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Abstract: Radioresistant (RR) cells are poor prognostic factors for tumor recurrence and metastasis
after radiotherapy. The hyaluronan (HA) synthesis inhibitor, 4-methylumbelliferone (4-MU), shows
anti-tumor and anti-metastatic effects through suppressing HA synthase (HAS) expression in various
cancer cells. We previously reported that the administration of 4-MU with X-ray irradiation enhanced
radiosensitization. However, an effective sensitizer for radioresistant (RR) cells is yet to be established,
and it is unknown whether 4-MU exerts radiosensitizing effects on RR cells. We investigated
the radiosensitizing effects of 4-MU in RR cell models. This study revealed that 4-MU enhanced
intracellular oxidative stress and suppressed the expression of cluster-of-differentiation (CD)-44
and cancer stem cell (CSC)-like phenotypes. Interestingly, eliminating extracellular HA using HA-
degrading enzymes did not cause radiosensitization, whereas HAS3 knockdown using siRNA
showed similar effects as 4-MU treatment. These results suggest that 4-MU treatment enhances
radiosensitization of RR cells through enhancing oxidative stress and suppressing the CSC-like
phenotype. Furthermore, the radiosensitizing mechanisms of 4-MU may involve HAS3 or intracellular
HA synthesized by HAS3.

Keywords: radioresistant cells; hyaluronan; oral squamous cell carcinoma; 4-methylumbelliferone;
hyaluronan synthase 3; oxidative stress; superoxide dismutase; intracellular hyaluronan; radiosensiti-
zation

1. Introduction

Oral squamous cell carcinoma (OSCC) is a major malignant tumor of the head and
neck that represents the 6th most common cancer worldwide and has shown an increasing
trend in recent years [1,2]. Besides surgery and chemotherapy, radiotherapy plays an
important role in OSCC because it is non-invasive and provides good local control with
the recent development of high-precision dose calculation techniques [3,4]. Despite the
advances in radiotherapy, the prognosis of patients with OSCC has not improved over the
past 30 years [5,6], and the acquisition of radioresistance during fractionated irradiation is
considered one of the reasons for poor prognosis [7,8]. In addition to OSCC, some other
cancer cells have been reported to exhibit radioresistance during fractionated irradiation,
such as non-small-cell lung and prostate cancer cells [9,10]. Radioresistant (RR) cells remain
after radiotherapy and cause recurrence and distant metastasis. Thus, they are a major
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concern associated with poor clinical outcomes [11–13]. Therefore, to improve the prognosis
of patients with OSCC, it is important to establish strategies to sensitize RR cells.

The hyaluronan (HA) synthesis inhibitor 4-methylumbelliferone (4-MU) reduces the
intracellular content of UDP-D-glucuronic acid [14–16]. In recent decades, 4-MU has been
shown to exert anti-tumor and anti-invasive/-metastatic effects through suppressing HA
synthase (HAS) expression in various cancer cells and mouse models [17,18]. Furthermore,
our previous studies have indicated that 4-MU treatment with X-ray irradiation promotes
anti-inflammatory effects by suppressing interleukin (IL) −6 and −1β and inhibiting inter-
cellular communication involved in anti-oxidant activities [19–21]. Elevated expressions of
IL-6 and nuclear factor-kappa B (NF-κB), a master regulator of the inflammatory response,
have been suggested to enhance resistance to apoptosis and superoxide dismutase (SOD) in
cancer cells and induce radioresistance [22–25]. Based on these findings, 4-MU is a potential
radiosensitizer; however, it is unknown whether 4-MU administration radiosensitizes RR
cells.

Recently, in vitro RR cell models were established to understand their characteristics.
Kuwahara et al. established clinically relevant RR cells via long-term fractionated X-ray
irradiation and reported a higher repair capacity of DNA double-strand breaks in these
cells compared with that of parental cancer cells [26]. Other studies have reported that RR
cells have characteristics similar to those of cancer stem cells (CSCs), are more tumorigenic,
and have enhanced anti-oxidant activity [27–29]. Therefore, although the mechanisms of
radioresistance have been gradually elucidated, the underlying details are unclear, and
effective radiosensitizers and clinical strategies are yet to be established.

In this study, we used RR OSCC cell lines established via long-term fractionated X-ray
irradiation and investigated, for the first time, the effect of 4-MU as a radiosensitizer.

2. Materials and Methods
2.1. Reagents

4-MU (Nacalai Tesque, Kyoto, Japan) was diluted in dimethylsulfoxide (DMSO) (Fu-
jifilm Wako Pure Chemical Industries, Ltd., Osaka, Japan) at a working concentration
of 500 µM to minimize the cytotoxicity on normal fibroblasts and clearly observe the ef-
fects of 4-MU [19]. Streptomyces hyaluronidase (St-Hyal) (Seikagaku Corporation, Tokyo,
Japan) was diluted in dH2O and used at a final concentration of 100 TRU/mL. Calcium-
and magnesium-free phosphate-buffered saline (PBS (-)) were purchased from Takara Bio
Inc. (Otsu, Japan). Monoclonal phycoerythrin (PE)-conjugated anti-human cluster-of-
differentiation (CD)-44 antibodies (cat. no. 338808), mouse monoclonal PE-IgG1, κ isotype
control (cat. no. 400114), fluorescein isothiocyanate (FITC)-conjugated anti-human CD24
antibodies (cat. no. 311103), and mouse monoclonal FITC-IgG1 κ isotype control (cat.
no. 400207) were obtained from BioLegend (San Diego, CA, USA). Small interfering RNA
(siRNA) against HAS3 (sc-45295), the corresponding scrambled control siRNA (sc-37007),
and anti-HAS3 (sc-365322) monoclonal primary antibodies were purchased from Santa
Cruz Biotechnology, Inc. (Santa Cruz, CA, USA). Anti-β-actin (4970) monoclonal anti-
bodies, anti-rabbit horseradish-peroxidase (HRP)-conjugated IgG (7074), and anti-mouse
HRP-conjugated IgG (7076) secondary antibodies were purchased from Cell Signaling
Technology (Tokyo, Japan). Epidermal growth factor (EGF) and basic fibroblast growth
factor (bFGF) were purchased from Fujifilm Wako Pure Chemical, Ltd.

2.2. Cell Culture

The human OSCC cell lines HSC2 and HSC3, and their RR counterparts HSC2-R and
HSC3-R, were obtained from the Cell Resource Center for Biomedical Research, Institute of
Development, Aging and Cancer, Tohoku University. RR cell lines were established via
fractionated X-ray irradiation at 2 Gy/day for more than one year [30]. The cell lines were
cultured in Roswell Park Memorial Institute (RPMI) 1640 medium (Thermo Fisher Scientific
Inc., Waltham, MA, USA), supplemented with 10% heat-inactivated fetal bovine serum
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(FBS; Japan Bio Serum, Fukuyama, Japan) and 1% penicillin/streptomycin (Fujifilm Wako
Pure Chemical Industries, Ltd.) and maintained at 37 ◦C and in a 5% CO2 environment.

2.3. Irradiation Condition

The cultured cells were irradiated using an X-ray generator (MBR-1520R-3; Hitachi
Medical Co., Tokyo, Japan) as previously reported [20]. The total dose and dose rate of
1.0 Gy/min were measured using an ionizing chamber (MZ-BD-3, Hitachi Medical Co.,
Tokyo, Japan) placed next to the sample, and the dose rate in the air was determined by
converting the air kerma.

2.4. SiRNA Transfection

Each cell line was seeded in ϕ60 mm culture dishes without antibiotics and incu-
bated for 18 h. Samples were washed with PBS (-) and transfected with siRNA using
Lipofectamine RNAiMAX (Invitrogen; Thermo Fisher Scientific, Inc.), following the manu-
facturer’s instructions. The final concentration of both the siRNA and scrambled control
siRNA was 50 nM, and the cells were harvested after transfection for 48 h.

2.5. HA Density Quantitation

The HA concentration in the culture supernatant was detected using a Hyaluronan
Quantikine ELISA kit (R&D Systems, Inc., Minneapolis, MN, USA), as reported previ-
ously [31]. The HA concentration was calculated from the standard curve of the absorbance
measured at 450 nm.

2.6. Clonogenic Survival Assay

The clonogenic potency was evaluated via a colony formation assay. The appropriate
number of cells was seeded on ϕ60 mm culture dishes and incubated for 2 h and subjected
to 500 µM 4-MU or 100 TRU/mL St-Hyal with 2 Gy X-ray irradiation (IR). Given the
cell-killing effects of each treatment, the cells were seeded in different numbers to form the
appropriate number of colonies. After treatment for 24 h, 4-MU and St-Hyal were washed
out, and the cells were further incubated for 7–10 days, fixed with methanol (Fujifilm Wako
Pure Chemical Industries) and stained with a Giemsa staining solution (Fujifilm Wako Pure
Chemical Industries). Colonies with >50 cells were counted. The surviving fraction for
each cell line was calculated from the ratio of the plating efficiency of the irradiated and/or
4-MU- or St-Hyal-administrated samples with that of the control samples.

2.7. Monolayer Wound Healing Assay

Each cell line was plated and allowed to form a confluent monolayer, which was then
scratched with the thin edge of a 200 µL microtip. Cell migration images at 0, 6, 12, and
24 h after treatment were obtained using an Olympus IX71 fluorescence microscope (Tokyo,
Japan) and DP2-BSW software (Olympus) at 10×magnification. The wound distance was
measured at each time point, and the cell migration rates compared with those at 0 h were
calculated. This was performed in three independent experiments.

2.8. RNA Extraction and Reverse Transcription-Quantitative Polymerase Chain Reaction
(RT-qPCR)

Total RNA was extracted from each sample, and cDNA synthesis was performed with
a reaction mixture containing forward and reverse primers, as previously described [20].
RT-qPCR was performed using a real-time PCR system (StepOne Plus; Life Technolo-
gies, Waltham, MA, USA) with the following conditions: 95 ◦C for 30 s, followed by
40 cycles of 95 ◦C for 5 s and 54 ◦C for 30 s. Target gene expression levels were cal-
culated relative to glyceraldehyde 3-phosphate dehydrogenase (GAPDH, internal con-
trol) mRNA via the comparative ∆∆Cq method [32]. The following specific primer se-
quences were used: HAS1 (forward, 5′-TGTGTATCCTGCATCAGCGGT-3′; reverse, 5′-
CTGGAGGTGTACTTGGTAGCATAACC-3′), HAS2 (forward, 5′-CTCCGGGACCACACAG
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AC-3′; reverse, 5′-TCAGGATACATAGAAACCTCTCACA-3′), HAS3 (forward, 5′-ACCATC
GAGATGCTTCGAGT-3′; reverse, 5′-CCATGAGTCGTACTTGTTGAGG-3′), and GAPDH
(forward, 5′-GTGAAGGTCGGAGTCAACG-3′; reverse, 5′-TGAGGTCAATGAAGGGGTC-
3′).

2.9. Flow Cytometric Analysis

To evaluate the expression of HA receptor CD44 and CSC marker CD24, cells were
stained with PE-conjugated anti-human CD44 antibodies (3 µL/106 cells) and FITC-
conjugated anti-human CD24 antibodies (3 µL/106 cells) and analyzed using FACS Aria
Cell Sorter (BD Biosciences, Ltd., Tokyo, Japan) according to previously reported proce-
dures [19]. To perform the appropriate analysis, the following gating strategy was used
to define the staining population: the targeted population was gated by forward and side
scatter (FSC and SSC, respectively), and the doublets and debris were removed. The gating
population was reflected in the dot plot, and 1% each of CD44(+) and CD24(+) were gated
in the dot plot as isotype controls. This gate was adapted to each treatment group, and the
expressions of CD44 and CD24 were evaluated. Oxidative stress (caused by reactive oxygen
species (ROS)), which is intrinsically related to DNA damage induction, was measured
via a DCFDA assay (H2DCFDA, Cellular ROS Assay Kit, Abcam, Tokyo, Japan). The
mean fluorescence intensity (MFI) of DCFDA per cell was measured at 0, 2, and 24 h after
treatments. DCFDA staining and 4-MU administration were simultaneously performed
30 min before irradiation. The increment of the ROS level at 0 h was similar to that observed
in our previous report [21]. The gating strategy was similar to that of the CD44 and CD24
analyses; after removal of the doublets and debris gated on the target population based on
FSC and SSC dot plots, this gating was reflected in the histogram of each treatment group,
and the MFI of DCFDA was evaluated.

2.10. SDS-PAGE and Western Blotting

Harvested cells were lysed in 1× radioimmunoprecipitation (RIPA) buffer (Santa Cruz
Biotechnology), mixed with 2 × volume gel electrophoresis loading buffer (Tis-Glycine
sodium dodecyl sulfate (SDS)) containing 1.5% 2-mercaptoethanol (Fujifilm Wako Pure
Chemicals Industries) and boiled at 100 ◦C for 5 min. The protein concentration was
determined using a BCA protein assay kit (Takara Bio) and an iMark microplate reader
(Bio-Rad Laboratories, Inc., Hercules, CA, USA). The proteins (~20 µg/lane) were separated
using 5–20% EHR-520L e-PAGEL HR (ATTO, Tokyo, Japan) and were electro-transferred
onto polyvinylidene difluoride (PVDF) membranes in 25 mM Tris/192 mM glycine, pH 8.3,
at 25 V for 2 h. Membranes were blocked using EzBlock Chemi (ATTO) at room temperature
for 1 h, and then incubated overnight with primary antibodies, anti-HAS3 (1:1000), and
anti-actin antibodies (1:3000) at 4 ◦C. The membranes were then incubated with HRP-
conjugated secondary antibodies in EzBlock Chemi at room temperature for 90 min. The
following secondary antibodies were used: HRP-linked anti-rabbit IgG (1:5000) or HRP-
linked anti-mouse IgG (1:5000). Antigens were visualized using a chemiluminescence
Western blotting substrate (Bio-Rad Laboratories), and blot stripping was performed using
a stripping solution (Fujifilm Wako Pure Chemical Industries).

2.11. Assay of SOD Activity

SOD activity in each sample was detected using a WST-SOD assay kit (Dojindo Molec-
ular Technologies, Inc., Kumamoto, Japan) according to the manufacturer’s instructions.
Cells were harvested in PBS (-) and sonicated with 30 sec pulses (20% output control) on
ice. The supernatants were collected after centrifugation of the cell lysate at 10,000× g for
15 min at 4 ◦C. The supernatants and WST-working solutions were added to each 96-well
plate. The enzyme solution was pipetted into each well, and the plates were incubated at
37 ◦C for 20 min. Subsequently, SOD activity (expressed as unit/106 cells) was measured at
450 nm using an iMark microplate reader.
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2.12. Statistical Analysis

Data are presented as mean ± SD of the three independent experiments. The one-way
analysis of variance and the Tukey–Kramer test were performed to assess the significance of
the differences between the control and experimental cultures. Statistical significance was
set at p < 0.05. Statistical analyses were performed using Microsoft Excel 2016 (Microsoft
Corporation, Redmond, WA, USA) with Statcel v4 add-in software (OMS Publishing,
Saitama, Japan).

3. Results
3.1. Evaluation of the Effect of 4-MU on Radioresistance

We first confirmed the efficiency of 4-MU in RR cells. We evaluated the radiosensiti-
zation of RR cells treated with 4-MU and IR via a colony formation assay. The surviving
fraction of 4-MU-treated cells was significantly lower than that of the control cells, and the
combination of 4-MU and IR significantly suppressed the surviving fraction compared with
IR alone (Figure 1A). Next, we measured the cell migration ability via a wound healing
assay. The cell migration rates were significantly inhibited in HSC2 and HSC2-R cells 12 h
after 4-MU treatment and in HSC3 and HSC3-R cells 6 h after treatment compared with
those of their controls (Figure 1B,C). We also evaluated cell migration following stimulation
with EGF/bFGF. The cell migration rate 12 h after EGF/bFGF treatment was significantly
enhanced compared with that of the controls; even under these conditions, 4-MU treatment
significantly suppressed cell migration (Figure 1B,C). These results indicated the efficiency
of 4-MU in RR cells.
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Figure 1. Effects of 4-methylumbelliferone (4-MU) treatment on radioresistant (RR) cells. (A) The
cell surviving fraction of each cell line under 500 µM 4-MU and 2 Gy X-ray irradiation (IR); * and
** indicate p < 0.05 and p < 0.01 vs. control, respectively; ## indicates p < 0.01 vs. 2 Gy, respectively.
(B) Cell migration at 0 and 24 h after treatment with 4-MU and epidermal growth factor (EGF)/basic
fibroblast growth factor (bFGF) stimulation. (C) Cell migration ratio at 0, 6, 12, and 24 h after
treatment with 4-MU and EGF/bFGF stimulation; * and ** indicate p < 0.05 and p < 0.01 vs. control,
respectively; ## indicates p < 0.01 vs. EGF/bFGF.
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3.2. Investigation of Mechanisms of Radiosensitization with 4-MU

Next, we examined the mechanisms by which 4-MU radiosensitizes RR cells. The
expressions of CD44 and CD24 (CSC markers) were analyzed via flow cytometry. The
ratio of the CD44(+)/CD24(-) fraction, which is used to assess the CSC-like phenotype
of OSCC [33,34], significantly decreased after 4-MU treatment compared with that of the
controls (Figure 2A,B). In addition, this fraction was suppressed by IR treatment only in
the HSC3-R cells. The MFI of CD44 was significantly suppressed through 4-MU treatment
compared with that of the controls (Figure 2C). IR treatment showed a similar tendency to
suppress the MFI of CD44, and the combination of 4-MU and IR significantly suppressed it
compared with that of the controls (Figure 2D). IR treatment did not affect the MFI of CD24,
whereas the combination of 4-MU and IR significantly enhanced it compared with IR alone.
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Figure 2. Cluster-of-differentiation (CD)-44 and CD24 expression measured via flow cytometry.
(A) Representative cytograms of each cell line. (B) Cell populations of CD44(+)/CD24(-) irradiated
with 2 Gy under 500 µM 4-MU. (C,D) Mean fluorescence intensity (MFI) of (C) CD44 or (D) CD24
irradiated with 2 Gy under 500 µM 4-MU; * and ** indicate p < 0.05 and p < 0.01 vs. control,
respectively; # and ## indicate p < 0.05 and p < 0.01 vs. 2 Gy, respectively.
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As CD44 and CD24 have been reported to contribute to anti-oxidant activity [35–37],
we evaluated intracellular ROS levels following 4-MU administration. The intracellular ROS
levels in HSC2-R and HSC3-R cells were significantly lower than those in their respective
parental cells, HSC2 and HSC3 (Figure 3A). The ROS level of the IR group did not change
compared to that of the control group, while those of the 4-MU alone and combined groups
significantly increased from 0 h, and the effects were sustained for 24 h after treatment
(Figure 3B,C). Next, we measured the SOD production levels in the presence of 4-MU. The
SOD levels in HSC2-R and HSC3-R cells were significantly higher than those in HSC2 and
HSC3 cells (Figure 3D), and IR treatment significantly enhanced SOD activity compared
with the control (Figure 3D). The SOD level after 4-MU administration in HSC2-R and
HSC3-R cells was significantly suppressed compared with that in their respective control
groups, whereas in HSC2 and HSC3 cells, it remained unchanged or slightly increased
(Figure 3D). The combination of 4-MU and IR significantly suppressed the SOD levels
compared with IR alone. These results suggested that 4-MU administration activates
oxidative stress and enhances radiosensitization.
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Figure 3. Oxidative stress levels measured via flow cytometry and a superoxide dismutase (SOD)
assay. (A) Intracellular reactive oxygen species (ROS) levels in each of the control cells. (B) Represen-
tative histograms of each cell line irradiated with 2 Gy under 500 µM 4-MU. (C) Relative intracellular
ROS levels in each cell line at 0, 2, and 24 h after treatment. The MFI of IR alone, 500 µM 4-MU alone,
and the combination (4-MU + IR) were standardized based on the MFI of the control group at each
time. (D) SOD production levels of each cell line after treatment for 24 h; * and ** indicate p < 0.05
and p < 0.01 vs. control, respectively; ## indicates p < 0.01 vs. 2 Gy.
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3.3. Radiosensitizing Effects after Extracellular HA Elimination or HAS Inhibition

As 4-MU is an HA synthesis inhibitor, we further investigated the radiosensitizing ef-
fects of extracellular HA elimination via St-Hyal or HAS knockdown by using siRNA. First,
as a concentration study for St-Hyal, the HA concentration in the cell culture supernatant
24 h after St-Hyal treatment was analyzed via ELISA. Because all tested concentrations
showed measurement results below the detection limit, we detected the concentration of
St-Hyal based on the results of other studies [38,39]. Next, we investigated HAS expression
and found that HAS1 mRNA expression was not detected, whereas HAS3 expression was
significantly higher than HAS2 expression in the RT-qPCR analysis (Figure S1A). In addi-
tion, HAS3 expression in HSC2-R and HSC3-R cells was much higher than that in HSC2
and HSC3 cells, respectively, and 4-MU administration significantly suppressed HAS3
expression compared with that in the control cells (Figure S1B). Therefore, we suppressed
HAS3 expression using siRNA, and the knockdown efficiency was confirmed by Western
blotting (Figure 4A). As shown in Figure 4A,B, the surviving fraction was suppressed
through HAS3 knockdown, whereas it was not affected by St-Hyal treatment compared
with that in the control group (Figure 4B,C). Similarly, the MFI of CD44 was significantly
suppressed through HAS3 knockdown but unaffected by St-Hyal treatment (Figure 4D,E).
In addition, SOD levels were inhibited through HAS3 knockdown, and co-treatment (HAS3
knockdown and IR) significantly suppressed SOD levels compared with the IR treatment
alone (Figure 4F). These results suggested that HAS3 knockdown has similar effects to
4-MU administration and that HAS3 may be an important factor for radiosensitization.
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Figure 4. Effects of St-Hyal treatment or HAS3 knockdown on RR cells. (A) Protein expression
analysis of siRNA-HAS3 transfection via Western blotting. Representative images of immunoblots
are shown. Actin was used as a loading control, and the relative values of the HAS3/actin ratio are
presented. For the HAS3 proteins, both bands were quantified together. (B,C) Logarithmic surviving
fraction of each cell line treated with (B) 100 TRU/mL St-Hyal and IR or (C) HAS3 knockdown and
IR. (D) Representative histograms of each cell line treated with 100 TRU/mL St-Hyal or with HAS3
knockdown. (E) Relative MFI of CD44 of each cell line treated with 100 TRU/mL St-Hyal or with
HAS3 knockdown. (F) Relative SOD production levels of each cell line treated with HAS3 knockdown
and IR. The SOD production levels of IR alone, HAS3 knockdown, and combined treatment groups
were standardized based on the SOD level of the control group; * and ** indicate p < 0.05 and p < 0.01
vs. control, respectively; # and ## indicate p < 0.05 and 0.01 vs. 2 Gy, respectively.
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4. Discussion

The anti-tumor effects of 4-MU and the role of HAS in various malignancies have been
reported [40–42]. Our previous studies revealed the enhancement of anti-inflammatory
effects and the suppression of anti-oxidant activity by 4-MU [19–21]. However, it re-
mains unclear whether 4-MU has radiosensitizing effects on RR cells. Our results demon-
strated that 4-MU treatment with IR significantly suppressed cell survival compared with
IR alone (Figure 1A), and 4-MU administration significantly suppressed cell migration
compared with EGF/bFGF (Figure 1B,C). In addition, 4-MU treatment significantly sup-
pressed the CD44(+)/CD24(-) ratio and MFI of CD44 (Figure 2A–C). In OSCC cell lines,
the CD44(+)/CD24(-) fraction has been reported in CSC-like cells [33,34]. CD44 stabilizes
xCT, a cystine–glutamate transporter that contributes to glutathione (GSH) synthesis for
ROS defense on the cell surface, leading to redox regulation in several cancers [37,43,44]. It
was also reported that CD24 contributes to anti-oxidant activity, and its elevated expres-
sion enhances oxidative stress in the CD44(+)/CD24(-) phenotype of breast cancer [35].
Moreover, the HA/CD44 interaction was reported to promote inflammatory cytokines [45];
specifically, IL-1β induces human manganese SOD genes such as SOD2, which encodes
an enzyme that degrades reactive oxygen generated in cells [46]. Our previous study
also indicated that 4-MU treatment inhibits the production of IL-1β and IL-6 [19]. The
results of this study showed that 4-MU treatment enhanced the intracellular ROS levels and
suppressed SOD production (Figure 3). As ROS levels were not affected by IR treatment,
the combination of 4-MU and IR showed similar effects as 4-MU treatment alone, whereas
SOD production was significantly increased by IR treatment compared with that in the
control, and the combination of 4-MU and IR significantly suppressed SOD production
compared with IR alone (Figure 3C,D). These results supported the radiosensitizing effects
of 4-MU treatment with IR. Furthermore, this study suggested that 4-MU radiosensitizes
RR cells and that the mechanisms are based on CSC phenotype suppression and oxidative
stress enhancement.

Since 4-MU is an HA synthesis inhibitor, a further upstream mechanistic analysis was
performed to investigate its effect on radiosensitization by eliminating extracellular HA
using St-Hyal or via siRNA-based HAS3 knockdown. Because the HA-binding domain
of CD44 is present in the extracellular space, extracellular HA is predominantly used in
HA/CD44 interactions [47]. In this study, St-Hyal treatment completely removed extracel-
lular HA, but did not affect the radiosensitizing effect and MFI of CD44, whereas HAS3
knockdown by siRNA had effects similar to those of 4-MU treatment (Figure 4). Notably,
CD44 expression was not altered via St-Hyal treatment but was significantly suppressed
via HAS3 knockdown. The HA/CD44 interaction promotes CD44/phosphoinositide 3-
kinase (PI3K) complex formation and activates the downstream Akt pathway related to cell
survival and anti-apoptosis [48]. Moreover, Akt activation upregulates CD44 expression,
which further enhances HA/CD44 interaction (feedback loop) [17]. It was also reported
that HAS3 accounts for most of the HA synthesis in OSCC cells [49]. Therefore, it is pos-
sible that St-Hyal treatment only eliminated extracellular HA but continued to supply
HA through HAS, thereby maintaining the anti-oxidant effect of CD44 and the CSC-like
phenotype; therefore, it did not lead to a radiosensitizing effect. In addition, 4-MU adminis-
tration or HAS3 knockdown inhibited HA synthesis and disrupted the feedback loop of
the interaction, thus enhancing the radiosensitizing effects.

Given that eliminating extracellular HA did not affect radiosensitization and that
HAS releases HA into the intracellular space [50–52], it is possible that the intracellu-
lar HA synthesized by HAS3 is involved in radiosensitization. The HA synthesized by
HAS3 has a low molecular weight (LMW), and the interaction between LMW-HA and
CD44 has been reported to promote pro-oncogenic cellular actions [53,54]. Although the
HA binding site of CD44 is found in the extracellular space, it was recently reported
that CD44 migrates into the nucleus and forms a complex with the signal transducer
and activator of transcription 3 (STAT3), which induces cyclin D1 expression and pro-
motes cell proliferation [55]. Therefore, it is possible that intracellular HA and CD44
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interact [56]. Furthermore, the receptor for hyaluronan-mediated motility (RHAMM), an-
other major receptor for HA, is known to interact both intracellularly and at the plasma
membrane [57–59] and was shown to promote tumorigenesis by binding to intracellular
HA [60]. Kuo et al. also found that HAS3 and TNF-α form an inter-regulatory loop in oral
cancer cells [61] and that TNF-α promotes the binding of NF-κB to the HAS3 promoter
region [62]. These findings suggest that interactions with intracellular HA synthesized by
HAS3 or the direct action of HAS3 cause radioresistance. However, the role of intracellular
HA is not fully understood and requires further investigation.

In conclusion, we showed for the first time that 4-MU treatment is effective in en-
hancing the radiosensitization of RR cells, suggesting that the sensitization mechanism
operates through the suppression of HAS3-mediated oxidative stress enhancement and
CSC inhibition.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cells11233780/s1. Figure S1: HAS mRNA expression measured
via RT-qPCR. (A) HAS mRNA expression in each cell line. (B) Relative HAS3 mRNA expression in
each cell line treated with 500 µM 4-MU; ** indicates p < 0.01 vs. control.
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