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Abstract: Colorectal neoplasia differentially expressed (CRNDE) is an oncogenic long noncoding
RNA (lncRNA) overexpressed in diverse malignancies. Here, we comprehensively analyze the
prognostic value and molecular function of CRNDE in glioma. Bulk RNA-sequencing data from The
Cancer Genome Atlas (TCGA) and Chinese Glioma Genome Atlas (CGGA), and single-cell RNA-
sequencing data from the Tumor Immune Single-Cell Hub (TISCH) were analyzed. Kaplan–Meier
survival analysis was applied to verify the prognostic value of CRNDE. Then, a nomogram based on
multivariate Cox regression was established for individualized survival prediction. Subsequently,
the expression characteristic and biological function of CRNDE were analyzed at the single-cell
level. Lastly, the effects of CRNDE on the proliferation and invasion of glioma cell were explored
in vitro. We discovered that CRNDE was a powerful marker for risk stratification of glioma patients.
Regardless of the status of IDH and 1p/19q, CRNDE could effectively stratify patients’ prognosis.
The nomogram that incorporated the CRNDE expression was proved to be a reliable tool for survival
prediction. In addition, epithelial–mesenchymal transition may be the most important biological
process regulated by CRNDE, which was identified at both the bulk and single-cell levels. Moreover,
CRNDE knockdown significantly inhibited the proliferation and invasion of glioma cell. Overall,
CRNDE is a vital oncogene and may be a valuable supplement to improve the clinical stratification
of glioma.

Keywords: CRNDE; glioma; prognostic model; single-cell RNA sequencing; epithelial–mesenchymal
transition

1. Introduction

Glioma is the most prevalent primary malignant tumor in the central nervous sys-
tem [1]. Traditionally, diffuse low-grade and intermediate-grade gliomas (WHO Grades II
and III) are considered to be lower-grade gliomas (LGGs), and WHO Grade IV gliomas are
considered to be glioblastomas (GBMs) [2,3]. GBM is the most malignant glioma subtype.
Even with maximal surgical resection followed by postoperative radiochemotherapy, the
median overall survival (OS) of patients is 14 months, and the 5-year survival rate is less
than 5% [4]. Generally, the prognosis of LGG is better than that of GBM. However, the
prognosis and therapeutic sensitivity of LGG vary widely due to high interindividual
heterogeneity [5]. Some key molecular markers, such as IDH mutation, chromosome
1p/19q codeletion, and TERT promoter mutation, have been identified and incorporated
into routine clinical assessment, significantly improving the prognosis stratification of LGG
patients [6], even though the prognosis of some LGG patients could not be accurately
assessed with existing molecular markers. To improve the clinical management of glioma,
a better understanding of tumor biology at the molecular level is urgently needed.

Cells 2022, 11, 3669. https://doi.org/10.3390/cells11223669 https://www.mdpi.com/journal/cells

https://doi.org/10.3390/cells11223669
https://doi.org/10.3390/cells11223669
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/cells
https://www.mdpi.com
https://orcid.org/0000-0003-1069-9946
https://orcid.org/0000-0003-3763-1095
https://doi.org/10.3390/cells11223669
https://www.mdpi.com/journal/cells
https://www.mdpi.com/article/10.3390/cells11223669?type=check_update&version=1


Cells 2022, 11, 3669 2 of 18

LncRNAs participate in multiple biological processes in cancers [7,8]. CRNDE is a
multifunctional lncRNA first found in colorectal cancer, and was identified to promote
the proliferation and invasion of diverse malignancies [9]. The expression of CRNDE is
upregulated in a variety of tumors and it is the most upregulated lncRNA in glioma [10].
The molecular functions of CRNDE in gliomas have been investigated in several studies.
Zheng et al. reported that CRNDE could function as a ceRNA to regulate the miR-186-
XIAP/PAK7 axis to promote the proliferation and invasion of glioma stem cells [11].
Zhao et al. found that CRNDE enhanced the resistance of temozolomide chemotherapy by
activating the PI3K/Akt/mTOR pathway in glioma [12]. However, the role of CRNDE in
the clinical stratification of glioma has not been described in detail.

With the development of high-throughput techniques, gene expression profiling facil-
itated our understanding of the molecular changes underlying tumor development and
evolution. Bulk RNA-sequencing (RNA-seq) has been widely used to explore the expres-
sion and function of tumor-associated genes. However, traditional bulk RNA-seq methods
sequence a mix of millions of cells, which fail to detect single-cell heterogeneity. Advances
in single-cell RNA-sequencing (scRNA-seq) technologies have provided an unprecedented
view of the cellular heterogeneity in tumors. Although CRNDE is overexpressed in glioma
tissue, the expression characteristic of CRNDE and its biological function at the single-cell
level are still unclear.

In the present study, we identify the role of CRNDE in the clinical stratification of
glioma using bulk RNA-seq data from TCGA and CGGA [13]. In addition, we reveal the
expression characteristic and biological function of CRNDE at the single-cell level using
scRNA-seq data from the TISCH database [14]. Furthermore, we explore the effects of
CRNDE knockdown on the proliferation and invasion of glioma cell. Our study provides
new insights into the role of CRNDE in the development and evolution of glioma.

2. Materials and Methods
2.1. Patients and Datasets

The bulk RNA-seq data of 614 gliomas (456 LGGs and 158 GBMs) from TCGA and
847 gliomas (512 LGGs and 335 GBMs) from CGGA were included in this study. Due to
the wide variance in the outcomes of LGG patients, we constructed a prognostic model
to predict their prognosis. A total of 456 LGGs from TCGA were selected to enter the
training set and develop the predictive model. Then, 512 LGGs from CGGA were used as
the external validation set. Patients with survival of less than 30 days were excluded from
the model construction.

2.2. Bulk RNA-Seq Data Processing

The fragments per kilobase per million mapped reads (FPKM) values of RNA-seq data
were transformed into transcripts per million (TPM) to eliminate statistical biases [15,16].
To reduce the systematic error between TCGA and CGGA datasets, the expression level of
CRNDE was normalized to [0,1] according to the previously mentioned method [5].

To assess the prognostic value of CRNDE, we selected the 456 LGGs from TCGA as the
training set to generate the optimal cutoff value using the receiver operating characteristics
(ROC) curve for predicting 5-year survival. The patients were then stratified into high- and
low-expression groups according to the cutoff value. The same cutoff value and grouping
method were applied to the 512 LGGs of CGGA to confirm its robustness. Kaplan–Meier
survival analysis was performed to assess the stratification ability of the risk grouping in
different molecular subtypes of LGG.

2.3. Development and Assessment of the Predictive Nomogram

To establish the predictive nomogram, multivariate Cox regression combined with
stepwise backward elimination was applied to select the best factors included in the
model [17]. Calibration curves were selected to assess the performance of the nomogram.
Time-dependent ROC curves were used to evaluate the predictive accuracy.
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2.4. Gene Set Enrichment Analysis (GSEA)

Differential expression analysis was conducted between the high- and low-expression
groups in TCGA and CGGA, respectively. Then GSEA was performed on the basis of
cancer hallmark gene sets (h.all.v7.5.1.symbols, http://www.gsea-msigdb.org/gsea/index.
jsp, accessed on 24 June 2022) using R packages “fgsea” and “clusterProfiler”. Gene
sets with normalized enrichment score (NES) > 1.5 and adjusted p-value < 0.05 were
considered significant.

2.5. scRNA-seq Data Processing of Glioma Samples

The scRNA-seq data of glioma samples were downloaded from the TISCH database
(http://tisch.comp-genomics.org/, dataset ID: Glioma_GSE131928, accessed on 28 July 2022).
A total of 5311 cells from three patients (MGH115, MGH124, MGH125) were included in
the analysis. R package “Seurat” was used to process the scRNA-seq data. R package
“harmony” was applied to remove the batch effect among different samples. To reduce
dimensionality, about 2000 highly variable genes were selected for principal component
analysis and then summarized using the T-distributed Stochastic Neighbor Embedding
(tSNE) algorithm. To identify marker genes for each cluster, we used the FindClusters
function of the Seurat package with a resolution of 0.6. Cell clusters were annotated to
known cell types according to marker genes from the CellMarker database.

2.6. Gene Set Variation Analysis (GSVA)

GSVA was used to calculate the pathway activity score of each cell on the basis of
the 50 hallmark pathways (h.all.v7.5.1.symbols) using R package “GSVA”. R package
“limma” was applied to analyze the differences in pathway enrichment between different
cell clusters.

2.7. Cell–Cell Communication Analysis

Cell–cell communication analysis was conducted on the basis of the expression of lig-
ands and receptors using R package “CellChat”. The ligand–receptor interactions between
two cell clusters were evaluated on the basis of a permutation test. We extracted significant
ligand–receptor pairs with p-value < 0.01.

2.8. Single-Cell Regulatory Network Inference and Clustering (SCENIC) Analysis

To analyze the transcriptional regulation of CRNDE in glioma cells, SCENIC analysis
was performed using R packages “SCENIC” and “RcisTarget”. We selected the 50 glioma
cells expressing the highest levels of CRNDE and the 50 glioma cells expressing the lowest
levels of CRNDE for comparison by SCENIC. Then, we verified the correlation between the
expression of transcription factors (TFs) and CRNDE using bulk RNA-seq data from TCGA.

2.9. Cell Culture and Transfection

Human glioma cell lines U118 (from Grade IV glioblastoma) and SW1783 (from
Grade III astrocytoma) were cultured in Dulbecco’s Modified Eagle Medium (DMEM;
Gibco, NY, USA) supplemented with 10% fetal bovine serum (FBS; BI, Kibbutz, Israel),
100 IU/mL penicillin, and 100 µg/mL streptomycin. All cells were incubated at 37 ◦C in a
humidified incubator with 5% CO2. For transient CRNDE silencing, 3 × 105 glioma cells
were seeded into 6-well plates and cultured overnight. Next, cells were transfected with
antisense oligonucleotide (ASO) at a final concentration of 50 nM using lipo3000 (Invitrogen,
CA, USA). ASO-CRNDE-1, ASO-CRNDE-2, and negative control ASO (ASO-NC) were
chemically synthesized by Ribio Company (Guangzhou, China). Transfection efficiency
was verified with real-time quantitative PCR (RT-qPCR). The ASO sequences are listed in
Supplementary Table S1.

http://www.gsea-msigdb.org/gsea/index.jsp
http://www.gsea-msigdb.org/gsea/index.jsp
http://tisch.comp-genomics.org/
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2.10. RT-qPCR

Total RNA extraction was completed using MiniBEST Universal RNA Extraction Kit
(TaKaRa, Dalian, China) following the manufacturer’s instructions. The PrimeScript™ RT
Master Mix (TakaRa) was used for the reverse of cDNA. RT-qPCR was performed using
TB Green® Premix Ex Taq™ II (TakaRa) on an ABI 7500 real-time PCR system (Applied
Biosystems, Foster, CA, USA). CRNDE quantitation was normalized to endogenous controls
(GAPDH, β-actin, and α-tubulin). The relative expression of CRNDE was calculated using
the 2–∆∆CT method. The primer sequences are also listed in Supplementary Table S1.

2.11. Cell Proliferation Assay

Glioma cells were seeded into 96-well plates at a density of 8 × 103 cells per well,
with 4 replicates. Cell viability was detected with Cell Counting Kit-8 (CCK-8, Dojindo,
Kumamoto, Japan) at 0, 24, 48, 72, and 96 h after transfection. Absorbance was measured at
450 nm with the Spark Microplate Reader (Tecan, Switzerland).

2.12. Cell Invasion Assay

Cell invasion assay was conducted using Transwell invasion chambers (Corning, NY,
USA). For Matrigel coating, Matrigel (BD Biosciences, Bedford, MA, USA) was diluted in
serum-free DMEM at a ratio of 1:10. Glioma cells were resuspended in 200 µL serum-free
DMEM at a density of 5 × 105 cells/mL and then seeded in the upper chamber. DMEM
with 15% FBS was added to the bottom chamber as an attractant. Nonmigratory cells on
the upper membrane surface were carefully removed after incubation for 24 h. Cells that
had invaded to the lower surface of the membrane were fixed with 4% paraformaldehyde
and stained with 0.1% crystal violet.

2.13. Statistical Analysis

All statistical analyses were performed using R software version 4.1.3 (Free Soft-
ware Foundation, Boston, MA, USA). All experiments were repeated three times to avoid
contingency. p values < 0.05 were considered statistically significant.

3. Results
3.1. The Expression of CRNDE in Glioma

Differential expression analysis of CRNDE was performed between 200 normal brain
specimens from the GTEx Portal and 668 glioma samples from TCGA. Compared to normal
brain tissue, the expression of CRNDE was significantly upregulated in glioma and showed
an elevated trend with the increase of tumor grade (Figure 1A). In addition, the expression
of CRNDE in IDH-wildtype LGG was higher than that in IDH-mutant LGG (IDH-wildtype
16.33 vs. IDH-mutant 3.22, p < 0.001, Figure 1B). Similarly, the expression of CRNDE
in 1p/19q noncodeleted LGG was higher than that in 1p/19q codeleted LGG (1p/19q
noncodeleted 7.54 vs. 1p/19q codeleted 1.60, p < 0.001, Figure 1B). This suggested that the
expression of CRNDE was closely related with the risk factors of glioma.

3.2. Kaplan–Meier Analysis Based on the Expression of CRNDE in TCGA and CGGA

IDH mutation and 1p/19q codeletion are considered to be the most important molecu-
lar markers of glioma due to their significant prognostic value. To verify the prognostic
stratification ability of CRNDE, we performed Kaplan–Meier survival analysis on different
molecular subtypes of glioma. In the training phase, we selected the 456 LGGs from TCGA
as the training set to generate the optimum cutoff value of CRNDE using the ROC curve
for predicting 5-year OS (Supplementary Figure S1). As a result, patients with CRNDE
expression higher than 0.2757 were divided into the high-expression group, while those
with CRNDE expression lower than 0.2757 were divided into the low-expression group.
As expected, regardless of the status of IDH mutation and 1p/19q codeletion, patients
with high expression of CRNDE had worse prognoses than those with low expression of
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CRNDE in both the training and external validation sets (Figures 2 and 3). This indicates
that CRNDE is a valuable supplementary marker for glioma.
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3.3. Establishment of a Predictive Nomogram for OS of LGG Patients

The characteristics of LGG patients in the training and validation sets are presented
in Table 1. Univariate and multivariate Cox analyses were applied to identify the sig-
nificant prognostic factors of LGG in TCGA and CGGA datasets. After adjusting for
potential risk factors, including patient’s age, tumor grade, IDH mutation, and 1p/19q
codeletion, multivariate Cox analysis showed that the expression of CRNDE remained an
independent prognostic indicator for OS of LGG (Figure 4). Moreover, CRNDE was still an
independent prognostic indicator for OS when all LGG and GBM patients were included
(Supplementary Figure S2).

After backward selection using Akaike’s information criterion as a stopping rule, a
predictive nomogram that incorporated the patient’s age, tumor grade, IDH mutation,
1p/19q codeletion, and CRNDE expression was established to predict the 3- and 5-year OS
of LGG patients in the training set (Figure 5A). Calibration curves reveal that the nomo-
gram was well-calibrated in both the training and external validation sets (Figure 5B,C).
In addition, the predictive accuracy was verified using time-dependent ROC curves. The
nomogram gave a 3-year AUC of 0.92 and 0.81, and a 5-year AUC of 0.86 and 0.80 in TCGA
and CGGA, respectively (Figure 5D,E), indicating that it was a good predictor for LGG
patients’ survival.

3.4. Biological Processes Associated with the Expression of CRNDE in TCGA and CGGA

To identify the potential biological processes associated with the expression of CRNDE,
GSEA was performed between the high- and low-expression groups in TCGA and CGGA,
respectively. By ranking the NES, hallmark epithelial–mesenchymal transition (EMT)
showed the highest score in both datasets (Figure 6), suggesting a close relationship between
CRNDE and EMT in glioma. In addition, some pro-oncogenic signaling pathways were
significantly enriched with high NES in both datasets, such as G2M checkpoint, E2F targets,
JAK/STAT3 pathway, and the TNFA/NFKB pathway.
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Figure 2. Kaplan–Meier survival curves of the high- and low-expression groups according to IDH and
1p19q status in TCGA dataset. Kaplan–Meier survival analyses were performed on (A) 614 glioma
patients, (B) 456 LGG patients, (C) 84 patients with wildtype IDH, (D) 372 patients with IDH mutation,
(E) 146 patients with 1p19q codeletion, (F) 310 patients without 1p19q codeletion, (G) 227 patients
with IDH mutation and without 1p19q codeletion, (H) 145 patients with IDH mutation and 1p19q
codeletion, and (I) 83 patients with wildtype IDH and without 1p19q codeletion.

3.5. Cell Type Identification Based on scRNA-Seq from the TISCH

The expression feature and biological function of CRNDE at the single-cell level
were also explored. A total of 5311 cells from three glioma patients (MGH115, MGH124,
MGH125) were divided into four major clusters, namely, glioma cells, myeloid cells, oligo-
dendrocytes, and T cells (Figure 7A). The tSNE plot clustered in the patients showed that
the batch effect was fully corrected (Figure 7B). The expression features of marker genes of
the four major clusters are presented in Supplementary Figure S3.
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Figure 3. Kaplan–Meier survival curves of the high- and low-expression groups according to IDH and
1p19q status in CGGA dataset. Kaplan–Meier survival analyses were performed on (A) 850 glioma pa-
tients, (B) 512 LGG patients, (C) 125 patients with wildtype IDH, (D) 387 patients with IDH mutation,
(E) 162 patients with 1p19q codeletion, (F) 350 patients without 1p19q codeletion, (G) 230 patients
with IDH mutation and without 1p19q codeletion, (H) 157 patients with IDH mutation and 1p19q
codeletion, (I) and 120 patients with wildtype IDH and without 1p19q codeletion.

For further cell type identification depending on the marker genes of minor clusters,
glioma cells were divided into four minor subtypes (neural-progenitor-like (NPC-like)
glioma cells, oligodendrocyte-progenitor-like (OPC-like) glioma cells, mesenchymal-like
(MES-like) glioma cells, and astrocyte-like (AC-like) glioma cells), and myeloid cells were
divided into three minor subtypes (microglial cells, monocytes, and neutrophils) (Figure 7C).
The previous research of Cyril Neftel et al. [18] was also an important reference for the
identification of glioma cell subtypes in this study. The expression of CRNDE at the single-
cell level was projected onto tSNE, in which the feature plot showed that CRNDE was
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specifically overexpressed in glioma cells (Figure 7D). The expression profile of marker
genes of the nine minor clusters is presented in Figure 7E.

Table 1. Characteristics of LGG patients in the training and validation sets.

TCGA LGGs CRNDE Expression CGGA LGGs CRNDE Expression

Factor Number High Low p Factor Number High Low p

Total no. of patients 456 201 255 Total No. of patients 512 344 168
Age (y) Age (y)

<40 210 71 139 <0.001 <40 242 151 91 0.031
≥40 246 130 116 ≥40 269 192 77
Sex Sex

Male 249 111 138 0.814 Male 296 205 91 0.243
Female 207 90 117 Female 216 139 77
Grade Grade

WHO II 218 64 154 <0.001 WHO II 237 141 96 <0.001
WHO III 238 137 101 WHO III 275 203 72

IDH IDH
Mutant 372 132 240 <0.001 Mutant 387 246 141 0.002

Wildtype 84 69 15 Wildtype 125 98 27
1p19q 1p19q
Codel 146 22 124 <0.001 Codel 162 63 99 <0.001

Noncodel 310 179 131 Noncodel 350 281 69
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3.6. Biological Processes Associated with the Expression of CRNDE at the Single-Cell Level

Among the four minor subtypes of glioma cells, the expression level of CRNDE in
AC-like glioma cells was the highest, while that in NPC-like glioma cells was the lowest
(Figure 8A–C). To identify the potential biological processes associated with the expression
of CRNDE at the single-cell level, we performed GSVA to calculate the pathway activity
score of each cell on the basis of 50 hallmark pathways. A direct comparison of AC-like
versus NPC-like glioma cells revealed EMT as the top enriched hallmark pathway in AC-
like glioma cells (Figure 8D,E). Remarkably, this is in high accordance with the GSEA in
bulk RNA-seq. Moreover, the JAK/STAT3 and TNFA/NFKB pathways were also enriched
with high GSVA scores in AC-like glioma cells at the single-cell level.
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3.7. Cell–Cell Communication Analysis at the Single-Cell Level

To determine the potential interactions among different cell types, we applied CellChat
analysis to identify the critical features of cell–cell communication and predict possible
signaling pathways. Circle plots show that AC-like glioma cells communicated with
other cells more frequently than NPC-like glioma cells did, whether as a source or target
(Figure 8F,G). Moreover, many ligand and receptor molecules of the involved signaling path-
ways were related to EMT, such as CD44 [19], THBS1/CD47 [20], PTN [21], PTPRZ1 [22],
WNT/FZD3 [23], NOTCH [24,25], and FGFR [26]. We next present EMT-related ligand–
receptor interactions using bubble plots (Figure 8H,I). Compared to NPC-like glioma
cells, AC-like glioma cells with high CRNDE expression exhibited higher EMT-related
communication activity.

3.8. The Transcriptional Regulation of CRNDE in Glioma

To analyze the transcriptional regulation of CRNDE at the single-cell level, SCENIC
analysis was applied. A set of TFs were predicted to regulate the expression of CRNDE at
the transcriptional level, mainly including RFX4, CEBPD, DLX2, CEBPB, AR, and YBX1
(Figure 9A). Next, we evaluated the correlations between the expression of TFs and CRNDE
using bulk RNA-seq data from TCGA. The result shows that the expression of the six TFs
was significantly positively correlated with the expression of CRNDE in glioma (Figure 9B).
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Figure 8. Biological processes and cell–cell communications associated with the expression of CRNDE
at the single-cell level. (A,B) tSNE plot of the glioma cells with each cell color-coded by (A) minor
subtype and (B) the expression level of CRNDE. (C) CRNDE expression in four minor subtypes of
glioma cells quantified by bubble plot. (D) Differences in pathway activities scored per cell by GSVA
between AC-like and NPC-like glioma cells. (E) tSNE plot of AC-like and NPC-like glioma cells
with each cell color-coded by GSVA score of the EMT process. (F,G) The number of ligand–receptor
interactions associated with (F) AC-like glioma cells and (G) NPC-like glioma cells. (H,I) EMT-related
ligand–receptor interactions associated with (H) AC-like glioma cells and (I) NPC-like glioma cells.

3.9. Biological Functions of CRNDE in Glioma Cells

To further assess the effect of CRNDE on glioma cells, we knocked down the expression
of CRNDE with ASO in U118 and SW1783 cell lines. Knockdown efficiency was verified
with RT-qPCR (Figure 10A,B and Supplementary Figure S4). CCK-8 assay shows that the
proliferation of glioma cells was significantly inhibited by CRNDE silencing (Figure 10C,D).
In addition, Transwell assay reveals that CRNDE knockdown suppressed the invasion of
U118 and SW1783 (Figure 10E–G).
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Figure 10. Effects of CRNDE knockdown on the proliferation and invasion of glioma cells.
(A,B) Knockdown efficiency of CRNDE in U118 and SW1783 verified with RT-qPCR. The mean
expression level of GAPDH, β-actin, and α-tubulin was used as the endogenous control. (C,D) Effect
of CRNDE knockdown on the proliferation of glioma cells. (E–G) Effect of CRNDE knockdown on
the invasion of glioma cells (** p < 0.01).
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4. Discussion

Due to the high interindividual heterogeneity, the prognosis of glioma patients, espe-
cially LGG patients, varies widely. Although molecular markers such as IDH mutation and
chromosome 1p/19q codeletion have been incorporated into routine clinical evaluation
to stratify the prognosis of LGG patients, there is still room for further improvement. In
this study, we found that CRNDE is a valuable prognostic marker for glioma patients,
and a potential supplement to IDH mutation and 1p/19q codeletion. We further built
a nomogram that incorporated the patient’s age, tumor grade, IDH mutation, 1p/19q
codeletion, and CRNDE expression to accurately predict the survival of LGG patients.
The performance of the nomogram was verified in an external validation set to ensure its
robustness and reliability.

CRNDE is an oncogenic lncRNA that plays important roles in cancers, including solid
tumors and hematological malignancies [27]. CRNDE participates in multiple biological
processes, such as cell proliferation, invasion, metastasis, autophagy, and apoptosis [28]. For
example, Ding et al. reported that CRNDE could bind to EZH2 and epigenetically silence
the expression of DUSP5 and CDKN1A, thereby promoting the proliferation of colorectal
cancer cells [29]. Li et al. found that CRNDE promoted the invasion of osteosarcoma cells
by activating Notch1 pathway and epithelial–mesenchymal transition [30]. Wang et al.
demonstrated that CRNDE functioned as ceRNA to promote the metastasis of pancreatic
cancer cells by regulating the miR-384/IRS1 axis [31].

The molecular functions of CRNDE in glioma have also been reported in several
studies. However, the role of CRNDE in the prognostic stratification of glioma has not
been described in detail. IDH mutation and 1p/19q codeletion are the most important
prognostic markers to distinguish different molecular subtypes of glioma [6]. To verify the
stratification ability of CRNDE in different molecular subtypes of glioma, we performed
Kaplan–Meier analysis in TCGA and CGGA. As expected, CRNDE could effectively stratify
the prognosis of patients regardless of the molecular subtype of LGG, which indicates
that CRNDE may be a valuable supplement to improve prognostic evaluation. Moreover,
CRNDE showed better prognostic stratification ability compared to other gene markers.
For example, H2BC12 could predict poor survival outcomes of glioma patients, but failed
to stratify the prognosis of IDH-wildtype patients [32]. The expression of eIF3 subunits
was associated with poor OS of glioma patients, but still failed to stratify the prognosis of
IDH-wildtype patients [33]. This highlights the excellent prognostic value of CRNDE. In
addition, the effect of CRNDE on glioma cells was assessed. Cellular functional experiments
showed that CRNDE knockdown significantly inhibited the proliferation and invasion of
U118 and SW1783. This further confirmed the vital role of CRNDE in glioma.

To identify the biological process most related to CRNDE in glioma, we performed
GSEA using bulk RNA-seq data from TCGA and CGGA. Interestingly, hallmark EMT
showed the highest NES in both datasets, indicating a close relationship between CRNDE
and EMT in glioma. Furthermore, we analyzed the cancer hallmarks related to CRNDE
at the single-cell level. Among the four minor subtypes of glioma cell identified in the
scRNA-seq dataset, AC-like glioma cells expressed the highest level of CRNDE, while
NPC-like glioma cells expressed the lowest. Then, GSVA was applied to calculate the
pathway activity score of each cell in the two cell subtypes. Remarkably, the comparison of
AC-like versus NPC-like glioma cells revealed that hallmark EMT was also the top enriched
pathway in glioma cells with high CRNDE expression. EMT is a process of epithelial cells
acquiring mesenchymal features that is associated with tumorigenesis, invasion, metastasis,
and resistance to chemotherapy [34]. Considering the bioinformatic results at the bulk
and single-cell levels, the potential relationship between CRNDE and EMT should be
given much attention. In addition, the JAK/STAT3 and TNFA/NFKB signaling pathways
were associated with high CRNDE expression at both the bulk and single-cell levels. The
activation of the JAK/STAT3 and TNFA/NFKB axes was widely reported to induced
increased invasive and metastatic ability via enhancing EMT in various cancers [35–39].
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This indicates that the JAK/STAT3 and TNFA/NFKB axes may participate in the regulation
of CRNDE on EMT.

CellChat can quantitatively analyze the intercellular ligand–receptor interactions from
scRNA-seq data, and help us in understanding the global communications among cells [40].
To determine the effect of CRNDE on glioma-cell-related intercellular communications,
we selected AC-like and NPC-like glioma cells for comparison. Circle plots showed that
glioma cells with high CRNDE expression communicated with other cells more frequently,
suggesting a positive correlation between CRNDE expression and intercellular interactions.
EMT can be induced by various signaling pathways, including TGF-β, BMP, Wnt-β-catenin,
NOTCH, Shh, and receptor tyrosine kinases [24]. EMT-related signaling molecules were
also included in CellChat analysis. For example, CD44 promotes EMT by upregulating
ZEB1 in oral cancer cells [41]. CD47 activates EMT through modulating E-cadherin and
N-cadherin in ovarian carcinoma [42]. PTN disrupts calcium-dependent cell adhesion and
initiates the EMT of glioma cells [21]. FZD3 can activate the EMT of osteosarcoma cells by
promoting β-catenin transfer into the nucleus [23]. According to bioinformatic analysis
from CellChat, EMT-related signaling molecules were more frequently activated in AC-
like glioma cells with high CRNDE expression, further confirming the strong association
between CRNDE and EMT.

Considering the important role of CRNDE in glioma, its transcriptional regulation
also deserves attention. SCENIC is a computational method to infer and reconstruct gene
regulatory networks from scRNA-seq data [43]. In this study, we applied SCENIC analysis
to infer the upstream TFs that may regulate the expression of CRNDE. As a result, we
identified six TFs with the highest predictive scores: RFX4, CEBPD, DLX2, CEBPB, AR, and
YBX1. Further correlation analysis using bulk RNA-seq data showed that the expression
of these six TFs was significantly positively correlated with the expression of CRNDE,
suggesting that these six TFs might contribute to the high expression of CRNDE in glioma.
Notably, the six TFs exert pro-oncogenic effects in various cancers [44–48], which provides
new sights for understanding the molecular mechanisms of glioma progression.

5. Conclusions

In summary, high CRNDE expression was associated with a malignant phenotype of
glioma and indicated poor prognosis for glioma patients. CRNDE could effectively stratify
the prognosis of LGG patients regardless of their molecular subtypes, which indicated that
CRNDE may be a valuable supplement to IDH mutation and 1p/19q codeletion. Moreover,
the nomogram that incorporated the patient’s age, tumor grade, IDH mutation, 1p/19q
codeletion, and CRNDE expression was a reliable tool for the prognosis of LGG patients. In
addition, EMT may be the most critical biological process regulated by CRNDE, which was
inferred from RNA-seq analyses at bulk and single-cell levels. Lastly, an in vitro experiment
confirmed that CRNDE contributed to the proliferation and invasion of glioma cells. This
study presented a comprehensive understanding of the role of CRNDE in glioma at the
bulk and single-cell levels, which may be helpful in the individualized management of
glioma patients.
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Table S1: sequences of ASO and primers.
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