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Abstract: Autophagy is a ubiquitous degradation mechanism, which plays a critical role in cellular
homeostasis. To test whether autophagy suppresses or supports the growth of tumors in the epi-
dermis of the skin, we inactivated the essential autophagy gene Atg7 specifically in the epidermal
keratinocytes of mice (Atg7∆ep) and subjected such mutant mice and fully autophagy-competent
mice to tumorigenesis. The lack of epithelial Atg7 did not prevent tumor formation in response to 7,
12-dimethylbenz(a)anthracene (DMBA) as the initiator and 12-O tetradecanoylphorbol-13-acetate
(TPA) as the promoter of tumor growth. However, the number of tumors per mouse was reduced
in mice with epithelial Atg7 deficiency. In the K5-SOS EGFRwa2/wa2 mouse model, epithelial tumors
were initiated by Son of sevenless (SOS) in response to wounding. Within 12 weeks after tumor
initiation, 60% of the autophagy-competent K5-SOS EGFRwa2/wa2 mice had tumors of 1 cm diameter
and had to be sacrificed, whereas none of the Atg7∆ep K5-SOS EGFRwa2/wa2 mice formed tumors of
this size. In summary, the deletion of Atg7 reduced the growth of epithelial tumors in these two
mouse models of skin cancer. Thus, our data show that the inhibition of autophagy limits the growth
of epithelial skin tumors.

Keywords: autophagy; keratinocytes; carcinogenesis; tumor; squamous cell carcinoma; epidermis;
epidermal growth factor; epithelium

1. Introduction

Autophagy is a mechanism for the removal of damaged cellular organelles, protein ag-
gregates, and macromolecules and for the recycling of their molecular components for reuse
by the cells [1]. The substrates of macroautophagy are sequestered in double-membraned
autophagosomes, which fuse with lysosomes, forming autolysosomes, in which degrada-
tion by lysosomal enzymes proceeds. Subsequently, the degradation products are released
into the cytoplasm and can re-enter the cellular metabolic pathways. The formation of
autophagosomes is a tightly regulated process controlled by specific sets of autophagy-related
(Atg) genes [1–3]. Autophagy can be blocked by the deletion of essential genes such as Atg7.
The global deletion of Atg7 leads to perinatal mortality [4], whereas mice with the cell-type
specific conditional deletion of Atg7 are viable [5].

The role of autophagy in the development and progression of tumors is complex and
depends on the type of cancer [6–9]. Autophagy was found to suppress tumors by counter-
acting genomic instability and reducing cell growth [10]. In established tumors, autophagy
promotes the survival of malignant cells by mitigating metabolic stress and by preventing
cell death and the ensuing activation of antitumor defense [11]. A low expression of Atg12
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in head and neck squamous cell carcinoma is associated with reduced tumor tolerance
to hypoxia and a better prognosis for patients [12]. The inactivation of the autophagic
machinery in experimental animals has also yielded partially contradictory results: The
tissue-specific deletion of Atg7 in mice resulted in the spontaneous development of benign
hepatic neoplasms [13], and the deletion of Atg5 increased K-ras-mediated tumor incidence
in the lung [14]. The suppression of autophagy in the pancreas increased the emergence of
tumors in the context of activated K-ras (G12D) and inactive p53, and either increased or
decreased the progression to malignancy, depending on the experimental model [15,16].
The deletion of Atg7 in a model of K-ras(G12D)-driven non-small-cell lung cancer reduced
tumor burden [17].

Cancers of the skin epithelium, such as squamous cell carcinoma (SCC), are highly
prevalent in humans and have been extensively studied in mouse models [18,19]. In the two-
stage chemical carcinogenesis protocol, tumors are initiated by the topical application of
7,12-dimethylbenz[a]anthracene (DMBA), which causes the mutation of the Hras gene [20],
and promoted by the topical application of 12-O-tetradecanoylphorbol 13-acetate (TPA),
which triggers an inflammatory microenvironment [21]. In another model, the transgenic
expression of the dominant active Son of sevenless (SOS), an activator of Ras signaling,
under the control of the keratin 5 (K5) promoter in epidermal keratinocytes [22] causes SCC-
like skin tumorigenesis. Tumor growth is greatly reduced or suppressed by the presence of
the waved (wa2) mutation of the epidermal growth factor receptor (EGFR) [22], but it can be
efficiently induced by mechanical irritation or wounding [23].

The roles of autophagy in the epidermis and in epithelial skin cancers are not fully
understood at present. The suppression of autophagy caused changes in the differentiation
and aging-associated features of epithelial skin cells [24–35]. The skin barrier function of
mice without epidermal autophagy was intact under non-stressed conditions [24]. However,
the deletion of Atg7 impaired the resistance of epidermal keratinocytes to intrinsic and
environmental oxidative stress [36] and sensitized keratinocytes to apoptosis [37] and
stress-induced senescence [36]. Autophagy is active in the normal epidermis [24,38,39],
and its rate is enhanced in human squamous cell carcinomas [40].

Here, we investigated the role of autophagy in the initiation and progression of
epithelial skin tumors by ablating Atg7 in two mouse models of skin cancer (Figure 1 [22]):
DMBA/TPA-mediated two-stage carcinogenesis and genetically driven carcinogenesis in
the K5-SOS EGFRwa2/wa2 model [22]. The epidermal keratinocyte-targeted deletion of Atg7
(Atg7∆ep) was achieved by the Cre-recombinase-mediated deletion of an essential Atg7 gene
segment flanked by loxP sites (Atg7f/f), as reported previously [24]. The abrogation of Atg7
diminished tumor growth to different extents in these two models of skin carcinogenesis.

Cells 2022, 11, x FOR PEER REVIEW 3 of 10 
 

 

 
Figure 1. Models for testing the role of Atg7 in tumorigenesis. (A) In the two-stage carcinogenesis 
model, mice were treated with DMBA to initiate tumors through mutations in the oncogene H-Ras. 
Treatment with TPA in the following 25 weeks promoted tumor growth, which was monitored up 
to 50 weeks after DMBA treatment. (B) In the K5-SOS EGFRwa2/wa2 model, the SOS transgene was 
expressed in keratinocytes to induce tumors. The waved mutation in EGFR suppressed tumor 
growth unless it was triggered by wounding of ear skin. Tumors were monitored up to 12 weeks 
after wounding. (C) To determine the role of Atg7-dependent autophagy, an essential segment of 
the Atg7 gene was flanked by loxP sites (Atg7f/f, Atg7 floxed), allowing expression of wild-type (WT) 
ATG7 protein in the absence of Cre recombinase, whereas expression of Cre under the control of 
the keratin 14 (K14) promoter led to deletion of floxed Atg7 and blockade of autophagy in epithelial 
cells of the skin of K14-Cre Atg7f/f (also referred to as Atg7Δep) mice. 

2. Materials and Methods 
2.1. Animals 

The generation of K14-Cre Atg7f/f (Atg7∆ep) mice and the absence of aberrant inflam-
mation in the skin and other organs, as well as the normal body mass of these mice, have 
been previously reported [24,25]. Tumors were induced in these mice by using the classi-
cal two-stage chemical carcinogenesis model (see below). To provide a second tumor 
model, Atg7∆ep mice and the corresponding K14-Cre-negative Atg7f/f controls were crossed 
to K5-SOS EGFRwa2/wa2 mice [22], to yield mice homozygous for EGFRwa2/wa2 and Atg7f/f and 
hemizygous for K5-SOS and the K14-Cre transgene. K5-SOS EGFRwa2/wa2 mice develop tu-
mors spontaneously at low frequency, and the incidence can be increased through wound-
ing [22]. The mice were kept on a normal cycle of 12 h alternating light and dark and 
allowed access to fodder and water ad libitum. Animal experiments were conducted ac-
cording to the guidelines of the Declaration of Helsinki and approved by the Ethics Re-
view Committee for Animal Experimentation of the Medical University of Vienna, Aus-
tria, and the Bundesministerium für Wissenschaft und Forschung, Austria (protocol: GZ 
66.009/0120-II10b/2010, 02.04.2010). 

2.2. Chemical Carcinogenesis Model 
Chemical carcinogenesis was performed in K14-Cre Atg7f/f females (n = 17, 8–12 weeks 

old) and control Atg7f/f females (n = 20, 8–12 weeks old). The mice were shaved on their 

Figure 1. Models for testing the role of Atg7 in tumorigenesis. (A) In the two-stage carcinogenesis
model, mice were treated with DMBA to initiate tumors through mutations in the oncogene H-Ras.
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Treatment with TPA in the following 25 weeks promoted tumor growth, which was monitored up
to 50 weeks after DMBA treatment. (B) In the K5-SOS EGFRwa2/wa2 model, the SOS transgene was
expressed in keratinocytes to induce tumors. The waved mutation in EGFR suppressed tumor growth
unless it was triggered by wounding of ear skin. Tumors were monitored up to 12 weeks after
wounding. (C) To determine the role of Atg7-dependent autophagy, an essential segment of the Atg7
gene was flanked by loxP sites (Atg7f/f, Atg7 floxed), allowing expression of wild-type (WT) ATG7
protein in the absence of Cre recombinase, whereas expression of Cre under the control of the keratin
14 (K14) promoter led to deletion of floxed Atg7 and blockade of autophagy in epithelial cells of the
skin of K14-Cre Atg7f/f (also referred to as Atg7∆ep) mice.

2. Materials and Methods
2.1. Animals

The generation of K14-Cre Atg7f/f (Atg7∆ep) mice and the absence of aberrant inflam-
mation in the skin and other organs, as well as the normal body mass of these mice, have
been previously reported [24,25]. Tumors were induced in these mice by using the clas-
sical two-stage chemical carcinogenesis model (see below). To provide a second tumor
model, Atg7∆ep mice and the corresponding K14-Cre-negative Atg7f/f controls were crossed
to K5-SOS EGFRwa2/wa2 mice [22], to yield mice homozygous for EGFRwa2/wa2 and Atg7f/f

and hemizygous for K5-SOS and the K14-Cre transgene. K5-SOS EGFRwa2/wa2 mice de-
velop tumors spontaneously at low frequency, and the incidence can be increased through
wounding [22]. The mice were kept on a normal cycle of 12 h alternating light and dark
and allowed access to fodder and water ad libitum. Animal experiments were conducted
according to the guidelines of the Declaration of Helsinki and approved by the Ethics
Review Committee for Animal Experimentation of the Medical University of Vienna,
Austria, and the Bundesministerium für Wissenschaft und Forschung, Austria (protocol:
GZ 66.009/0120-II10b/2010, 02.04.2010).

2.2. Chemical Carcinogenesis Model

Chemical carcinogenesis was performed in K14-Cre Atg7f/f females (n = 17, 8–12 weeks
old) and control Atg7f/f females (n = 20, 8–12 weeks old). The mice were shaved on their
backs with electric clippers 1 day before the beginning of the treatment and received a single
application (50 µL of a 100 nM solution) of DMBA (Sigma Aldrich, Vienna, Austria). One
week later, all the mice were treated with three applications of TPA (6 nM, Sigma Aldrich,
Vienna, Austria) in acetone (volume of 50 µL per application) per week for 25 weeks. All
the mice were monitored for tumor development once a week for 50 weeks, and tumors
>1 mm were recorded. Tumor size was measured with calipers in 2 dimensions, and the
mean of the two was defined as the tumor size. One K14-Cre Atg7f/f mouse died without
a tumor in week 20 of TPA treatment and was not included in the statistical analysis.
Downward-invading tumors were recorded as carcinomas upon histological confirmation.
The mice with tumors of a diameter >10 mm were euthanized. All the animals underwent
postmortem examination for the presence of non-epidermal tumors, which were not found
in any animal.

2.3. K5-SOS Carcinogenesis Model

For tumor initiation in the K5-SOS EGFRwa2/wa2 Atg7f/f mouse line, a mouse ear
punch with a 2 mm diameter was used to place small wounds on the ear tips of 7–10-
week-old female mice. The animals were monitored for tumor formation once weekly
and were euthanized via CO2 asphyxiation either when tumors reached a diameter of
10 mm or at 12 weeks after initiation. Tumor volume was calculated using the formula
V = L × W × W × pi/6 [41].
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2.4. Statistical Analysis

GraphPad Prism version 8.0.1 for Windows, GraphPad Software, San Diego, Califor-
nia, USA, was used to analyze the data. Tumors per mouse and the size of tumors in Atg7f/f

and Atg7∆ep mice were compared with a two-tailed, unpaired Student’s t-test. All data are
presented as mean ± standard error of the mean. * p-values < 0.05; ** p-values < 0.01. Sur-
vival curves were analyzed with the Log-rank (Mantel–Cox) test and the Gehan–Breslow–
Wilcoxon test.

3. Results
3.1. Inactivation of Atg7 in Keratinocytes Does Not Alter the Incidence of Chemically Induced Skin
Tumors but Leads to Lower Tumor Numbers per Mouse

To determine the role of autophagy in skin tumor formation, we first subjected
epidermis-specific Atg7 knockout mice (Atg7∆ep) and control littermates (Atg7f/f) to the
DMBA/TPA protocol of skin carcinogenesis [19]. Atg7∆ep and Atg7f/f mice developed pa-
pillomas at a similar rate, but the tumor numbers per animal were lower in Atg7∆ep than
in Atg7f/f mice between weeks 21 and 44 (Figure 2A; Table S1). The maximum number
of tumors per mouse was 4.9 in Atg7∆ep mice at week 21 and 7.3 in Atg7f/f mice at week
25 (Figure 2A). The mean tumor load decreased after the end of TPA treatment at week
25. Survival (Figure 2B) and tumor-free survival (Figure 2C) did not significantly differ
between Atg7∆ep and Atg7f/f mice. After all the mice developed tumors (with the exception
of one Atg7∆ep mouse which had to be excluded from the analysis; see Methods for details),
4 out of 17 Atg7∆ep and 3 out of 20 Atg7f/f mice showed tumor regression at the end of the
study (week 50), with the time course of regression not significantly different between the
two genotypes (Figure 2D). The conversion of papilloma into carcinomas was observed in
11.1% of the Atg7∆ep and 7.7% of the Atg7f/f mice (data not shown). These data suggested
that the absence of autophagy was compatible with tumor formation but not with the
maximal growth of epithelial skin tumors, though the overall survival was not improved
in this experiment.

3.2. Epidermal Keratinocyte-Specific Atg7 Deletion Impairs K5-SOS Dependent Tumor Growth

We next investigated the development of tumors in the K5-SOS EGFRwa2/wa2 mouse
model [22,23]. In these mice, tumors can be induced by the wounding of the skin. The
K5-SOS transgene and the EGFRwa2 allele were crossed into Atg7∆ep and Atg7f/f mice to
generate K5-SOS EGFRwa2/wa2 Atg7∆ep and K5-SOS EGFRwa2/wa2 Atg7f/f mice. The ear tips
of 7–10-week-old female mice of these two genotypes were wounded with an ear punch.
Tumors became macroscopically visible at about 4 weeks after wounding in both groups
of mice, with 11 out of 11 K5-SOS EGFRwa2/wa2 Atg7f/f and 8 out 10 of K5-SOS EGFRwa2/wa2

Atg7∆ep mice developing tumors (Table S2). The mean tumor volume was significantly
larger in the fully autophagy-competent mice (K5-SOS EGFRwa2/wa2 Atg7f/f) than in mice
lacking Atg7 in epithelial cells (K5-SOS EGFRwa2/wa2 Atg7∆ep) from week 4 until week 12
(Figure 3A). Tumors with a volume larger than 20 mm3 on one or both ears, a threshold
defined in a previous study [23], appeared in 11 out of 11 K5-SOS EGFRwa2/wa2 Atg7f/f

and 7 out of 10 K5-SOS EGFRwa2/wa2 Atg7∆ep mice (Table S3). The corresponding tumor-
size-survival curves were significantly different between the two genotypes (Figure 3B).
Tumors of 10 mm diameter formed in 6 out of the 11 K5-SOS EGFRwa2/wa2 Atg7f/f mice,
which subsequently had to be killed, but did not form in any of the 10 K5-SOS EGFRwa2/wa2

Atg7∆ep mice, with the difference being statistically significant (Figure 3C). Collectively, the
deletion of Atg7 reduced the growth of tumors more efficiently in the genetically controlled
K5-SOS EGFRwa2/wa2 model than in DMBA/TPA-dependent chemical carcinogenesis.
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Figure 2. Deletion of Atg7 leads to lower numbers of tumors per mouse in the two-step chemical
carcinogenesis model. (A) Atg7f/f (n = 20) and Atg7∆ep (n = 17) mice were treated with DMBA in week
0 and with TPA in the subsequent 25 weeks. The mean number of tumors per mouse is plotted over
time. Error bars indicate standard error of the mean (SEM). For mice that died, the final tumor number
before death was kept until week 50. The difference between Atg7f/f and Atg7∆ep was significant
(p < 0.05, unpaired t-test) in weeks 21–44. p < 0.01 in weeks 22, 25–29, and 31–35. (B) Survival of mice
is shown in a Kaplan–Meier plot. Differences were not significant (n.s.). (C) Tumor-free survival of
mice is shown in a Kaplan–Meier plot. Differences were not significant. (D) Tumor regression was
defined as the absence of tumors until week 50 in mice that previously had at least one tumor. The
percentage of mice in which tumors regressed is shown over time. Differences were not significant.
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Figure 3. Inactivation of Atg7 impairs K5-SOS-dependent skin tumor formation. (A) K5-SOS
EGFRwa2/wa2 Atg7f/f (n = 11) and K5-SOS EGFRwa2/wa2 Atg7∆ep (n = 10) mice were wounded on
both ears in week 0 and monitored over the next 12 weeks. The tumor volume was determined every
week. Error bars indicate standard error of the mean (SEM). For mice that had to be killed because
the tumor diameter reached 10 mm or more, the final tumor volume before death was kept until
week 12. The difference between Atg7f/f and Atg7∆ep was significant with p < 0.05 (unpaired t-test)
at week 4 and with p < 0.01 in weeks 2–12. (B) The absence of tumors with a volume > 20 mm3 is
plotted over time. The difference between Atg7f/f and Atg7∆ep was significant (p < 0.01, Log-rank
(Mantel–Cox) test and Gehan–Breslow–Wilcoxon test). (C) Survival of mice. Mice were killed when
the diameter of a tumor reached 10 mm. The difference between Atg7f/f and Atg7∆ep was significant
(p < 0.01, Log-rank (Mantel–Cox) test and Gehan–Breslow–Wilcoxon test).
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4. Discussion

Autophagy is a tightly regulated degradation process that is implicated in the home-
ostasis of normal, stressed, and malignantly transformed cells. Alterations in autophagic
activity (autophagic flux) have been shown to have beneficial or detrimental effects on
the health and survival of organisms depending on the specific tissue context in which
autophagy was targeted [3]. In the present study, autophagy was blocked in the epithe-
lial skin cells of two mouse models of tumorigenesis (Figure 1). The absence of Atg7
from epithelial cells was associated with lower tumor numbers per mouse in response to
chemical carcinogenesis (Figure 2) and with reduced tumor size and lower mortality in
carcinogenesis driven by the activation of Ras-dependent signaling through transgenic SOS
(Figure 3). These results suggest that Atg7-dependent autophagy supports tumor growth
and the deletion of Atg7 reduces tumor growth.

The lack of autophagy was associated with fewer tumors after chemical carcinogenesis.
This difference was caused by enhanced tumor regression in the Atg7∆ep mice, compared
with the wild-type mice. By contrast, the rates of tumorigenesis and survival did not
significantly differ between the Atg7∆ep and the control mice. It is thus likely that autophagy
supports the persistence of tumors in this model and, accordingly, the suppression of
autophagy decreases the tumor load of mice. Previous studies showed that the deletion
of Atg7 impaired the resistance of epidermal keratinocytes to intrinsic and environmental
oxidative stress [36] and sensitized keratinocytes to apoptosis [37] and stress-induced
senescence [36]. The lack of autophagy-dependent protection against stress at the cellular
level may also reduce the growth and survival of malignant keratinocytes in our model.
Therefore, in future studies, it will be interesting to test whether the potential tumor-
suppressive effect of the inhibition of autophagy is more pronounced if malignant epithelial
cells are exposed to increased levels of stress, such as irradiation or persistent exposure to
toxic chemicals.

In the K5-SOS EGFRwa2/wa2 model of skin cancer, the inactivation of Atg7 was com-
patible with tumorigenesis in 8 out of 10 mice, but 2 mice did not develop tumors. By
contrast, all the fully autophagy-competent mice developed tumors. This result suggests
that inactivating autophagy has a minor protective effect against carcinogenesis in this
model. The role of autophagy in the response to skin wounding [42] may affect wounding-
induced tumorigenesis in this model. More importantly, however, the development of large
tumors was considerably and significantly reduced by blocking autophagy, and none of
the K5-SOS EGFRwa2/wa2 Atg7∆ep mice developed tumors of a diameter of 10 mm or more.
This led to higher survival of K5-SOS EGFRwa2/wa2 Atg7∆ep since none of these animals
had to be sacrificed. These results point to an important role of autophagy in supporting
tumor growth. Accordingly, the inhibition of autophagy had an antitumor effect, which,
however, was less clear than the abrogation of vascular endothelial growth factor (VEGF).
When VEGF was deleted in the keratinocytes of K5-SOS EGFRwa2/wa2 mice, the formation of
large tumors was completely abrogated and all the K5-SOS EGFRwa2/wa2 VEGF∆ep mice sur-
vived [23]. Therefore, the beneficial effect of suppressing autophagy is likely smaller than
that achievable with other treatments such as the blockade of VEGF. As discussed above,
the inhibition of autophagy may be considered an adjuvant therapy but not a stand-alone
therapy for skin tumors.

The present study was designed to test the antitumor effect of blocking autophagy
in all epithelial cells, but we did not dissect the effects of autophagy in tumor cells and in
the surrounding epithelium. Although the abrogation of the cell-autonomous functions
of autophagy in tumor cells may suffice to cause the beneficial effects, additional effects
involving changes in non-malignant cells are possible. Previous studies suggested that the
suppression of epithelial autophagy impairs DNA damage recognition and nucleotide exci-
sion repair [43], which may support tumorigenesis, whereas protumorigenic inflammatory
factors in the cutaneous microenvironment were reduced [37]. In contrast to a report on the
protective effects of Atg7 deletion in UV-dependent carcinogenesis [37], the deletion of Atg7
did not significantly alter the rate of tumor formation in our models. We observed an antitu-
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mor effect of the inhibition of autophagy when tumor growth was monitored over a longer
time. The tumor cells’ dependency on autophagy for persistent growth is well-explained
by the central function of autophagy as a key component of intracellular recycling. Various
models have suggested that autophagy increases the fitness of neoplastic cells, in particular
when the supply of nutrients decreases in large tumors [44–46]. However, autophagy in
the cells of the tumor microenvironment also supports the growth of tumors by enhancing
the generation and secretion of nutrients [47,48] and the autophagy-dependent signaling
processes in non-malignant cells affect their interactions with tumor cells [49,50]. Thus, the
underlying mechanisms through which the inhibition of autophagy reduces the growth
of skin tumors and the antitumor efficacy of targeting autophagy alone or in combination
with other therapies remain to be determined.
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