolar RNAs (snoRNAs)
which are transcripts of ~60–300 nucleotides in length and predominantly accumulated in
the nucleolus [10,11]. There are two classes of snoRNAs: C/D box snoRNAs that guide-
2′-O-ribose methylation and H/ACA box snoRNAs that direct the pseudouridylation of
nucleotides [10,11]. A well-known function of these ncRNAs is the processing of ribosomal
RNA (rRNA), including rRNA modification, maturation, and stabilization. Additionally,
snoRNAs have been implicated in regulating gene expression through mRNA splicing and
editing [11].

Most of the above-mentioned cellular processes that are regulated by ncRNAs are
known to be involved in mediating stem cell pluripotency. Therefore, several studies
have focused on identifying miRNAs that may have a role in maintaining pluripotency
and enhancing the generation of iPSCs through the different stages of induced repro-
gramming. These miRNAs were classified according to their mode of action within a cell
during the reprogramming process [12]. A group of miRNAs (miR-21, miR-29a, let-7a,
and miR-34) was identified at the beginning of the reprogramming process and act as a
protector to reserve the genomic integrity and somatic identity of the original cell [13].
Other miRNAs (miR-155, miR-10b, miR-205, and miR-429) were found to modulate the
epithelial-mesenchymal/mesenchymal-epithelial transition (EMT/MET), which is essential
during the reprogramming process and for the transformation into a pluripotent state [14].
Moreover, miRNAs that belong to the miR-290/302 seed family are found within the
pluripotency regulatory network that maintains the pluripotent state of iPSCs [12,15]. It
has been shown that the inhibition of those miRNAs reduces the reprogramming pro-
cess, whereas the introduction of enhancer miRNAs improves the efficiency of the iPSC
generation [16]. In line with this, those miRNAs that are involved in the reprogramming
process and maintaining pluripotency are mainly activated via one of the crucial repro-
gramming factors, c-Myc. c-Myc activates the ESC-specific cell-cycle regulating (ESCC)
miRNAs (e.g., miR-294) that contribute to the unique cell cycle of ESCs and were found to
enhance reprogramming efficacy [17].

However, piRNA and snoRNAs are less known to have a role in reprogramming and
pluripotency. One study has identified three piRNA families expressed in reprogrammed
stem cells, and its analysis suggested that these piRNAs are implicated in the reprogram-
ming process but not cellular pluripotency. Moreover, piR-64162 has been reported to
regulate cell senescence during the reprogramming process [9]. The role of snoRNAs in
reprogramming and pluripotency is proposed to be indirect through ESC snoRNAs that
guide the dyskerin ribonucleoprotein complex (DKC1 identified as OCT4/SOX2 coactiva-
tor) to the gene enhancer. Thus, both snoRNAs and DKC1 are believed to play a role in the
transcriptional regulatory network of core pluripotency genes [18,19].

In our previous work, we generated 12 clones of iPSCs from four different primary
fibroblasts and found that one of these samples, A53T-PD2, showed significantly higher
reprogramming efficiency. To investigate the potential cause behind the elevated repro-
gramming efficiency, we analyzed the RNA-seq data of each sample and identified five
potential transcription factors that may boost iPSC generation [20]. In this study, we per-
formed miRNAome and small RNA-seq sequencing and applied our previously generated
transcriptome to identify the potential miRNA–mRNA regulomics and regulatory network
of other ncRNAs. Additionally, we compared the miRNA, piRNA, and snoRNAs expres-
sion profiles in the generated iPSCs and the original fibroblasts to identify the potential
role of ncRNAs in enhancing iPSC generation, pluripotency, and differentiation.
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2. Materials and Methods
2.1. RNA Samples

The dermal Fibroblasts, HC, ID-PD, A53T-PD1, and A53T-PD2 were used in this
study and were obtained from our previous study (Figure 1) [20]. The methodology
used for reprogramming the fibroblasts into iPSCs, characterization, validation, and RNA
sequencing of the fibroblasts and their reprogrammed iPSCs is described in our previous
publication [20].

Figure 1. Previous research workflow and results [20]. Using Sendai Virus methodology, we re-
programmed four fibroblast lines from participants from whom appropriate written consent was
obtained. Reprogrammed iPSC lines formed compacted colonies and exhibited a high nucleus to
cytoplasm ratio. Based on immunocytochemistry (ICC) and differential gene expression analysis,
all reprogrammed iPSC lines expressed pluripotency markers and were capable of differentiating
into cells of all three germ layers. RNA sequences were conducted on the four fibroblasts and their
well-characterized and validated iPSC lines.

2.2. Small RNA Library Preparation and Sequencing

Using 500 ng of total RNA, small RNA libraries were constructed. In total, 52 Qiagen
miRNA library QC spike-ins (Qiagen, cat. No. 331541) were used as an internal control for
miRNA expression. The libraries and molecular indexes were constructed using QIAseq
miRNA NGS 96 Index IL (Qiagen, Cat. No. 331565) and QIAseq miRNA NGS 96 Library
Kit (96) (Qiagen, Cat. No. 331505). cDNA was created by reverse transcription of small
RNA with 3′ and 5′ adaptor ligations targeting miRNAs. In reverse transcription, both 3′

and 5′ adaptors are added to the RNA fragments. A UMI (Unique Molecular Indices) was
incorporated into the reverse transcription primer. RT primers bind to a region of the 3′

adapter and facilitate the conversion of 3′/5′ miRNAs into cDNA while assigning a UMI
to each miRNA. A universal sequence is also added during reverse transcription. Sample
indexing primers recognize this sequence during library amplification. To purify cDNA
constructs, magnetic beads were used. Afterwards, binomial amplification of libraries
was achieved using dried universal forward primers paired with 96 dried reverse primers
(Qiagen, Cat. No. 331565). Consequently, each sample was assigned a unique custom index.
Following the amplification of the library, a cleanup was conducted using the streamlined
magnetic bead-based method. An Agilent technology 2100 Bioanalyzer (Doha, Qatar) and
Agilent High Sensitivity DNA assay (Cat. No. G2938-90020) were used to validate the
libraries. Only one peak of approximately 141 base pairs was observed.

The average size of the cDNA libra”Ies’was determined by the bioanalyzer and the
Qubit Fluorometer, Qubit HS dsDNA Assay Kit (Life Technologies, Cat. No. Q32854).
The libraries were diluted to 10 nM using a resuspension buffer and pooled using unique
indexing for Illumina. A final dilution of 3 nM was loaded, followed by clustering on
cBot2 and sequencing by Illumina using the HiSeq 3000/4000 SBS Kit (150 cycles). For the
discovery of novel miRNAs, we aimed to generate up to 20 million reads per sample.

2.3. Sequencing Read Mapping and Small RNA Annotation

The raw sequencing files from the Illumina HiSeq 3000/4000 in the BCL format were
converted to the FASTQ format using the bcl2fastq v1.8.4 conversion program. The reads
were filtered, and the adapters were trimmed. The data was evaluated for quality using
FASTQC to filter out reads with a high-quality score following adapter trimming.
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2.4. sncRNAs Analysis Using WiND Workflow

Following the principles detailed in the WiND workflow [21], the RNA sequencing
data were analyzed for piRNA and other sncRNAs. RNASeq was aligned to the GRCh38
genome using STAR, followed by FeatureCounts from the Rsubread package, and, simul-
taneously, de Novo transcriptome counts with Salmon. According to the WiND pipeline,
descriptive analyses were conducted on each count set, followed by differential expression
analyses using DESeq2, limma and/or edgeR [22–24].

2.5. Differential Expression Analysis: CLC Genomics Workbench Version 20.0.4

A differential expression analysis was performed as previously described [25]. Briefly,
when creating differential expression profiles, the FDR p-value (statistical significance)
between two or more samples was calculated. The files were exported into the CLC Ge-
nomics Workbench (version 22) for reading mapping to the hg38 human genome version.
As a result, a single mismatched base was reduced to 18 nucleotides. The CLC Genomics
Workbench was used to analyze the results of the small RNA analysis. During mapping,
filtering, and counting QIAaseq NGS spike-in reads in a dataset, a “perfect match” setting
was applied. In order to normalize the NGS spike-in reads from QIAseq, they need to be
multiplied by the total number of reads per sample. The Biomedical Genomics Analysis
plugin of the QIAGEN miRNA Quantification workflow measured the expression of each
sample miRNA found in miRBase using reads sequenced using the QIAseq miRNA Library
Kit, a tool provided by QIAGEN. To assign reads to miRNAs and piRNAs, respectively,
and to exclude those from further analysis, the reads were first mapped to miRBase version
22 database (http://www.mirbase.org; accessed on 1 April 2022) and piRNABank database
Human_piRNA_sequence_v1.0 (http://www.regulatoryrna.org/database/piRNA/; ac-
cessed on 1 April 2022) databases. Using RNA-seq analysis, reads from the QIAseq miRNA
quantification workflow were collected and mapped into non-coding RNAs, such as snoR-
NAs. QIAseq miRNA quantification allows for the grouping of miRNA either as mature
miRNAs, in which case the same mature miRNA may be derived from different precursor
miRNAs, or as seed miRNAs, in which case the same seed sequence may be detected in
other mature miRNAs. The expression tables can be classified into two groups: groups
based on maturity and groups based on seed. Integrated unique molecular indicators
(UMI) analysis allows quantification of individual miRNA molecules, which eliminates
PCR/sequencing bias. As part of the differential expression analysis, miRNAs were defined
as statistically differentially expressed if they had an expression of at least 50 read counts at
an absolute fold change greater than two and an adjusted p < 0.05. Additionally, a custom
database for piRNAs was constructed.

2.6. miRNA Profiling Comparison and Functional Enrichment Tests

IPA (Ingenuity Pathway Analysis) was used to examine pathways and molecular
networks to test candidate miRNAs’ functional enrichment. The IPA system provides a
more comprehensive pathway resource. Due to the extensive information provided by IPA,
it can also be used to analyze pathway crosstalk, since almost all molecules are represented,
as well as their connections. IPA utilizes Fisher’s exact test to identify pathways that
are enriched with miRNAs of interest. In addition, the IPA system looks for significant
molecular networks in a commercial knowledge base that combines literature, gene ex-
pression, and gene annotation information. Moreover, the analyses included in Analysis
Match were generated in IPA from more than 100,000 highly curated and quality-controlled
human disease and oncology datasets re-processed from SRA, GEO, Array Express, TCGA
(by mutational status), LINCS, GTEx, ENCODE Consortium, and more. These datasets
were generated by QIAGEN’s OmicSoft acquisition, and are the “comparisons” found
in DiseaseLand, OncoLand, SingleCellLand, and Normal Cells and Tissues, representing
various contrasts such as disease and normal, treatment vs. non-treatment, and much more.
Matches against your own analyses, analyses shared with you, and IPA’s Example Analyses
are also returned in the Analysis Match.

http://www.mirbase.org
http://www.regulatoryrna.org/database/piRNA/
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2.7. Evaluation of Other sncRNAs Expressions in Fibroblasts and Their iPSCs

The expression of sncRNAs was assessed using WIND (Workflow for PIRNAs and
Beyond D) [21], a bioinformatics workflow that addresses the crucial issue of small RNA
annotation, allowing for reliable identification of piRNAs and other sncRNAs that have
been misclassified as piRNAs in the past.

3. Results
3.1. Small RNA Sequencing Data Preprocessing and Comparison of Fibroblasts and iPSCs

In our previous study [20], we found that A53T-PD2 fibroblasts showed the highest
rate of reprogramming when compared with other fibroblasts (A53T-PD1, ID-PD, and HC).
To compare and assess the data distribution of sncRNAs in the samples of newly performed
small RNA sequencing data, we used WIND (Workflow for PiRNAs and Beyond D) prior to
the DE analysis workflow, which consisted of count normalization, and which is necessary
to make accurate comparisons of gene expressions between samples. Normalization is the
process of scaling raw count values to account for the other factors. The distributions of
the samples before and after data cleaning or normalization are shown in Supplementary
Figure S1. In this way, the expression levels are more comparable between and within
samples. The comparison between raw data and filtered data is based on the threshold-
ing of the data based on the mean and median of the data (log2(10/median(library_size)
* 1 × 10−6 + 2/mean(library_size) * 1 × 10−6) in fibroblasts and iPSCs, as shown in Supple-
mentary Figure S1A–D, respectively. Comparing between samples, none appear to have
abnormal distributions. Supplementary Figure S1 shows the effects of normalization on
the filtered data for fibroblasts (Supplementary Figure S1A) and iPSCs (Supplementary
Figure S1B). A multidimensional scaling (MDS) was performed to visualize the level of
similarity and clustering based on gene expression. The MDS plots show that A53T-PD2
has a different distribution from other fibroblasts (Supplementary Figure S1B). Moreover,
A53T-PD2 iPSCs clones are also clustered together (Supplementary Figure S1E). Further-
more, the density plots of log count distribution of normalized data showed similar and
reliable distributions between the samples when compared to the raw data in fibroblasts
(Supplementary Figure S1C) and iPSCs (Supplementary Figure S1F).

3.2. miRNA and piRNA Profiles Are Differentially Expressed in Fibroblasts vs. Their
Reprogrammed iPSCs

In order to identify the ncRNAs that were expressed by the samples, we first focused
on those miRNAs and piRNAs that were differentially expressed between fibroblasts and
the corresponding iPSCs (Figure 2A,B). Using gene expression signatures, we were able to
demarcate fibroblasts from iPSCs. Based on read depth coverages, fibroblast samples exhib-
ited significantly higher levels of miRNAs (80%) when compared to their corresponding
iPSCs (20%) (Figure 2A, left and right panels). In contrast, piRNA expression in fibroblasts
was only 2% (Figure 2B, left panel), which is significantly lower than the piRNA abundance
in iPSCs, which is 10% (Figure 2B, right panel). In addition, we utilized two-dimensional
PCA analysis to demonstrate how clearly fibroblasts and iPSCs are clustered based on their
gene expression. Using miRNAs and piRNAs as indicators of expression, fibroblast samples
had a distinct cluster from that of iPSCs (Figure 2C,D, respectively). Next, we performed a
differential expression analysis to determine which miRNA and piRNA are expressed at
different levels between fibroblasts and their reprogrammed iPSCs. Following the criteria,
FDR corrected p-value ≤ 0.05 and FC-abs ≥ 2.0, and we identified 276 significantly DE
miRNAs (270 miRNA upregulated and 6 downregulated) and 239 DE piRNAs (164 piRNA
upregulated and 75 piRNA downregulated) between fibroblasts and their reprogrammed
iPSCs as shown in the volcano diagram (Figure 2E,H; Tables S1 and S2). Then, we organized
the DE miRNAome and piRNAome data in a heatmap to visualize the distinct expression
profile between fibroblasts and their iPSCs. The hierarchical clustering demonstrated that
the miRNA and piRNA profiles from fibroblasts and their iPSCs groups were distinctly
separated (Figure 2G,H).
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Figure 2. miRNA and piRNA differential expression analysis between fibroblasts and their repro-
grammed iPSCs. (A) Bar graph showing that all fibroblasts samples express similar percentage of miR-
NAs, and it is significantly higher from miRNA expression in their iPSC samples (p-value = 0.0015;
p-value < 0.01 corresponds to **). (B) piRNA expression in hiPSCs is significantly higher than their
fibroblast samples (p-Value = 0.0208; p-value < 0.05 corresponds to *). (C,D) Principal component
analysis (PCA) based on DE miRNAs and piRNA found between fibroblasts and their reprogrammed
iPSCs. (E,F) Volcano plots of total DE miRNAs and piRNA found between fibroblasts and their
reprogrammed iPSCs, respectively. (H) heat map of DE miRNAs in fibroblasts vs. iPSCs. (G) heat
map of DE piRNAs in fibroblasts vs. iPSCs.
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3.3. Fibroblasts Differentially Expressed miRNA, miRNA Target Prediction, and Interaction
with Transcriptome

In order to identify miRNA and mRNA interactions that occur before the iPSC re-
programming process, the DE miRNAome and DE transcriptome in fibroblasts were first
identified in the A53T-PD2 fibroblasts, which have shown to have the highest rate of
reprogramming, compared to the rest of fibroblasts. Only miRNAs and mRNAs with
reads greater than 50 in all samples were considered for differential gene expression
analysis. The t-statistics and expression fold change (FC) analysis, using p-values < 0.05
and absolute-FC > 2, revealed an overall differential expression of 52 DE miRNAs (23 up
and 29 down) and 499 DE mRNAs (332 down- and 167 up-) in the A53T-PD2 fibroblasts
(with the highest rate of reprogramming) compared to the rest of fibroblasts (Figure 3A;
Tables S3 and S4). Having established the miRNAs and mRNAs that showed dysregu-
lation in A53T-PD2 fibroblasts, we composed the mRNA targets of these DE miRNAs,
using the computational miRNA target prediction IPA (Ingenuity Pathway Analysis) that
uses TargetScan-Human, TarBase and miRecords databases, and experimentally validated
interactions. The analysis revealed a total number of 275 miRNA–mRNA interactions,
where 89 of these interactions were up-regulated (up) miRNAs and down-regulated (down)
mRNAs, 45 were miRNA down/mRNA up, 39 miRNA up/mRNA up, and 102 miRNA
down/mRNA down (Figure 3C). Out of all these interactions, a total of 134 miRNA–mRNA
interactions were selected from direct interactions that were oppositely expressed. Fifty-
five of these interactions were not predicted to be involved in pathways, whereas 79 were
predicted in different pathways. The later interactions correspond to 52 microRNA, with
targeting information available and filtered to 43 family miRNA clusters targeting 79 mR-
NAs. Out of these 43 family clusters, 4 miRNA clusters (9% of all miRNA), miR-6758-5p,
miR-5191, miR-466d-5p, and miR-423-5p targeted 31 mRNAs (which corresponds to 40%
of all predicted mRNAs) (Table S7). The top DE miRNAs were miR-340-3p, miR-4747-
3p, miR-3960, miR-193b-5p, miR-451a, miR-423-5p, miR-30b-3p, miR-3198, miR-6840-5p,
miR-182-5p, miR-3921, miR-6832-5p, miR-6509-5p, miR-380-3p, and miR-600 (Figure 3E).

On the other hand, 10 significantly enriched pathways were predicted based on
the miRNA interactions and the DE mRNAs, CBS/CBSL, H2AC18-19, ACAN, BEX1,
CES1, ACTC1, RARRES2, ANKRD1, PTGDS, ANGPTL4, GSTM1, MMP1, VAT1L, PTGS2,
COLEC12, SCD, FADS2, MMP3, NES, and HCFC1R1 (Figure 4A). The IPA graphical
summary of the major biological themes (canonical pathways, upstream regulators, dis-
eases, and biological functions) is shown in Figure 4C. This summary illustrates the IPA
Core Analysis of how the major biological concepts relate to one another. The predicted
canonical pathways encoding homing of cells, organization of the cytoskeleton, cell death,
and survival are shown and enriched (Figure 4B). Two predicted pathways; “Oxidative
stress response” and “Phagosome formation” are significantly enhanced (Figure 4C; shown
in orange). However, eight pathways were significantly inhibited; “G-Protein receptor
signaling”, “Death receptor signaling”, “BEX2 signaling pathway”, “PI3Ks biosynthesis
and degradation”, “TGF-β signaling”, “Autophagy”, and “Actin cytoskeleton signaling”
(Figure 4C; shown in blue). The top regulatory effect network significantly inhibited cor-
responds to “cell proliferation of fibroblasts” disease/function with a high consistency
score (measure of how causally consistent and densely connected is the regulator effects
network) of 18.112 (right-tailed Fisher’s Exact Test p-value of <0.05) (Figure 4D). The score
is increased for consistent paths, those that connect an upstream regulator to a target and
then to a disease or function where the two path segments are consistent with the published
literature and the known and predicted states of the three nodes in that path.



Cells 2022, 11, 3833 8 of 17

Figure 3. The differentially expressed miRNA and proportion estimates of DE miRNome and DE
transcriptome in fibroblasts and iPSCs with high reprogramming efficiency. (A) A bar graph of
significantly the number of down- and up-regulated miRNAs and mRNAs in fibroblasts. (B) A bar
graph of significantly the number of down- and up-regulated miRNAs and mRNA in iPSCs. (C) A
pie chart of miRNA-mRNA interactions in fibroblasts. (D) A pie chart of miRNA-mRNA interactions
in iPSCs. (E) Top down- and up-regulated miRNAs and mRNAs in fibroblasts. (F) Top down- and
up-regulated miRNAs and mRNAs in iPSCs.
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Figure 4. miRNA–mRNA interactions and predicted pathways in fibroblasts with high reprogram-
ming efficiency. (A) miRNA-mRNA interactions correlation. (B) Graphical summary of the major
biological themes (canonical pathways, upstream regulators, diseases, and biological functions) in
the IPA Core Analysis to illustrate how those concepts relate to one another. Predicted canonical
pathways encoding homing of cells, organization of the cytoskeleton, cell death, and survival are
shown. The genes shaded in orange are upregulated and those that are blue are downregulated.
(C) A bar graph of the top predicted pathways; orange bars correspond to upregulated pathways
and blue to the downregulated ones. (D) The top regulatory effect network predicting the “cell
proliferation of fibroblasts” function. The genes shaded in orange or red are upregulated and those
that are blue or green are downregulated. The intensity of the shading shows to what degree each
gene was up- or down-regulated. A solid line represents a direct interaction between the two gene
products and a dotted line represents an indirect interaction. (E) IPA Analysis Match in the context
of over 100,000 IPA analyses to determine similarities with the most significant canonical pathways
(CP), upstream regulators (ER), diseases and biological functions (DE) and causal network (CN).
The activation z-score is a summary value that predicts the activation (positive value: orange) or
inhibition (negative value: blue) of a CP, UR, or CN based on the gene expression changes.
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To help confirm our interpretation of the results and to underly shared biological
mechanisms, we performed an advanced analysis match of our dataset that corresponds
to the highest reprogramming enhanced fibroblasts with other IPA Core Analyses (tens
of thousands of other human expression analyses curated from public source; processed
from SRA, GEO, Array Express, TCGA, LINCS, GTEx, and ENCODE Consortium) with
similar biological results as compared to ours. This “analysis-to-analysis” matching is based
on shared patterns of Canonical Pathways, Upstream Regulators, Causal Networks, and
Diseases and Functions. Interestingly, we found that of the top human curated analyses,
four datasets showed similar results to our data and corresponded to “normal embryo cells
in differentiation media (Figure 4E).

3.4. iPSCs Differentially Expressed miRNA, miRNA Target Prediction, and Interaction
with Transcriptome

However, in the A53T-PD2 iPSCs, there were 25 miRNAs (22 down and 3 up) and
681 mRNAs (341 down and 310 up) that differed significantly from the rest of the iP-
SCs (Figure 3B; Tables S3 and S4). Sixty-nine miRNAs and mRNAs interactions were
found of which 5 were miRNA up and mRNA down, 38 were miRNA down and mRNA
up, 7 were miRNA up and mRNA down, and 19 were miRNA down and mRNA down
(Figure 3D). In total, 45 interactions belonged to one pathway. As a result, we identified 43
miRNA-mRNA interactions, which corresponds to 21 families of miRNA clusters targeting
22 mRNAs (Table S8). In total, 12 mRNAs (54% of all predicted mRNAs) are targeted by
the miR-142-3p, miR-214-3p, miR-22-3p, and miR-762 family clusters. The top DE mRNAs,
KRT72, AL035078.4, POSTN, DHRS2, PTPRC, TGFBI, COL11A1, COL1A1, APELA, PRAC1,
MT1F, SP8, UTF1, MT1G, NEFL, MT2A, STAU2, IER3, and CRLF1 are involved in stem-
ness, cellular development, growth and proliferation, cellular assembly and organization,
pluripotency, and self-renewal of human iPSCs, which were highly enriched (Figure 5). Our
previous publication [20] provides a detailed description of iPSCs DE transcriptome. The
top DE miRNAs were miR-214-3p, miR-199a-5p, miR-10a-5p, let-7a-5p, miR-199a-3p, miR-
219a-2-3p, miR-330-5p, miR-486-5p, miR-143-3p, miR-142-5p, miR-291a-3p, and miR-295-5p
(Figure 3F).

3.5. Differentially Expressed piRNAs and Other ncRNAs in Fibroblasts and Their iPSCs

Given the aim of our experimental approach to identify not only miRNAs but also
other sncRNAs, we did a comparative analysis of piRNAs and other ncRNAs between
fibroblasts and iPSCs with higher reprogramming efficiency. The distribution of piRNA
clusters across chromosomes was variable between both groups, showing that distributions
were not uniform and were not proportional to the length of the chromosome. piRNAs
in fibroblasts were distributed over eight chromosomes; however, in iPSCs, they were
found in 18 different chromosomes. Eighteen piRNA were upregulated in the A53T-PD2
fibroblasts, whereas 20 piRNA were DE in their iPSC counterparts. Out of those, two
piRNA, piR-hsa-21126, and piR-hsa-32170 were expressed in both A53T-PD2 fibroblasts
and iPSCs (highlighted in yellow; Figure 6).

To provide functional clues, and potential target genes for the reprogramming, associ-
ated piRNAs were analyzed. Several genes neighboring piRNAs clusters were predicted:
“Protein serine/threonine kinase activity”, Ubiquitin-protein transferase activity”, “Regulation
of chromatin assembly or disassembly” in fibroblasts that showed higher efficiency in repro-
gramming compared to other fibroblasts, including 7 genes, GOLGA2 Pseudogene 11
(GOLGA2P11), TP53 Target 1 lncRNA (TP53TG1), Long Intergenic Non-Protein Coding
RNA 661 (LINC00661), Serine/Threonine-Protein Kinase Tousled-Like 1 (TLK1), Ubiquitin
Protein Ligase E3C (UBE3C), Armadillo Repeat Containing X-Linked 5 (ARMCX5), and
Downstream Of Tyrosine Kinase 6 (DOK6) (Figure 6; Table 1).
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Figure 5. miRNA–mRNA interactions and predicted pathways in iPSCs with high reprogramming
efficiency. (A) miRNA-mRNA interactions correlation. (B) A bar graph of the top predicted pathways;
orange bars correspond to upregulated pathways and blue to the downregulated ones. (C) Predicted
canonical pathways encoding stemness, cellular development, growth and proliferation, cellular
assembly and organization, pluripotency, and self-renewal of human iPSCs. The genes shaded in
orange or red are upregulated and those that are blue or green are downregulated. (D) Predicted
canonical pathway encoding specifically “Human Stem Cell Pluripotency”. The genes shaded in red
are upregulated and those that are green are downregulated. The intensity of the shading shows
to what degree each gene was up- or down-regulated. A solid line represents a direct interaction
between the two gene products and a dotted line represents an indirect interaction.
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Figure 6. Distribution of piRNA clusters across chromosomes and differentially expressed (DE)
piRNAs (A) piRNA cluster chromosome in fibroblasts with higher reprogramming efficiency.
(B) DE piRNA in fibroblasts with higher reprogramming efficiency. (C) piRNA cluster chro-
mosome in iPSCs with higher reprogramming efficiency. (D) DE piRNA in iPSCs with higher
reprogramming efficiency.

Table 1. piRNA downregulated in fibroblasts that showed higher efficiency in reprogramming.

piRNA Predicted Target Predicted Target Name Predicted Pathway

piR-hsa-26594 GOLGA2P11 GOLGA2 Pseudogene 11

Protein serine/threonine kinase
activity/Ubiquitin-protein transferase
activity/Regulation of chromatin
assembly or disassembly

piR-hsa-28405 TP53TG1 TP53 Target 1 lncRNA
piR-hsa-28402 LINC00661 Long Intergenic Non-Protein Coding RNA 661

piR-hsa-32170 TLK1 Serine/Threonine-Protein Kinase Tousled-Like 1
UBE3C Ubiquitin Protein Ligase E3C

piR-hsa-2117 ARMCX5 Armadillo Repeat Containing X-Linked 5
DOK6 Downstream of Tyrosine Kinase 6

In contrast, in iPSCs, several other genes neighboring piRNAs clusters were predicted:
“regulation of transcription”, “multicellular organism development”, and “DNA-binding
transcription factor activity”, which showed higher efficiency in reprogramming compared
to other fibroblasts, including 13 genes, Zinc Finger Protein 318 (ZNF318), Protein O-
Linked Mannose N-Acetylglucosaminyltransferase 2 (POMGNT2), Tight Junction Protein 1
(TJP1), Ferritin heavy chain like 18 (FTH1P18), NBPF Member 4, 6 and 7 (NBPF4, 6 and
7), Proline-Rich and Gla Domain 1 (PRRG1), Long Intergenic Non-Protein Coding RNA
205 (LOC642852), Myosin Heavy Chain 3 and 4 (MYH3 and 4), Serine/Threonine-Protein
Kinase Tousled-Like 1 (TLK1), Ubiquitin Protein Ligase E3C (UBE3C), Churchill Domain
Containing 1 (CHURC1), Long Intergenic Non-Protein Coding RNA 1015 (LINC01015),
and Zinc Finger Protein (ZNF668) (Figure 6; Table 2).
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Table 2. piRNA downregulated in iPSCs that showed higher efficiency in reprogramming.

piRNA Predicted Target Predicted Target Name Predicted Pathway

piR-hsa-324 ZNF318 Zinc Finger Protein 318

Regulation of transcription/multicellular
organism development/DNA-binding
transcription factor activity

piR-hsa-23289 POMGNT2 Protein O-Linked Mannose
N-Acetylglucosaminyltransferase 2

TJP1 Tight Junction Protein 1
piR-hsa-12442 FTH1P18 Ferritin heavy chain like 18

NBPF4, 6 & 7 NBPF Member 4, 6 and 7
PRRG1 Proline-Rich and Gla Domain 1

piR-hsa-8226 LOC642852 Long Intergenic Non-Protein Coding RNA 205
piR-hsa-6841 MYH3 & 4 Myosin Heavy Chain 3 and 4
piR-hsa-32170 TLK1 Serine/Threonine-Protein Kinase Tousled-Like 1

UBE3C Ubiquitin Protein Ligase E3C
piR-hsa-23655 CHURC1 Churchill Domain Containing 1
piR-hsa-28646 LINC01015 Long Intergenic Non-Protein Coding RNA 1015

ZNF668 Zinc Finger Protein 668

Moreover, in the Salmon’s analysis estimated for gene-level DE analysis, 15 other
ncRNAs (5 lncRNA, 9 snoRNAs, and 1 snRNA) were in fibroblasts (11 upregulated and
4 downregulated). Two snoRNAs were upregulated in iPSCs; SNORA63 snoRNA, H/ACA
Box 63, and SNORD1C (snoRNA, C/D Box 1C) (Figure 7). Using IPA software, two
canonical pathways were predicted in fibroblasts, EIF2 signaling and FAK signaling. FAK
signaling was a conserved canonical pathway in the corresponding iPSCs.

Figure 7. Other differentially expressed ncRNAs in fibroblasts and their iPSCs and the predicted
canonical pathways. (A) DE snRNAs in fibroblasts with higher reprogramming efficiency and
predicted canonical pathways. (B) DE snRNAs in iPSCs with higher reprogramming efficiency and
predicted canonical pathway.

4. Discussion

Due to the low efficiency of iPSC reprogramming, it is often difficult to adapt the
process to high throughput approaches. In this way, the identification of RNA networks
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at the molecular and cellular level of somatic cells is needed prior to the reprogramming
process. In our previous work, we generated iPSCs from four different primary fibroblast
samples and one of these samples, A53T-PD2 fibroblasts, showed a significantly higher
efficiency. To investigate the potential transcription factors behind the elevated reprogram-
ming efficiency, we performed transcriptome profiling and analyzed the RNA-seq data
for each sample and three clones of iPSCs of each fibroblast. As a result, we identified
five potential transcription factors (GBX2, NANOGP8, SP8, PEG3, and ZIC1) that may
boost human iPSC generation [20]. In this study, we used a genome-wide sequencing
approach to identify miRNA clusters, piRNAs, and snoRNAs that may function as cell
modulators as fibroblasts reprogrammed into iPSCs. The role of small noncoding tran-
scripts, miRNAs, and other sncRNAs, in diverse physiological and pathological processes is
emerging, but their role in reprogramming cells is not yet fully understood. A comparison
of miRNA, piRNA, and snoRNA expression profiles in iPSCs and original fibroblasts was
performed to examine their role in regulating the generation of iPSCs and their pluripotency.
miRNA expression profiling of iPSCs compared with their original fibroblasts provided
alternative perspectives on miRNA core regulatory networks regulating differentiation and
pluripotent characteristics.

It has been described that several miRNAs associated with the reprogramming of cells
exhibit clustered expression, even when not encoded at the same genetic locus; that is, they
are expressed simultaneously during specific normal homeostatic cellular programs [26,27].
Clusters of miRNAs are DNA regions that encode multiple miRNAs at once, illustrating
the expansive nature of miRNAs as well as their functional importance. Different studies
showed that the expression of multiple miRNAs is altered during reprogramming and
is crucial to developing a novel and more efficient reprogramming method [28]. It is
fundamental to determine whether the clustering properties of miRNAs could be exploited
in this way. In this study, four miRNA clusters, miR-6758-5p, miR-5191, miR-466d-5p, and
miR-423-5p, were identified to target 31 mRNAs (40% of predicted mRNAs) in fibroblasts
with the highest rate of reprogramming. The functional miRNA-mRNA interactions
are associated with cell homing, organization of the cytoskeleton, increased survival,
and decreased cell death in fibroblasts. This fact might explain the reason behind the
effectiveness and higher efficiency reprogramming effects in A53T-PD2 fibroblasts.

A53T-PD2 fibroblasts’ have correlated with increased cell homing and a decreased
cell proliferation which may correlate positively to the overall reprogramming efficiency
as described before [20]. Previous data in murine fibroblasts demonstrated that the prolif-
eration rate of the somatic cell plays a critical role in reprogramming. Slowing down the
proliferation and an increase of cell survival and homing properties of the original cells are
described to be beneficial to the induction of the iPSCs [28–30].

A significant finding was that four of the top human curated analyses showed results
similar to our own and corresponded to “normal embryo cells in differentiation media”.
Given that we are studying the fibroblasts that showed higher rates of reprogramming, we
can postulate that this phenomenon is not only specific to these fibroblast cells, but it is a
general phenomenon for embryo-derived cells as well as cells with enhanced properties
related to iPSC generation, pluripotency, and differentiation (Figure 4E).

The results of the miRNA identified in iPSCs A53T-PD2 clones support pluripotency
properties. Remarkably, the targets of identifier miRNAs were grouped into pluripotency
canonical pathways, on stemness, cellular development, growth and proliferation, cellular
assembly, and organization of iPSCs. The top canonical pathway showed that A53T-PD2
iPSCs are more likely to have pro-pluripotency and self-renewal regulatory systems. In
this study, we observed a decrease in miR-142-3p levels, which is previously described
to regulate UTF1 [31]. This might result in an increase of iPSCs self-renewal and de-
creased apoptosis. miR-22-3p belongs to the Pluripotency-associated miR-290/302 family
of miRNAs that promote pluripotency [32]. Moreover, miR-214-3p and miR-762, which are
downregulated A53T-PD2 clones, may regulate the proliferation and differentiation [33,34].
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Furthermore, the decreased levels of let-7a-5p in A53T-PD2 clones directly regulate
PDGF and SP8 (Figure 5). SP8 is one of the previous transcription factors described in our
previous study to enhance reprogramming. SP8 was shown to be upregulated through re-
programming and self-renewal stages. SP8 is involved in the first stages of reprogramming
and is also essential in maintaining the pluripotency in later stages. Decreased levels of
let-7a-5p showed an increase of SP8. Additionally, let-7a-5p decreased differentiation of
induced stem cell, apoptosis, increasing cell viability. These findings are consistent with
our previous research where we found that SP8 is increased in A53T-PD2 fibroblasts with
higher reprogramming efficiency.

Our analyses highlighted different sncRNAs, involving piRNAs and snoRNAs, which
are worth consideration. Among the analyzed piRNAs, piR-hsa-21126 and piR-hsa-32170,
were conserved and downregulated in both A53T-PD2 fibroblasts and iPSCs. From an in
silico analysis, there is an overlap between piR-hsa-21126 and tRNASer gene. The tRNASer

gene is responsible for translation of a non-universal genetic code. Furthermore, piR-hsa-
32170 is described as being involved in germline-specific events such as germline stem
cell maintenance and meiosis [35]. Moreover, the predicted targets of piR-hsa-32170 are
Serine/Threonine-Protein Kinase Tousled-Like 1 (TLK1) and Ubiquitin Protein Ligase E3C
(UBE3C). TLK1 is a negative regulator of core transcription factors in murine embryonic
stem cells [36]. UBE3C was described to be overexpressed in stem-like NSCLC (non-small-
cell lung cancer) cells and acted as a stemness enhancer [37]. Therefore, we speculate that
the downregulation of piR-hsa-32170 may effectively regulate stemness by balancing the
expression of two proteins, one of which enhances stemness whereas the other inhibits it.

In germ cells, the Piwi-piRNA pathway is active, where its functions are needed for
germ cell maintenance and differentiation. Piwi proteins and piRNAs have been detected
outside germline tissue, but little information is available on the activity of this pathway
in mammalian somatic cells. We speculated, based on our results and those of others,
that piRNA might play a role in reprogramming progress via regulating genes related to
senescence. Cellular senescence has been demonstrated to share some common mechanisms
with cellular reprogramming and to contribute to it [9].

Although it may be difficult to speculate a possible mechanism for snoRNA/host
gene CNAs contributing to disease onset, it is worth pointing out that the snoRNAs/host
gene pairs shown to be altered in multiple physiological and pathological mechanisms
have already been recognized for their biological relevance. The pair of snoRNA and host
genes, SNORA63/EIF4A2, targets developmental potency and histone H3 transcription
for translational regulation of stem cell pluripotency [38]. Indeed, by analyzing IPA data,
it was possible to predict the EIF2 signaling pathway, a major component of translational
regulation, as a major canonical pathway affected by the group of snoRNA and other
sncRNAs (Figure 7).

It will be important to conduct further research into the regulatory and biological
functions of sncRNAs and long non-coding RNAs in stem cell signaling, reprogramming,
and differentiation in the future. Although a large number of ncRNAs have been identified,
it has proved to be challenging to demonstrate the functional relevance of these RNAs for
stem cell research, reprogramming, and differentiation. A thorough study of the ncRNA
candidates involved in the pathways of pluripotency, self-renewal, and survival must be
performed to determine the physiological relevance of ncRNAs in stem cell research. In
order to establish a personalized approach to medicine, the ncRNA profile of each type of
human stem cell should be systematically examined. Accordingly, the potential underlying
mechanism of miRNA and other ncRNA-mediated reprogramming may offer an improved
method of generating patient-specific iPSCs that are of improved quality and safety for
regenerative medicine and transplantation therapy.

5. Conclusions

The significance of transcription factors involved with pluripotent stem cells for iPS
cell development cannot be overstated. However, previous studies identified that miRNA



Cells 2022, 11, 3833 16 of 17

clusters were able to reprogram fibroblasts more effectively than the standard OSKM (OCT4,
SOX2, KLF4 and MYC transcription factors) combination reprogramming approach [26].
Considering the advancements in miRNA and ncRNAs biology, these findings may lead
to a non-viral, non-transcription factor-mediated method of generating iPSCs with higher
pluripotent properties. Ultimately, this could be applied for both basic stem cell biology
studies and for high throughput manufacturing of human iPSCs from large populations
of patients.
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normal reprogramming efficiency. Table S5: miRNA analysis iPSCs high reprogramming efficiency
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