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Abstract: Adrenocortical carcinoma (ACC) is a malignancy of the endocrine system. We collected clin-
ical and pathological features, genomic mutations, DNA methylation profiles, and mRNA, IncRNA,
microRNA, and somatic mutations in ACC patients from the TCGA, GSE19750, GSE33371, and
GSE49278 cohorts. Based on the MOVICS algorithm, the patients were divided into ACC1-3 subtypes
by comprehensive multi-omics data analysis. We found that immune-related pathways were more
activated, and drug metabolism pathways were enriched in ACC1 subtype patients. Furthermore,
ACC1 patients were sensitive to PD-1 immunotherapy and had the lowest sensitivity to chemother-
apeutic drugs. Patients with the ACC2 subtype had the worst survival prognosis and the highest
tumor-mutation rate. Meanwhile, cell-cycle-related pathways, amino-acid-synthesis pathways, and
immunosuppressive cells were enriched in ACC2 patients. Steroid and cholesterol biosynthetic
pathways were enriched in patients with the ACC3 subtype. DNA-repair-related pathways were
enriched in subtypes ACC2 and ACC3. The sensitivity of the ACC2 subtype to cisplatin, doxorubicin,
gemcitabine, and etoposide was better than that of the other two subtypes. For 5-fluorouracil, there
was no significant difference in sensitivity to paclitaxel between the three groups. A comprehensive
analysis of multi-omics data will provide new clues for the prognosis and treatment of patients
with ACC.

Keywords: adrenocortical carcinoma; multi-omics analysis; prognosis and treatment; cell signaling
pathway; sensitivity to drugs

1. Introduction

Adrenocortical carcinoma (ACC) is an aggressive endocrine malignancy that originates
in the adrenal cortex, accounting for approximately 5% of adrenal tumors, with an annual
incidence of 0.7-2.0 cases per million people [1,2]. The onset age of ACC has bimodal
characteristics, with a high incidence in the two age stages of 40-50 years old and 1-5 years
old [2,3]. The disease stage is one of the most important prognostic factors. Currently,
the staging system proposed by the European Adrenal Neoplasms Research Network
(ENSAT) is a commonly used international standard [4]. Stages I and II are confined
to the organs and can be cured by complete resection. Stages III and IV are considered
aggressive and metastatic advanced tumors, and the five-year survival rate for stage IV
patients is only 6-13% [2,5]. Some researchers believe that ACC may be related to the
overproduction of steroid precursors, which have the characteristics of early metastasis
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and recurrence [6]. Complete surgical removal of ACC is the only chance for a long-
term cure [7]. Mitotane has cytotoxic effects on steroidogenic cells in the adrenal cortex;
therefore, it is recommended as a clinical adjuvant therapy, but its therapeutic effect is still
unsatisfactory [2,8].

Some researchers have found that insulin-like growth factor 2 (IGF2), (3-catenin
(CTNNB1), and TP53 may be potential drivers of sporadic adrenocortical tumors. The IGF
system has growth-promoting and differentiation functions in the adrenal glands. IGF2
overexpression is found in most ACCs and is often associated with poor outcomes [1,9].
It regulates cell proliferation and apoptosis mainly by binding to the insulin-like growth
factor 1 receptor (IGF1R), especially in pediatric patients [10,11]. As a key component of
the Wnt signaling pathway, 3-catenin plays an important role in the development of the
adrenal cortex [12], and is a poor prognostic factor in ACC [13]. Somatic mutations are
common in ACC, and some researchers have found that somatic mutations in CTNNB1
are independent predictors of poor disease-free survival and overall survival in ACC [14].
Pan-genomic studies have found that TP53 mutations, mainly exon mutations, are common
in sporadic ACC cases [15].

Multiple high-throughput detection techniques have been used in multi-omics asso-
ciation studies to elaborate on a single scientific subject. Numerous variables can affect
cancer development. These include a wide range of information on various facts. Infor-
mation may be combined at several levels and integrated, and staging prediction accuracy
can be improved by multi-omics association studies [16]. Over the past 50 years, the
genetic approach to cancer has taken over the profession. However, this genome-only
perspective is limited and has the propensity to present cancer as a strongly heritable
illness. According to new research, cancer is a multi-omics illness and is not as heritable or
exclusively hereditary as previously believed. Cancer development and manifestation are
influenced by the exposome, metabolome, and genome. Cancer-specific metabolism has
been genetically altered to feed and support proliferating cancer cells [17]. The etiology of
tumor growth may only be partially understood using a single type of molecular dataset.
Several studies have used multi-omics data to categorize cancer patients and predict prog-
noses [18,19]. Therefore, a crucial stage in the machine-learning-model-based prediction
of survival and recurrence is learning new characteristics from multi-omics data that help
predict prognosis.

Multi-omics analysis of ACC can reveal several undiscovered oncogenic alterations
and guide the exploration of new therapeutic approaches. In this study, we collected
clinical and pathological characteristics, DNA methylation profiles, genomic mutations,
and mRNA, IncRNA, and microRNA (miRNAs) information of patients, and somatic
mutation data from four ACC datasets. Multi-omics analysis using the MOVICS algorithm
provided new clues for the prognosis and treatment of patients with ACC.

2. Materials and Methods
2.1. Data Collection

Multi-omics data of ACC patients, including DNA methylation, gene mutations,
mRNA, miRNA, and IncRNA, were downloaded from the TCGA-ACC dataset for molec-
ular subtyping. The “TCGAbiolinks” R package (version 2.25.3) which is provided in
https:/ /github.com/BioinformaticsFMRP /TCGAbiolinks.git, was used to obtain clinical
features and transcriptomic expression data. Gene symbol annotation was performed
as described in our previous study [20]. The miRNA expression and DNA methylation
450 matrices were downloaded from the UCSC Xena (https:/ /xenabrowser.net/datapages,
accessed on 15 April 2022). Somatic mutation data were downloaded from the cbiopportal
(https:/ /www.cbioportal.org/, accessed on 15 April 2022). After combining all available
data from the different patients, 78 eligible patients were included in the TCGA-ACC cohort.
In addition, we extracted data from 89 patients with ACC from the GSE19750, GSE33371,
and GSE49278 cohorts [21-24]. The batch effect is an abiotic difference between at least two
datasets. To eliminate the bias caused by the batch effect, we used the combat algorithm
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package “SVA” (version 3.46.0). The GEO combined cohort was used as the subsequent
test cohort, and the TCGA-ACC cohort was used as the training cohort.

2.2. Molecular Subtypes were Identified Using Multi-Omics Analysis

Molecular subtypes were determined using multi-omics data according to recently
published guidelines for the R package “MOVICS” (version 1.0) [25]. The input for
“MOVICS” is multi-omics data, and the output is the recommended molecular subtypes,
presenting molecular features, prognosis, treatment sensitivity, and others; the VIGNETTE
of this package is provided in https://xlucpu.github.io/MOVICS/MOVICS-VIGNETTE.
html (accessed on 15 April 2022), with details of how to use it. First, univariate Cox re-
gression analysis was used to evaluate factors related to overall survival (OS), including
relevant biological information downloaded as above (all p < 0.05). Mutated genes were
those with a mutation frequency greater than 10%. Based on the evaluation of the multi-
omics data, the cluster prediction index (CPI) [26] and the gap statistic [27] were utilized
to determine the correct number of subtypes. The number that resulted in the maximum
value of both the gap statistic and the CPI was chosen as the optimum number of clusters
for the input data. Ten clustering algorithms (iClusterBayes, moCluster, CIMLR, IntNMF,
ConsensusClustering, COCA, NEMO, PINSPlus, SNF, and LRA) were then used to separate
patients into various subtypes, and a combined classification using a consensus set was
used to identify each subtype with a high degree of robustness.

Specifically, if t;,, algorithms are specified where 2 < t,,;, < 10, the package cal-

(*) ) _q

culates a matrix M2 per algorithm, where 7 is the number of samples and M if
(t)

when samples i and j are clustered in the same subtype; otherwise, M 7 =0 After
obtaining all results from specified algorithms, MOVICS calculates a consensus matrix
CM = Zi'i“f M®), and CM;;€ [0, 10]. The sample similarity among the subtypes was
calculated using silhouette scores.

2.3. Characteristics of Genetic Variations among Subtypes

Tumor-mutation burden (TMB) is the number of mutations per million bases, and
fraction genome alteration (FGA) refers to the percentage of gene fragments with increased
or lost copy numbers in the total genome. Total neoantigen and cytolytic activity (CYT)
scores from previous studies were predicted by analyzing tumor-specific mutations, splic-
ing, gene fusions, endogenous reverse transcription factors, and other criteria [28]. The
downloaded copy number data from FireBrowse (http://firebrowse.org/, accessed on
15 April 2022) were visualized using the MafTools R package (version 2.14.0).

2.4. Comparison of Signaling Pathway Activation and Immune Infiltration

Single-sample gene-set enrichment analysis (ssGSEA) [28] package “GSVA” (version
1.1.11) was used to analyze 50 HALLMARK gene sets for each patient to reveal the ac-
tivation of biological pathways. The Molecular Signatures Database (MSigDB, accessed
on 15 April 2022) is one of the most widely used and comprehensive databases of gene
sets for performing gene set enrichment analyses. The developers used a combination of
automated approaches and expert curation to develop a collection of “hallmark” gene sets
as part of the MSigDB. Each hallmark in this collection consists of a “refined” gene set
derived from multiple “founder” sets that convey a specific biological state or process and
display coherent expression [29]. The enrichment score (ES) represents the main result of
gene enrichment analysis. In the ranking list, the ES-positive gene sets were at the top, and
the ES-negative gene sets were at the bottom. The normalized enrichment score (NES) was
the main evaluation index of the gene set enrichment results. The false discovery rate (FDR)
is the rate of errors occurring in all discoveries with a set threshold of 0.05. We evaluated
the immune infiltration of immunocytes and the activated status of the immune signature.
Gene sets were collected from prior studies. The NES scores of different subgroups were
calculated from the gene sets associated with immune and stromal features extracted from
previous studies to demonstrate differences in the immune activation status [30]. We also
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used ssGSEA to study the infiltration of 28 immune cells in tumors and calculated the
infiltration score of each immune cell in each patient [31]. Metabolism-associated path-
ways were obtained from the study of Possemato et al [32]. All of the above results were
visualized using heat maps.

2.5. Prediction of Immunotherapy and Chemotherapy Treatment

To evaluate individual responses to immunotherapy, we used 795 specific gene sets
found by other researchers in the melanoma cohort with anti-CTLA-4 or anti-PD-1 im-
munosuppressive therapy as a reference [33]. Subclass mapping (SubMap) was used to
analyze the similarity between the risk group and the immunotherapy subgroup and iden-
tify patients who responded better to both immunotherapy agents [34]. The susceptibility
to chemotherapeutic drugs was determined by estimating the half-maximum inhibitory
concentration (ICsg) of the samples using the Cancer Drug Sensitivity Genomics (GDSC)
database and ridge regression analysis.

2.6. Statistical Analysis

The Kruskal-Wallis test was used to compare continuous data between the three
groups. The relationship between these two factors was evaluated using Pearson’s correla-
tion coefficient. The distribution of categorical variables among the groups was compared
using the chi-square test. In the external validation cohort, the top 200 specific marker genes
in the TCGA-ACC cohort were selected by nearest template prediction (NTP) analysis [35].
The log-rank test and K-M analysis were used to compare the survival rates of the high-
and low-risk groups. Cox models were used to calculate the HR and 95% CI. The risk score
relied on multivariate COX regression analysis to identify whether it had an independent
prognostic effect and was bounded by p < 0.05. All analyses were performed using the R
software (version 4.1.2) (http:/ /www.r-project.org, Bell Laboratories, Windsor, W1, USA).

3. Results
3.1. Establishment of Molecular Subtypes

As shown in Figure 1a, when the number of clusters was three, the scores of the gap
-statistical and CPI analyses were the highest. We then applied 10 multi-omics ensemble
clustering algorithms to the three preset clusters and combined the results. Favorable
consistency was observed among the three clusters using the ten algorithms (Figure 1b).
Then, we evaluated the cluster quality via silhouette analysis, and the high silhouette
width represented the robustness of the three clusters (0.74 vs. 0.64 vs. 0.47) (Figure 1c).
Therefore, we redefined ACCs into three subtypes: ACC1, ACC2, and ACC3. Based on
the multi-omics data in the TCGA-ACC cohort, we visualized diverse molecular features
among the three subtypes, and the top ten items for each omics are listed in Figure 1d. In
addition, we observed significantly different clinical outcomes among the three subtypes.
ACC2 patients showed more advanced stages (59.1% vs. 15.6% vs. 50.0%, p = 0.022,
Supplementary Table S1) and shorter overall survival, disease-specific survival, disease-
free interval, and progression-free interval than ACC1 and ACC3 patients (all p < 0.001,
Figure 2). ACC2 represented the poorest phenotype, ACC1 represented the best, and ACC3
was moderate.
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Figure 1. Recognition of the adrenocortical carcinoma multi-omics classification system in the
TCGA-ACC cohort. (a) CPI analysis and gap-statistical analysis results. (b) Consensus matrix
for three clusters based on the 10 algorithms. (c) Silhouette-analysis evaluation of cluster quality.
(d) Visualization of multi-omics data for mRNAs, IncRNAs, miRNAs, DNA CpG methylation sites,
and mutant genes.
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Figure 2. Differential survival outcome in three ACC subtypes, log-rank test.

3.2. Signaling Pathway Activation in ACC Subtypes

In 50 HALLMARK terms for each patient, we found that ACC1 patients had more
immune activation, such as interferon alpha response [36], interferon gamma response [37]
and Kras signal up [38]. ACC2 patients had more cell-cycle-related pathway activation,
such as G2M checkpoint [39], E2F targets, and DNA repair (Figure 3a). After comparing
100 pathways related to metabolism of ACCs, it was observed that ACC1 patients were
enriched in drug metabolism by other enzymes [40], retinol metabolism, and pentose and
glucuronate interconversion pathways. ACC2 patients were enriched in the homocysteine
cycle, the methionine cycle, and pyrimidine biosynthesis. Steroid biosynthesis [41], choles-
terol biosynthesis [42], and terpenoid backbone biosynthesis pathways were enriched in
ACCS3 patients (Figure 3b). Specifically, pathways related to DNA repair [43] were enriched
in ACC2 and ACC3 patients (Figure 3c).
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Figure 3. Differential activity of tumor-associated pathways across three ACCs subtypes in TCGA-
ACC cohort. (a) Heatmap of 50 differentially activated HALLMARK pathways. (b) Heatmap of
100 pathways related to metabolism of ACCs. (c) Heatmap of DNA repair pathways.

According to the TMB data, we selected six genes (DST, FAT4, KMT2B, APOB, OBSCN,
and ZCCHC6) with the highest mutation rates for demonstration. ACC2 patients had
the highest rates of tumor mutation (Figure 4a). We then compared the base mutations
of all patients; ACC2 also had the most mutations. C > T and T > C mutations were the
most common (Figure 4b). However, ACCS had no obvious difference in genome copy
numbers (Figure 4c), and the patients were divided into altered and unaltered groups
according to the mutation data to compare their survival outcomes. The results showed
that the mutation group had worse OS (Figure 4d). In addition, protein—protein interaction



Cells 2022, 11, 3784

8of 19

(PPI) enrichment analysis was performed using Metascape online tools based on the
BioGrid, InWeb_IM, and OmniPath databases. The molecular complex detection (MCODE)
algorithm was used to identify densely connected network components, and each MCODE
component was independently enriched in different pathways and biological processes.
Finally, seven pathways with the best scores were retained to describe the function of DEGs
in ACCs, including cell-cycle function, mitotic nuclear division, and the PID PLK1 pathway
(Figure 4e). Finally, we also found that these mutated genes were related to transcription
factors, such as E2F1, TP53, E2F4, and YBX1 (Figure 4f).
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Figure 4. Differential tumor-mutation burden and copy number in three ACC subtypes. (a) Mutations
in the six genes with the highest mutation rates. (b) Base mutations in the three ACCs cohorts.
(c) Differences in genome copy numbers. (d) Differences in overall survival between mutant and
non-mutant groups. (e) Functional enrichment analysis of the six genes with the highest mutation rate.
(f) Relationship between mutation genes and transcription factors.
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3.3. ACC1 Patients May Benefit More from Anti-PD-1 Therapy, and Chemotherapy Is More
Suitable for ACC2 Patients

To further evaluate the immune status of the three subtypes, we compared their esti-
mated immune scores, immune cell subsets, and immune signaling molecules, which have
been reported to serve as biomarkers for immunotherapy [31,44]. As shown in Figure 5a,
the ACC1 subtype exhibited the highest estimated immune score (p = 11.1 x 10~%), im-
mune cell subsets (p = 6.9 x 10~8), and immune signaling molecules (p = 1.6 x 10~°), which
was consistent with the results of the pathway analysis. We investigated the infiltration
landscape of different immune cells among the three subtypes. Compared to ACC2 and
ACCS3 subtypes, the ACC1 subtype had higher filtration of immunocytes such as central-
memory CD4 T cells, plasmacytoid dendritic cells, mast cells, macrophages, regulatory
T cells, activated CD8 T cells, and T helper cells. Based on 18 immune-related signatures
that have been published [45], the ACC1 subtype exhibited higher immune scores in most
signatures, including cytotoxic cells, TNK. meta, CYT, treg cells, T cells, 13 T-cell signatures,
TLS, WNTTGEB signatures, B cell cluster, 6 gene IFN signatures, macrophages, and MDSC
(Figure 5b). PD-L1 is a special protein in tumor cells that can bind to PD1 on effector T
cells to induce T cell exhaustion, which is a pivotal factor implicated in tumor immune
escape [46]. We found that the ACC1 subtype expressed more PD-L1 and PD-1 than the
ACC2 and ACC3 subtypes (all p < 0.05, Figure 5c). Therefore, the ACC1 subtype repre-
sented the high immune-infiltration phenotype, which was also called “hot tumor” and
indicated a potential response to anti-PD-1 therapy [47]. Furthermore, SubMap analysis
showed that patients with the ACC1 subtype would benefit more from anti-PD-1 therapy
(Bonferroni p < 0.05, Figure 5d). In addition, we evaluated the susceptibility of the three
subtypes to chemotherapy. The results showed that ACC2 patients had better sensitivity to
cisplatin (p = 3.9 x 10~°), doxorubicin (p = 3.4 x 1079), gemcitabine (p = 1.7 x 1077), and
etoposide (p = 3.3 X 1079) (Figure 6). Collectively, this novel ACC molecular classification
may facilitate the selection of appropriate treatments for different patients. The treatment
of ACC1 patients with anti-PD-1 therapy and ACC2 patients with cisplatin, doxorubicin,
gemcitabine, or etoposide appears to confer more clinical benefits.

3.4. Extra Validation for Molecular Subtypes in GEO Cohorts

To further validate the results in the TCGA-ACC cohort, three GEO cohorts were
enrolled: GSE19750, GSE33371, and GSE49278. A combat algorithm was first conducted
to eliminate the batch effect of the three GEO cohorts to make the data more comparable
(Figure 7a). To distinguish the three subtypes, the top 300 specific genes for each subtype
were selected to represent the separation of the three subtypes (Figure 7b). Consistently,
we compared the OS of different subtypes and found that ACC2 patients had the worst
prognosis (p < 0.001, Figure 7c), which was consistent with the results in the TCGA-PRAD
cohort. ACC2 patients had worse survival than ACC1 and ACC3 (17.6% vs. 62.5% vs. 43.5%,
p < 0.01) and a worse proportion of advanced-stage disease (55.9% vs. 18.7% vs. 26.0%,
p = 0.031, Supplementary Table S2). In the pathway enrichment analysis, ACC1 patients
had more activation of immune and drug-metabolism pathways, while ACC2 patients
had more cell-cycle-related pathway activation, and pathways related to DNA repair were
enriched in ACC2 and ACC3 patients. These functional results were similar to those of the
TCGA-ACC cohort (Figure 8). Among the 18 immune-related signatures, ACC1 patients
also scored highest for most items, including cytotoxic cells, TNK. meta, CYT, treg cells,
T cells, 13 T-cell signatures, TLS, B cell cluster, 6 gene IFN signatures, macrophages, and
MDSC. The results showed that ACC1 represented a high immune activation phenotype
and was potentially susceptible to targeted immunotherapy. Furthermore, it is worth
mentioning that the ACC3 subtype also exhibited relatively higher immune scores, despite
being well below ACC1 (Figure 9a). SubMap analysis showed that the patients with ACC1
were sensitive to anti-PD-1 therapy. We observed that ACC3 patients were sensitive to
anti-CTLA-4 therapy (Figure 9b). Moreover, drug-sensitivity tests showed that ACC2
patients had the highest drug sensitivity to cisplatin, doxorubicin, gemcitabine, etoposide,
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and paclitaxel (Figure 9¢) (all p < 0.01). In addition, our system remained an independent
prognostic factor in the four ACC patient cohorts after adjustment for other major clinical
characteristics (all p < 0.05, Table 1). This shows the reliability of our classification.
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Figure 5. Differences of immune infiltration in three ACC subtypes. (a) Score of related indicators

of immune infiltration. (b) Heatmap of infiltration landscape of different immune cells between the
three subtypes. (c) Expression of the three subtypes to PD-L1 and PD-1. (d) SubMap analysis of
anti-PD-L1 therapy. ** p < 0.01, *** p < 0.001, *** p < 0.0001.
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Figure 6. Differences in chemotherapy susceptibility between the three subtypes.
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Figure 8. Differential activity of tumor-associated pathways across three ACCs subtypes in GEO

cohort.

(a) Heatmap of 50 differentially activated HALLMARK pathways.

(b) Heatmap of

100 pathways related to metabolism of ACCs. (c) Heatmap of DNA repair pathways.
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in GEO cohort. (a) Heatmap of infiltration landscape of different immune cells between the three

subtypes. (b) SubMap analysis of anti-PD-L1 therapy. (c) Differences in chemotherapy susceptibility

between the three subtypes.
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Table 1. Prognostic value of ACC subtype after adjusting for clinicopathological parameters.

HR 95% CI p Value
TCGA-ACC Cohort

Age 1.013 (0.986-1.041) 0.351
Gender, male vs. female 1.455 (0.614-3.451) 0.394
Laterality, right vs. left 1.533 (0.664-3.54) 0.317
Stage

Stage II vs. stage I 2.883 (0.301-27.628) 0.358

Stage IIl vs. stage I 6.28 (0.641-61.55) 0.115

Stage IV vs. stage I 16.164 (1.49-175.301) 0.022

Stage unknow vs. stage I 2.451 (0.117-51.349) 0.564
ACC subtype

ACC2vs. ACC1 45.146 (7.393-275.694) 0

ACC3vs. ACC1 4.661 (0.877-24.779) 0.071
GEO cohort
Age 1.01 (0.99-1.031) 0.31
Gender, male vs. female 1.236 (0.649-2.354) 0.518
Laterality

Right vs. left 1.15 (0.54-2.45) 0.717

Unknow vs. left 1.2 (0.51-2.822) 0.677
Stage

Stage Il vs. stage I 2.765 (0.351-21.81) 0.334

Stage IIl vs. stage I 8.223 (0.909-74.351) 0.061

Stage IV vs. stage I 11.723 (1.504-91.399) 0.019

Stage unknow vs. stage I 4.067 (0.453-36.548) 0.21
ACC subtype

ACC2vs. ACC1 4.959 (2.241-10.97) 0

ACC3vs. ACC1 2.578 (1.048-6.341) 0.039

4. Discussion

The common age of onset for patients with ACC is between 50 and 70 years. Al-
though most ACC is considered sporadic and the cause is unknown, a small number
of cases are thought to be associated with genetic predisposition, including Lynch syn-
drome, Li-Fraumeni syndrome, multiple endocrine neoplasia type 1, and familial ade-
nomatous polyposis [48-51]. Ripley et al. [52] found that the first-line treatment for re-
current or metastatic ACC depends on the patient’s underlying state and tumor charac-
teristics. For patients who tolerate systemic chemotherapy, etoposide, doxorubicin, and
cisplatin combined with mitotane (EDP-M) is superior to streptomycin—-mitotane. ACC is
an aggressive form of cancer, with an overall 5-year survival rate of 16-47%. The 5-year
survival rates from stages I to IV were 81%, 61%, 50%, and 13%, respectively [4,53,54].
Through targeted gene analysis, mutations in TP53 or CTNNBI have been found to be
associated with molecular alterations in major ACC signaling pathways, higher tumor
stage, and poorer disease-free survival (DFS). Activation of the Wnt/CTNNBI pathway
is associated with a high mitotic rate and a low survival rate. However, these markers
did not show independent prognostic value in multivariate analyses, including tumor
grade [55].

The immune system plays an important role in the surveillance and elimination of
cancer cells, and immune evasion through various mechanisms is considered one of the
characteristics of cancer [56]. Priming and activation of peripheral immune cells lead
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to a T-cell inflammatory phenotype, including expansion of CD8+ cytotoxic T cells, in-
terferon signaling, and local production of chemokines [57]. Rooney et al. [28] demon-
strated that cytolytic immune activity, measured by industrial expression of perforin 1
and granzyme B genes, was associated with higher mutation counts. Their prediction of
antigenic epitopes in a range of solid tumor malignancies supports the idea that tumor
types with a high mutational burden are more susceptible to immunotherapy strategies.
Several researchers have demonstrated that tumor-infiltrating lymphocytes (TILs) are as-
sociated with improved clinical outcomes in ovarian-cancer patients [58-60]. Importantly,
blocking PD-1, LAG-3, or CTLA-4 with gene ablation or blocking antibodies alone leads
to compensatory upregulation of other checkpoint pathways, enhancing their ability to
locally suppress T cells, which in turn can be overcome by a combination of blocking
strategies [61].

According to Jouinot et al., the Ki67 index and targeted methylation measures of
MS-MLPA can be utilized in conjunction with ENSAT staging and clinically common prog-
nostic indicators [62]. Nevertheless, CpG islands are infrequently methylated, especially
those connected to gene promoters. Further research is required to ascertain the extent
to which DNA methylation of CpG islands controls gene expression [63]. The genetic
changes identified in the targetable pathway indicate a potential route for novel treatments
aimed at common chemotherapy-resistant cancers [64]. Dysregulation of miRNA subsets
in ACC may contribute to the development of this malignancy. Additionally, it has been
demonstrated that ACC patients with high expression of miRNA-related subsets have
poorer survival rates, indicating the potential prognostic utility of these subsets [65]. Ac-
cording to certain researchers, the ACC-related genes TP53 (8 of 41 tumors, 19.5%) and
CTNNBI1 (4 of 41 tumors, 9.8%) both exhibited somatic mutations. Somatic mutations
in recurrent ZNRF3 and TERT sites and genes created by ACC are mutually exclusive.
Additionally, according to gene ontology, Wnt signaling is the most often altered pathway
in ACC [66].

Researchers have discovered that IncRNA SNHG3 is associated with miR-577/SMURF1
in prostate cancer and miR-139-5p/TOP2A in renal cell carcinoma. It is also associated
with CDKG®, Bax, Bcl-2, N-cadherin, E-cadherin, and vimentin [67,68]. When Xp21 is lost,
NROB1, which causes X-linked AHC, GK, which causes glycerol kinase deficiency, and
in certain circumstances, DMD are also lost (resulting in Duchenne muscular dystrophy).
When the Xp21 deletion expanded proximally to encompass DMD or when a larger loss
extended distally to include ILIRAPL1 and DMD, developmental abnormalities were
observed in men with Xp21 deletion [69]. DNA methylation collaborates with histone
changes and miRNAs to control transcription. Additionally, research has shown that
DNA methylation controls miRNA expression [63]. Some scientists have discovered that
there is no connection between transcription expression and its target factors in E. coli.
Furthermore, the static gene regulatory networks (GRNs) currently in use are insufficient
to explain transcriptional regulation. This suggests that, when examining the cell at a
systemic level, one cannot expect to observe a causal link between the expression of tran-
scription factors and their targets [70]. The expression of hundreds of transcripts is often
cataloged by RNA-seq measurements, but most are redundant (i.e., strongly correlated)
or noisy. In addition, the number of samples available is less than the number of fea-
tures owing to the expenses associated with conducting experiments, which makes it
simple for conventional machine learning and statistical algorithms to overfit the biological
data [71].

The biological processes of a tumor are extremely complex, and different types of
features are associated with each other. Therefore, it is crucial to interpret the hetero-
geneity of tumors using multi-omics analysis. We used 10 algorithms to determine the
ACC multi-omics system by consensus clustering, which made the system more stable
and convincing. We found that immune-related pathways were more activated, and drug
metabolism pathways were enriched in ACC1 subtype patients. In addition, ACC1 patients
are sensitive to PD-1 immunotherapy and have the lowest sensitivity to chemotherapeu-
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tic drugs. Patients with the ACC2 subtype had the worst survival prognosis and the
highest tumor-mutation rate. Meanwhile, cell-cycle-related pathways, amino acid syn-
thesis pathways, and immunosuppressive cells were enriched in ACC2 patients, steroid
and cholesterol biosynthetic pathways were enriched in patients with the ACC3 subtype,
and DNA-repair-related pathways were enriched in subtypes ACC2 and ACC3. We as-
sumed that between ACC1 and ACC2, ACC3 is the transition type. According to the
results, even though ACC2 and ACC3 have a comparable distribution of tumor stage,
patients who belonged to ACC2 had much worse prognoses than those who belonged to
ACC3. In comparison to other subtypes, ACC3 exhibits more WNT pathway activation,
greater steroid and cholesterol production, greater copy number change, and a lack of
the OBSCN and ZCCHC6 mutations that were found in ACC1 and ACC2. The lowest
level of immune pathway activation is then met by the ACC3 subtype. The sensitivity
of the ACC2 subtype to cisplatin, doxorubicin, gemcitabine, and etoposide was better
than that of the other two subtypes. For 5-fluorouracil, there was no significant difference
in the sensitivity to paclitaxel between the three groups. We believe that multi-omics
analysis in ACC can provide patients with more accurate clinical treatment and better
prognosis prediction.
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