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Abstract: Ischemia–reperfusion (I/R) is a common pathological phenomenon that occurs in numerous
organs and diseases. It generally results from secondary damage caused by the recovery of blood
flow and reoxygenation, followed by ischemia of organ tissues, which is often accompanied by severe
cellular damage and death. Currently, effective treatments for I/R injury (IRI) are limited. Ferroptosis,
a new type of regulated cell death (RCD), is characterized by iron overload and iron-dependent lipid
peroxidation. Mounting evidence has indicated a close relationship between ferroptosis and IRI.
Ferroptosis plays a significantly detrimental role in the progression of IRI, and targeting ferroptosis
may be a promising approach for treatment of IRI. Considering the substantial progress made in the
study of ferroptosis in IRI, in this review, we summarize the pathological mechanisms and therapeutic
targets of ferroptosis in IRI.
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1. Introduction

Ischemia–reperfusion injury (IRI) is one of the primary causes of organ failure in
patients and refers to the phenomenon of increased or even irreversible damage after
the restoration of blood flow due to various causes of organ ischemia [1]. IRI inevitably
occurs during surgical procedures, organ transplantation, traumatic shock, and thrombotic
diseases [1,2]. The combination of ischemia and reperfusion of the blood flow mediates
renal tissue injury. Ischemia is the first key event in IRI, spearheading the induction of
cellular metabolic imbalance and an abrupt decrease in oxygen availability in tissues; the
second major incident is the recovery of blood flow and reoxygenation in the ischemia-
involved region, where excess free radicals trigger destructive inflammatory responses
and induce an overproduction of reactive oxygen species (ROS), which leads to worsening
tissue damage or secondary injury [1,3]. Research on the role and mechanisms of IRI
has been conducted in various organs, with studies focusing mainly on the heart, brain,
kidney, liver, intestine, and lungs. Despite substantial research on IRI in recent years, the
fine-grained mechanisms associated with IRI are extremely complex and remain elusive,
hindering the implementation of pharmaceutical strategies. Accordingly, it is crucial to
learn from experience and explore novel therapeutic targets for IRIs.

A unique and iron-dependent form of RCD known as ferroptosis is characterized
by disordered iron metabolism and lipid peroxide buildup [4]. Since ferroptosis was
discovered over the past decade, tremendous advances in understanding ferroptosis have
shed light on its regulatory mechanisms and relevant disease contexts. Mounting evidence
indicates that ferroptosis is one of the key drivers of the onset and progression of ischemic
organ injury, and some small molecules or drugs with ferroptosis-inhibiting properties
have succeeded in reducing IRIs in different organs. This review provides an overview of
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current developments in ferroptosis pathogenesis, ferroptosis evidence in organ IRIs, and
associated potential therapeutic targets and strategies.

2. Mechanisms Governing Ferroptosis

The process of ferroptosis differs from that of apoptosis, necrosis, and other types of
RCD in terms of genetics, morphology, and biochemistry (Table 1) [4–6]. Multiple biologi-
cal modulatory pathways, including disturbed iron homeostasis and lipid peroxidation,
contribute to and collectively mediate ferroptosis. The mechanisms and main regulators
involved in ferroptosis are presented in Figure 1.

Table 1. Comparison: features of different forms of RCD.

Morphological
Features

Biochemical
Features Core genes Inducers Inhibitors

Ferroptosis

Mitochondrial
shrinkage and
morphological
abnormalities

(increased membrane
density, diminished or

vanished cristae,
ruptured outer

membrane), with
normal nucleus

Iron accumulation,
lipid peroxidation,

inhibition of
SLC7A11/GSH/GPX4

GPX4, TFR1,
SLC7A11, NRF2,

NCOA4, P53,
ALOXs, ACSL4,

FSP1

Erastin, RSL3

Ferrostatin-1,
liproxstatin-1,

vitamin E,
desferoxamine

Apoptosis

Cell shrinkage, plasma
membrane blebbing,

chromatin
agglutination, nuclear

fragmentation,
apoptotic bodies

DNA
fragmentation,
activation of

caspase pathway

Caspase, Bcl-2, Bax,
P53, Fas

FASL, DCC,
UNC5B

zVAD-FMK, XIAP,
c-IAP1

Necroptosis

Swelling and rupture
of cells and organelles,

leakage of cell
contents, moderate

condensation of
chromatin

Drop in ATP levels RIP1, RIP3, LEF1 zVAD-fmk, TNF-α Necrostatin-1,
NSA

Pyroptosis

Cell swelling and
plasma membrane

bubbling,
formation of

inflammasome, release
of cellular components

Activation of
caspase-1 and

GSDMD,
release of

pro-inflammatory
cytokines

Caspase-1, IL-1β,
IL-18, GSDMD

Lipopolysacc-
haride,

ivermectin
NAC, GSH

Autophagy
Formation of

double-membraned
autolysosomes

Increased
lysosomal activity

ATG5, ATG7,
LC3, BECN1,

DRAM3,
AMPK, mTOR

Rapamycin,
valproate

Chloroquine,
3-methyladenine,

wortmannin,
Spautin-1,

bafilomycin A1
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Figure 1. An overview of the mechanism and key regulators of ferroptosis. The mechanism of
ferroptosis is complex and morphologically, genetically, and biochemically distinct from other forms
of RCD. Iron metabolism, lipid peroxidation, and antioxidant system are involved in the mechanism
of ferroptosis.

2.1. Iron Metabolism

At physiological concentrations, iron is an essential nutrient for the human body. Iron
accepts electrons and donates them; therefore, abnormal accumulation of iron can lead to
oxidative injury or even cell death. Iron in food exists mostly in the form of Fe3+, which
must be reduced to Fe2+ or combined with iron chelators for absorption in the intestine.
Cells acquire Fe3+ through transferrin (TF) and non-TF-bound iron (NTBI). In cases of Fe3+

overload, excess Fe3+ can exceed the burden capacity of TF and circulate as NTBI. Each
TF can bind to two Fe3+ ions, and the TF carrying Fe3+ additionally binds to transferrin
receptor 1 (TFR1), leading to membrane invagination and the formation of specialized
endosomes [7]. In acidic endosomes, Fe3+ is released from TF and reduced to Fe2+ by
six-transmembrane epithelial antigen of the prostate 3. Fe2+ traverses the endosomal
membrane to the cytoplasm via divalent metal transporter 1 (DMT1), solute carrier family
39 member 14, and transient receptor potential mucolipin 1, constituting a dynamic labile
iron pool (LIP) [8]. Additionally, heme metabolism mediated by heme oxygenase 1 (HO-1)
can provide equimolar amounts of reactive Fe2+, carbon monoxide, and biliverdin Ixα [9,10],
which also contributes to the accumulation of LIP. Mitochondria are the main organelles of
iron influx in LIP, as the site of heme or iron-sulfur (Fe-S) clusters [11]. Mitochondrial iron
homeostasis depends on several mitochondrial membrane proteins, including SLC25A37
and SLC25A28, which are the main importers of iron [12,13]. CDGSH iron sulfur domain
1 (CISD1) and CISD2 can restrict the uptake of mitochondrial iron [14]. Owing to the
elevated Fe2+-driven Fenton reaction, hydroxyl radicals are produced by H2O2. By reacting
with polyunsaturated lipids (LH), hydroxyl radicals generate lipid peroxyl radicals, and
arachidonate lipoxygenases (ALOXs) can also oxidize LH into hydroperoxide (LOOH),
which is then converted into lipid peroxyl radical by Fenton reaction. Eventually, the
lipid peroxyl radicals initiate and facilitate lipid peroxidation [15,16]. Moreover, iron can
enhance the activity of lipoxygenases (ALOXs) and cytochrome P450 oxidoreductase (POR),
which are metabolic enzymes associated with phospholipid peroxidation (Figure 2). Iron is
indispensable for the synthesis of several iron-containing enzymes associated with cellular
ROS [17].
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Intracellular iron is retained in ferritin as Fe3+, which attenuates the effects of Fe2+-
mediated oxidative damage. Higher ferritin levels represent greater iron storage and
resistance to ferroptosis. The degradation of ferritin by nuclear receptor coactivator 4
(NCOA4) and the ubiquitin proteasome system can lead to increased susceptibility to
ferroptosis [18,19]. In mammalian cells, solute carrier family 40 member 1 (SLC40A1/FPN)
facilitates intracellular iron export [20]. The current evidence indicates that overexpression
of SLC40A1 improves ferroptosis [21]. Ferroptosis susceptibility is influenced by the
dynamic modulation of iron between systemic and local cells.
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2.2. Lipid Peroxidation

Unrestricted lipid peroxidation, which is the defining event of ferroptosis, is a process
by which oxidants attack the carbon–carbon double bonds of lipids. Polyunsaturated fatty
acids (PUFAs) are the main substrates of this process, especially arachidonic acid (AA) and
adrenic acid (AdA) [22]. The weak C–H bonds at the bis-allylic positions of PUFAs make
them susceptible to oxidation [23]. Moreover, PUFAs on the membrane are the primary
targets of ROS [24]. Following the primary oxidation step, free radicals can migrate inside
the same molecule or oxidize additional molecules [25,26]. By accelerating the addition
of CoA to the long-chain polyunsaturated bonds of free AA/AdA and facilitating its es-
terification to phospholipids, acyl-CoA synthetase long-chain family member 4 (ACSL4)
plays a critical role in ferroptosis. Subsequently, lysophosphatidylcholine acyltransferase
3 (LPCAT3) mediates the production of AA/AdA-CoA and membrane PE to generate
AA/AdA-PE [8]. Thus, the inhibition or promotion of ACSL4 and LPCAT3 expression
may be an effective means of desensitizing or sensitizing cells to ferroptosis. Finally, mul-
tiple oxidase enzymes (ALOXs, CYP/CYP450, prostaglandin–endoperoxide synthase 2
[PTGS2]/COX-2) directly oxidize lipids. ALOXs are non-heme, iron-dependent dioxyge-
nases that function directly on PUFAs in biological membranes [17,27]. ALOXs mediate
PUFA peroxidation to generate AA/AdA-PE-OOH, leading to the onset of ferroptosis,
which can be promoted by phosphatidylethanolamine binding protein 1 through direct
interaction with arachidonate 15-lipoxygenase (ALOX15) [28]. Studies have confirmed that
ALOX knockout or the application of ALOX inhibitors can protect against organ damage by
inhibiting ferroptosis [29–31]. Nevertheless, some ferroptosis-sensitive cell lines may not
express ALOX enzymes [32], and in experimental models, knockout of 12/15-ALOX based
on glutathione peroxidase 4−/− (GPX4−/−) did not inhibit ferroptosis [33]. Despite these
findings, the specific function of ALOXs in ferroptosis remains unclear. ALOXs are not the
only enzymes that catalyze PUFA-PE. With nicotinamide adenine dinucleotide phosphate
(NADPH) as the electron donor, POR can bind to flavin mononucleotide and flavin adenine
dinucleotide and transfer electrons to downstream CYP/CYP450, driving lipid peroxidation
of PUFAs [8,34]. PTGS2 could oxidize lysophospholipids and is considered an indicator of
ferroptosis, although it is not a driver [35]. In addition to enzymatic peroxidation, a Fenton
reaction is responsible for lipid peroxidation (as described for iron metabolism). Interest-
ingly, increased synthesis and production of PUFAs upregulate sensitivity to ferroptosis;
however, intracellular β-oxidation reduces the rate of lipid peroxidation by depleting most



Cells 2022, 11, 3653 5 of 24

fatty acids [7]. The products of lipid peroxidation include early LOOH and subsequent
increased toxic derivatives (MDA and 4-HNE) that can react with DNA, proteins, and
other nucleophilic molecules [36], and extensive lipid peroxidation affects the integrity and
permeability of cell membranes [37].

2.3. Antioxidant System

Depletion and inactivation of intracellular antioxidant defense systems facilitate lipid
hydroperoxide accumulation. Most of the classical ferroptosis initiators (e.g., erastin and
RSL3) also inhibit antioxidant systems [38]; the collapse of the antagonist system facil-
itates the outbreak of ferroptosis. GPX4 is a recognized gatekeeper of ferroptosis and
functions centrally to prevent lipid peroxidation [7]. GPX4, a selenocysteine-containing
phospholipid hydroperoxidase, could reduce peroxidized lipids, whether in free form or
in combination with other lipids, such as PLs; proteins, such as lipoproteins; or within
membranes [26,39,40]. The ping-pong mechanism is involved in the catalysis of lipid
hydroperoxides by GPX4, whereby selenocysteine shifts between reduced selenol (SeH)
and oxidized selenate (SeOH). First, SeOH is produced when SeH in GPX4 is oxidized
by LOOH, whereas LOOH is reduced to nontoxic LOH. Upon reduction by GSH, SeOH
becomes an intermediate selenide disulfide (Se-SG), which is subsequently reconverted
to SeH by the second equivalent of GSH, releasing the byproduct GSSG, with NADPH
acting as an electron donor and capable of being converted to GSH through glutathione
reductase [7,41,42]. Hence, GSH plays a primary role in maintaining GPX4′s antioxidant
capacity. The tripeptide, GSH, comprises cysteine, glycine, and glutamic acid. The availabil-
ity of cysteine and glutamate-cysteine ligase within cells dictates GSH synthesis. Cystine is
brought into the cell through system xc−, by which it is rapidly converted to cysteine for
GSH synthesis [7]. As a crucial upstream gene of GPX4, intracellular solute carrier family 7
member 11 (SLC7A11) can be regulated by multiple genes and agents, which effectively
modulates susceptibility to ferroptosis.

Coenzyme Q10 (CoQ10) is a ubiquitous intracellular compound that exerts electron-
transfer functions and can be reduced to panthenol, which directly diminishes lipid radicals
and terminates lipid autoxidation. Therefore, CoQ10 has been suggested as an essential
endogenous inhibitor of ferroptosis. Owing to its NADH: ubiquinone oxidoreductase activ-
ity, ferroptosis suppressor protein 1 (FSP1) has been proven to reduce CoQ10 to generate
panthenol, thus inhibiting lipid peroxidation in a GPX4-independent manner [17,43,44].
Current evidence indicates that tetrahydrobiopterin/dihydrobiopterin (BH4/BH2) synthe-
sized by GTP cyclohydrolase 1 antagonizes ferroptosis; BH4 is involved in the synthesis of
CoQ10 and can induce lipid remodeling by specifically preventing two polyunsaturated
fatty acyl tails from the consumption of phospholipids [8,45,46].

In addition to GPX4 in the cytoplasm and mitochondria and FSP1 in the plasma
membrane, dihydroorotate dehydrogenase (DHODH), an enzyme located on the outer
side of the inner mitochondrial membrane, is a newly discovered cytoprotective system
that antagonizes ferroptosis. The role of DHODH is similar to that of mitochondrial GPX4.
In the mitochondrial inner membrane, DHODH reduces ubiquinone to ubiquinol, a free
radical-trapping antioxidant that antagonizes phospholipid hydroperoxyl radical (PLOO•),
thereby restraining ferroptosis. Mitochondrial GPX4 and DHODH are the two main
mitochondrial defense systems that mitigate lipid peroxidation. Inactivation of DHODH
(knockout or inhibitor treatment) in cancer cells with low GPX4 expression causes severe
mitochondrial lipid peroxidation and ferroptosis. However, in cancer cells with high GPX4
levels, inactivation of DHODH exacerbates mitochondrial lipid peroxidation, in concert
with ferroptosis inducers. In several GPX4 knockdown cell lines, restoration of GPX4mito
but not GPX4cyto rescued the sensitivity of the cells to DHODH depletion [47].

It has been demonstrated that AMP-activated protein kinase (AMPK) exerts as a
double-edged sword in ferroptosis. Acetyl-CoA carboxylase alpha is phosphorylated by
AMPK, leading to impaired biosynthesis of PUFAs [48]; on the other hand, by inhibiting
SLC7A11 and regulating autophagy, AMPK phosphorylates Beclin 1, resulting in ferropto-
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sis [49]. Moreover, nearly all ferroptosis-related genes can be modulated by nuclear factor
erythroid 2-related factor 2 (NRF2), which also plays a pivotal role in the antioxidant system
by regulating intracellular iron homeostasis (e.g., FPN, FTH1, and FTL), redox regulation
(e.g., GPX4, NQO1, and HO-1), GSH homeostasis (e.g., SLC7A11, GCLC, and GCLM), and
NADPH generation (e.g., G6PD, PHGDH, and ME1) [26,50–52].

3. Mechanisms and Targeted Therapies for Ferroptosis in IRI
3.1. Ferroptosis and Myocardial IRI

Ischemic heart disease is the primary contributor to human death worldwide [53],
and acute myocardial infarction caused by IRI is the primary cause of disability and
death [54,55]. The occurrence of ischemia reduces the oxygen supply and contributes to the
initial damage to the cardiac tissue [56]. Therefore, reoxygenation (primary percutaneous
coronary intervention) is the preferred treatment [57]. Unfortunately, the reperfusion
procedure inevitably induces cardiomyocyte death and increases infarct size, worsening
the condition [53,58]. Among all types of organ IRI, ferroptosis in myocardial IRI has
been the most extensively investigated. Ferroptosis primarily occurs during the period
of myocardial reperfusion rather than ischemia [59]. As the damage caused by ischemia
increased progressively, no significant differences were observed in the ferroptosis indices
(GPX4, ACSL4, Fe2+, and MDA) in the heart tissue. Conversely, with prolongation of the
reperfusion phase, a gradual increase in the ACSL4, Fe2+, and MDA levels, along with a
decrease in GPX4 levels, was observed. Deferoxamine treatment attenuated myocardial
injury and inhibited ferroptosis in I/R-treated rat hearts; however, no significant alleviating
effect of deferoxamine was observed in the rat hearts that received only ischemic treatment.
During ischemia, specific redox reactions of PUFA-phospholipids in cardiomyocytes are
induced, which act as initiating signals to trigger intensive oxidative damage during the
reperfusion phase. ALOX15, a critical enzyme for the oxidation of PUFA-phospholipids,
is induced by ischemia/hypoxia [60]. The induction of ALOX15 functions as a “burning
point” and initiates the oxidation of PUFA-phospholipids, particularly PUFA-PE, resulting
in ferroptosis in myocardial cells. ALOX15 knockout mice lose PUFA-induced susceptibility
to ischemia-induced cardiac injury. Liu et al. reported that activating transcription factor 3
(ATF3), expressed at the peak level in early reperfusion, and knockout of ATF3 remarkably
aggravates IRI. In cardiomyocytes, ATF3 overexpression inhibits ferroptosis caused by
erastin and RSL3. FA complementation group D2 promoter activity can be enhanced by
binding of ATF3 to the transcriptional start site, providing evident antiferroptosis and
cardioprotective effects against H/R injury [61].

Iron is stored in ferritin under physiological conditions. When intracellular iron
deficiency occurs, ferritin-containing ions combine with NCOA4, which mediates fer-
ritinophagy to release iron ions. DNMT-1 inhibition attenuates ferroptosis in diabetic
myocardial I/R by regulating NCOA4-mediated ferritinophagy [62]. FPN1 is a unique
protein that regulates iron release in mammals, whereas NRF2 regulates iron transcription.
Upon release from the cytoplasm, NRF2 translocates into the nucleus and interacts with
ARE promoter regions and sMaf proteins, leading to the upregulation of downstream
protective proteins, such as FPN1 and GPX4, and a reduction in myocardial Fe2+ and MDA
content [63]. Machado et al. demonstrated that upon cardiac IRI, ferritin heavy-chain (FTH)
deficiency in the myocardium induces compensatory upregulation of several antiferroptotic
proteins, including HO-1. Such upregulation of HO-1 results in the induction of SLC7A11
and supplementation of intracellular glutathione to inhibit the ferroptosis pathway, thereby
preserving the function of the mitochondria and myocardium [64]. However, recent studies
have revealed the negative effects of HO-1, making it a double-edged sword in ferroptosis.
In response to H/R, HO-1 is upregulated and anchored in the endoplasmic reticulum
(ER), leading to heme degradation and the production of Fe2+ with biliverdin and carbon
monoxide, which induces the accumulation of Fe2+ in the ER, as well as the occurrence of
ferroptosis. Silencing HO-1 eliminates iron overload in the ER [65].
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Mitochondrial bioenergetics and GSH play major roles in ferroptotic cell death. An
early response of cardiac mitochondria to ferroptotic stimuli may be implicated in the
accumulation of ferroptotic phospholipid signals (especially PEox) in the mitochondria.
Consequently, preservation of glutathione pools in the mitochondria is critical for the
prevention of ferroptosis in cardiomyocytes [66]. Oxidized phosphatidylcholines (OxPCs)
induce cardiomyocyte death in a concentration-dependent manner during I/R. Mechanisti-
cally, OxPCs can lead to a reduction in mitochondrial functional capacity, resulting in the
disruption of calcium handling and contractile dysfunction, which can be attenuated by
ferrostatin-1 and liproxstatin [67]. During myocardial I/R, forkhead box C1 binds to the
ELAV-like RNA-binding protein 1 (ELAVL1) promoter region to initiate the transcription
of ELAVL1, which can directly bind and stabilize Beclin 1 mRNA and drive ferroptosis by
regulating autophagy, leading to overproduction of lipid peroxidation.

Ubiquitination reportedly regulates the degradation of hub genes in the ferroptosis
pathway. According to a recent study, inhibition or knockdown of ubiquitin-specific
peptidase 7 diminished H/R damage (reducing LDH release and necrosis), improved
ubiquitination of p53, decreased p53 and TFR1 levels, and attenuated ferroptosis [68].
Ubiquitin-specific peptidase 22 stabilizes sirtuin 1 (SIRT1) through deubiquitination, and
increased SIRT1 expression results in decreased p53 acetylation and protein expression. p53
binds to the SLC7A11 promoter to inhibit SLC7A11 expression. Therefore, p53 depletion
increased GSH levels, but reduced ROS levels and lipid peroxidation [69].

The function of non-coding RNAs in ferroptosis has also been reported. Sun et al. re-
ported that silencing lncAABR07025387.1 ameliorated myocardial IRI in vivo and restrained
ferroptosis in cardiomyocytes during H/R. By interacting with miR-205, lncAABR07025387.1
upregulated ACSL4, a recognized promoter of ferroptosis [70]. A positive correlation was
identified between miR-135b-3p levels and ferroptosis severity in myocardial I/R mod-
els. miR-135b-3p inhibits translation by binding to the 3′UTR of human GPX4 mRNA
and promotes cellular ferroptosis, resulting in the exacerbation of myocardial IRI [71]. In
murine cardiomyocytes, Mir9-3hg, an exosomal long non-coding RNA derived from bone
marrow stem cells, inhibited I/R-induced ferroptosis by directly targeting the Pumilio
2 (PUM2)/PRDX6 axis. Incubation with BMSC-Exos enhanced GSH levels and dimin-
ished Fe2+ concentration, ROS, and ferroptosis biomarker expression in H/R-treated cells,
whereas these effects can be reversed by intervention with Mir9-3hg [72].

Targeting ferroptosis is a promising strategy to alleviate and cure myocardial IRI.
According to research by Li et al., ferrostatin-1 (Fer-1) prevented neutrophil recruitment
after heart transplantation, decreased levels of 4-HNE, and reduced myocardial cell death.
The effects of Fer-1 include improvement of left ventricular systolic function, a decrease in
the size of myocardial infarctions, and left ventricular remodeling [73]. Cardiac remodeling
and fibrosis were remarkably reduced in mice receiving an injection of Fer-1 or dexrazox-
ane every 2 days. Additionally, the reduction in mt-Atp6 and mt-Cytb mRNA levels in
the heart caused by I/R was also prevented, indicating that ferroptosis inhibition sub-
stantially protects against myocardial I/R, possibly by preserving mitochondrial function.
Additionally, liproxstatin-1 (Lip-1) provides cardiac protection by reducing the extent of
myocardial infarct and maintaining mitochondrial integrity. Cardioprotection mediated
by Lip-1 involves a reduction in voltage-dependent anion channel 1 (VDAC1) levels and
oligomerization but not VDAC2/3. Furthermore, lip-1 administration rescued I/R-induced
GPX4 depletion and limited the production of ROS in mitochondria [74].

Targeting NRF2 is an effective strategy against ferroptosis. Histochrome (HC) is used
in clinical practice, owing to its potent antioxidant content and iron-chelating ability. The
hearts of rats administered early intravenous injections of HC before reperfusion exhibited
remarkably reduced cardiac fibrosis and increased capillary density. By inducing the ex-
pression of NRF2 and antioxidant genes, HC can reduce cytoplasmic and mitochondrial
ROS, maintain intracellular GSH levels, and enhance GPX4 activity [75]. Wang et al. demon-
strated that myocardial infarction was substantially reduced by dexmedetomidine (Dex),
and heart function improved, along with diminished lipid peroxidation and Fe2+ accumula-
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tion. Studies have confirmed that Dex activates NRF2 through the AMPK/GSK-3β pathway
to protect the heart from I/R-induced ferroptosis [76]. Similarly, britanin upregulates GPX4
expression via this pathway, and the knockdown of NRF2 blocks the protective effects
of britanin against H/R-induced injury in H9C2 cells [77]. Gossypol acetic acid (GAA)
exerts cytoprotective effects by inhibiting ferroptosis during I/R. GAA remarkably reduces
myocardial infarct size, decreases lipid peroxidation, activates NRF2, and downregulates
levels of PTGS2 and ACSL4 in both mRNA and protein [78]. Additionally, Lv et al. reported
that etomidate activates NRF2/HO-1 by facilitating nuclear translocation of NRF2 to sup-
press I/R-induced ferroptosis and attenuate heart failure, pathological injury, myocardial
fibrosis, and inflammation [79]. Naringenin (NAR) attenuated histopathological injury,
inflammation, and lipid peroxidation in heart tissue treated with I/R by regulating NRF2.
Erastin inhibits the ability of NAR to protect H9C2 cardiomyocytes exposed to H/R [80].
The antioxidant effect of xanthohumol can reduce the generation of lipid peroxide and
ROS, chelate Fe2+, and regulate NRF2 and GPX4 protein levels in cardiomyocytes during
Fe-SP and RSL3-induced ferroptosis [81].

In a study by Liu et al., ferulic acid facilitated energy production and decreased the
AMP/ATP ratio by upregulating AMPKα2 expression, as well as inhibiting ferroptosis by
enhancing the activity of antioxidant enzymes (SOD, GSH-Px, and CAT), which was similar
to the effect of ferroptosis inhibitor Fer-1 [82]. Moreover, inhibition of glutamine catabolism,
an important contributor to ferroptosis, reportedly reduces I/R-induced cardiac injury; for
example, glutaminase inhibitor compound 968 can substantially inhibit lactate dehydroge-
nase release and ferroptosis during reperfusion [83]. Resveratrol (Res), a polyphenol with
multiple bioactivities, was demonstrated to diminish oxidative stress and Fe2+ levels in
I/R models and regulate USP19-Beclin 1 autophagy to inhibit ferroptosis [84]. An agent
capable of protecting the myocardium from I/R damage is cyanidin-3-glucoside (C3G).
C3G treatment can relieve oxidative stress, downregulate LC3II/LC3I and TFR1 levels,
and upregulate FTH1 and GPX4 expression in oxygen–glucose deprivation/reoxygenation
(OGD/R)-treated H9c2 cells. In addition to inhibiting USP19 and LC3II protein levels,
C3G enhances the K11-linked ubiquitination of Beclin 1 [85]. A previous study demon-
strated that propofol pretreatment in vitro and in vivo potently prevented I/R-induced
myocardial injury [86]. p53 is known to be degraded by binding to murine double minute
2 (MDM2) [87], whereas this process can be facilitated by the phosphorylation of AKT at
ser166 or 188 [88], and propofol inhibits ferroptosis through AKT phosphorylation [89]. In
addition, with increasing focus being placed on the utilization of circadian medicine against
IRIs, recent studies have demonstrated that targeting clock genes also limits ferroptosis.
SR9009, an inhibitor of Rev-ERBs, exogenously alleviates myocardial IRI by suppressing
ferritinophagy/ferroptosis signaling during type 2 diabetes mellitus onset, with signif-
icant reductions in ACSL4, NCOA4, and LC3B protein levels and evident changes in
ferroptosis-related proteins, including ALOX-15 and DMT1 [90].

3.2. Ferroptosis and Renal IRI

The maintenance of renal function depends on adequate bilateral renal blood per-
fusion, with the kidneys receiving up to one-quarter of the cardiac output. Thus, the
occurrence of renal IRI may be induced by any cause of systemic circulatory failure or
partial deficiency of blood flow in the intrarenal circulation, and renal IRI always occurs
during kidney transplantation, as well as cardiac and urological procedures [91]. Angeli
et al. elucidated the critical function of the glutathione/GPX4 axis in preventing lipid
oxidation in the kidneys and presented genetic proof that the knockout of GPX4 led to
cell death in a pathologically relevant form of ferroptosis [92]. Evidence has confirmed
that a spiroquinoxalinamine derivative named liproxstatin-1 inhibits ferroptosis in prox-
imal tubule cells and in GPX4-knockout mice. By inducing hemoglobin deposition and
worsening iron toxicity in the proximal tubules, hemopexin, a heme-scavenging protein,
accumulates in the kidneys and aggravates acute kidney damage (AKI). This deleterious
effect of hemoglobin and hemagglutinin in proximal tubule cells is restrained by deferox-
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amine and ferrostatin-1 [93]. Pannexin 1 (Panx1), a member of the ATP-releasing pathway
family, is implicated in renal IRI by mediating ferroptosis. Panx1 deficiency enhances the
expression of the cytoprotective chaperone protein HO-1 and suppresses ferritinophagy by
regulating the MAPK/ERK pathway [94].

In a study by Sun et al., lncRNA TUG1 carried by USC-Exos modulated ASCL4-
mediated ferroptosis by interacting with serine- and arginine-rich splicing factor 1 (SRSF1),
thereby mitigating I/R-induced AKI [95]. MiR-182-5p and miR-378a-3p interfered with the
expression of GPX4 and SLC7A11 by specifically interacting with their 3′UTR regions of
mRNA, and renal damage was substantially reduced when miR-182-5p and miR-378a-3p
were silenced [96].

Physiologically, legumain (Lgmn) is abundantly expressed in the proximal tubular
cells as an asparaginyl endopeptidase. Lgmn deficiency alleviates acute tubular dam-
age and inflammation brought on by I/R. In LgmnKO mRTECs, ferroptosis induced by
hypoxia or erastin is reduced. Chaperone-mediated autophagy of GPX4 is inhibited by
Lgmn deficiency [97]. The administration of an miR-3587 inhibitor remarkably increased
the expression of HO-1 protein in H/R-treated renal tubular epithelial cells, along with
increased GPX4 protein levels, enhanced cell viability, decreased MDA levels, reduced Fe2+

levels, and restored normal mitochondrial membrane potential [98]. Tryptophan degra-
dation is mediated by kynurenine, with indoleamine 2,3-dioxygenase 1 (IDO) acting as a
rate-limiting agent in this process. In RPTECs, IDO was upregulated by both hypoxia and
reoxygenation, which, in turn, triggered GCN2K-mediated apoptosis and AhR-mediated
ferroptosis. IDO elevation occurs during both ischemia and reperfusion stages; therefore,
inhibition of IDO can be an effective therapeutic strategy to prevent or mitigate IRI [99].
Inositol-requiring enzyme 1 (IRE1), a proximal ER stress sensor, activates the c-Jun N-
terminal kinase (JNK) pathway in response to ER stress. Blood urea nitrogen, creatinine,
and tissue damage in renal I/R-treated mice were significantly reduced by inhibition of
IRE1/JNK, and the biomarkers of ferroptosis, such as 4-HNE and GPX4, were altered, as
well as in H/R-induced IRE1/JNK knockdown HK-2 cell lines [100].

Evidence indicates that a positive relationship exists between renal IRI and lysine-
specific demethylase 1 (LSD1) and that inhibition of LSD1 can alleviate I/R-induced damage
in vitro and in vivo. LSD1 exacerbated ferroptosis and oxidative stress in the kidneys
by decreasing H3K9me2 enrichment in the toll-like receptor 4 (TLR4) promoter region
to activate the TLR4/NOX4 pathway [101]. ELAVL1 has been suggested as a crucial
regulator of ferritinophagy that promotes ferroptosis. Under H/R, hydroxychloroquine
(an autophagy inhibitor) or si-ELAVL1 reverses CIRBP-enhanced ferritinophagy activation
and ferroptosis in HK-2 cells. Ferroptosis is inhibited by anti-CIRBP antibody injection in
mice, and renal IRI is attenuated [102].

Linkermann et al. synthesized a novel ferrostatin (16–86) capable of suppressing
ferroptosis in vivo. Compared to Fer-1, 16–86 proved to be more stable and potent. Even in
situations with extremely severe renal IRI, 16–86 can exert a strong protective effect, a level
of protection that has never been attained [103]. Zhang et al. reported that treatment with
irisin (250 µg/kg) attenuated renal injury, inhibited the inflammatory response, enhanced
mitochondrial function, and decreased ER stress and oxidative stress during renal I/R.
RSL3, a GPX4 inhibitor, abolished the protective action of irisin [104]. A mitochondrially
targeted nitroxide with a dual antioxidant effect, XJB-5-131, has been proven to effectively
rescue mitochondrial function. In mice, XJB-5-131 exhibits excellent plasma stability, rapid
plasma–kidney transfer, and high renal affinity. XJB-5-131 therapy results in elevated
GSH-Px levels and reduced production of renal MDA, and 4-HNE staining also results in
reduced lipid peroxidation [105]. Apart from cardiac I/R, Dex exerted protective effects
against renal IRI. Dex administration attenuated renal tissue damage, restrained ferroptosis,
and suppressed the inflammatory response, which is related to the inhibition of ACSL4.
Furthermore, the protection provided by Dex for HEK293T cells against ferroptosis and
inflammation brought on by OGD/R was abrogated by ACSL4 overexpression [106]. An
inhibitory effect of quercetin (QCT) on ferroptosis was identified to be achieved via ATF3
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inhibition. ATF3 knockdown remarkably elevated SLC7A11 and GPX4 levels and increased
cell survival. Ferroptotic cells recruited macrophages via the C–C motif chemokine ligand
2, whereas QCT inhibited macrophage chemotaxis induced by ferroptosis in AKI [107]. The
protective role of pachymic acid in I/R-induced AKI in mice can likely attributed to the
activation of NRF2 and downstream (GPX4, SLC7A11, and HO-1) [108]. The antioxidant
melatonin, which regulates the sleep–wake cycle, influences oxidative stress by alleviating
the H/R-mediated reduction in NRF2 and increase in SLC7A11 in mouse tubular epithelial
cells. Specific knockdown of NRF2 enhances cellular susceptibility to ferroptosis, and
melatonin is unable to prevent ferroptosis under H/R conditions [109]. In a study by Yang
et al., entacapone increased p62 expression and affected the p62–KEAP1–NRF2 pathway,
thereby upregulating the nuclear translocation of NRF2. This function leads to upregulation
of downstream SLC7A11 and substantial inhibition of oxidative stress and ferroptosis [110].

3.3. Ferroptosis and Cerebral IRI

Ischemic stroke is a severe public health issue, with high morbidity, disability, and
fatality rates. Focal cerebral ischemia and hypoxia due to interruption of cerebral blood flow
are the main pathological mechanisms leading to ischemic stroke [111], with ferroptosis
being a major contributor to the pathogenesis of cerebral IRI and neuronal death. Iron
accumulation and redistribution, glutamate accumulation, oxidative stress, lipid peroxida-
tion, and epigenetic regulation are involved in the progression of ferroptosis in ischemic
stroke [112].

Ferritin is a key component of iron homeostasis; Chen et al. observed ferritin to be
significantly downregulated in a rat middle cerebral artery occlusion model, which, in turn,
promoted p53 expression to inhibit SLC7A11 to induce ferroptosis in hippocampal neurons.
Ferritin also significantly reduces tau hyperphosphorylation and oxidative stress [113].
Accordingly, the role of the Tau protein is age-dependent in cerebral IRI [114], and Tau can
promote iron transfer in aging-related ischemic stroke to mitigate ferroptosis [115]. Addi-
tionally, NCOA4 mediates the excessive degradation of ferritin caused by ferritinophagy
during cerebral I/R followed by ferroptosis [116].

Normally, restoring blood flow to the brain within an effective therapeutic time win-
dow is an important and unique approved treatment for ischemic stroke, as reperfusion
can lead to secondary brain damage, and reducing ischemic reperfusion injury is another
promising approach for ischemic stroke therapy. GPX4 may act as a critical regulator of
ferroptosis, and retinoid X receptor γ can bind to the GPX4 promoter to activate its transcrip-
tion and reduce IRI in the brain [117]. SLC7A11 mediates the synthesis of glutathione, which
is available to GPX4 to reduce lipid peroxidation. However, PUM2 attenuates the inhibitory
effect of SLC7A11 on ferroptosis by suppressing SIRT1 expression, thus exacerbating I/R-
induced neuroinflammation and brain injury [114]. In tert-butyl-hydroxyperoxide-treated
neurons, activation of the SSAT1/ALOX15 axis downregulated the expression of GPX4
and SLC7A11, which triggered neuronal death and worsened IRI [118]. Neural stem cell
transplantation treated with neuregulin1β can regulate ferroptosis in I/R by promoting
GPX4/SLC7A11 expression [119].

Several drugs have demonstrated efficacy against brain I/R, and some of these agents
target ferroptosis. Baicalein inhibits ferroptosis in cerebral IRI by increasing GPX4 and
ACSL3 expression, decreasing ACSL4 levels, and reducing Fe2+ accumulation and lipid
peroxidation [120]. NRF2 is also a key regulator of ferroptosis. Rehmannioside A remark-
ably increased SLC7A11 and GPX4 protein levels in H2O2-induced neuronal injury by
promoting the PI3K/AKT/NRF2 pathway, attenuating ferroptosis, and improving cell
survival [121]. β-Caryophyllene also remarkably enhances the nuclear translocation of
NRF2 and promotes HO-1 and GPX4 expression to inhibit ferroptosis in cerebral IRI [122].
Kaempferol can also alleviate I/R-induced neuronal ferroptosis by promoting GPX4 and
SLC7A11 expression in an NRF2-dependent manner [123]. Galangin can inhibit ferroptosis
in hippocampal neurons by directly upregulating SLC7A11 and thus indirectly upregulat-
ing GPX4, thereby reducing cerebral IRI [124]. Carvacrol also induces GPX4 expression
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and enhances the resistance to ischemic damage in hippocampal neurons [125]. Carthamin
yellow protects against cerebral IRI in rats by reducing inflammation and interfering with
ferroptosis [126]. Additionally, resveratrol inhibits neuronal ferroptosis induced by RSL3
or I/R treatment in rat brains and promotes neuronal survival [127].

Lipid peroxidation and ferroptosis are closely linked to mitochondrial and Golgi dys-
functions. The neuroprotective agent UBIAD1, a recently identified antioxidant enzyme,
catalyzes the generation of CoQ10 in Golgi membranes, which regulates I/R-mediated
ferroptosis by repairing mitochondrial and Golgi functions in damaged brain tissue and
neurons [128]. Mainly expressed in cells with high oxygen demand, mitochondrial fer-
ritin is a protein that stores Fe3+, which can limit iron overload and iron-dependent lipid
peroxidation induced by cerebral IRI [129]. Mitochondrial ferritin overexpression attenu-
ates ferroptosis in brain endothelial cells, which prevents disruption of the blood–brain
barrier [130].

A multi-omics analysis identified thrombin and ACSL4 as critical proteins involved in
ferroptosis in ischemic stroke. The product of thrombin metabolism, arachidonic acid, is
esterified by ACSL4 and contains phosphatidylethanolamine arachidonic acid, which is a
major product of iron-induced peroxidation and is involved in neuronal ferroptosis [131].
Prevention of ferroptosis in brain I/R leads to deactivation of COX-2/prostaglandin E2
(PGE2) signaling and reduces PGE2 release to attenuate brain IRI; in turn, PGE2 can inhibit
brain I/R-induced ferroptosis by effectively reducing Fe2+, glutathione oxidation, and
lipid peroxidation [132]. This depends largely on the different receptors that prostaglandin
E2 influence. Furthermore, lncRNA PVT1 regulates ferroptosis in cerebral I/R via miR-
214-mediated p53 and TFR1 [133]. These findings strongly support the hypothesis that
ferroptosis is intimately implicated in the pathology of cerebral IRI and likely modulates
its severity.

3.4. Ferroptosis and Intestinal IRI

Intestinal IRI is a clinical intestinal disease with high morbidity and fatality rates.
Hemorrhagic shock, traumatic shock, strangulated intestinal obstruction, severe burns,
and chronic and acute mesenteric ischemia are some of the pathologies that can lead to its
incidence [134,135]. The main pathophysiological mechanism is mechanical occlusion of
the blood flow in the intestinal vessels, which may also be secondary to severe interruption
of blood flow to other internal organs, as well as tissue changes caused by arterial ischemia
and hypoxia, which, in turn lead, to cellular damage, which may be further aggravated
when the blood supply is suddenly restored [136–138]. Recent evidence has indicated that
ferroptosis contributes to the pathogenesis described above.

ROS production and lipid peroxidation are closely associated with intestinal IRI,
both of which are primary factors that initiate and execute ferroptosis. GSH levels and
superoxide dismutase activity in rat intestinal tissues decreased, and MDA levels increased
after intestinal I/R. Dioscin delivery is beneficial in reducing oxidative stress and lipid
peroxidation by modulating miR-351-5/Sirt6 and is a possible therapeutic candidate for the
mitigation of intestinal IRI [139,140]. Knockdown of NRF2 dramatically reduced SLC7A11
and HO-1 levels, NRF2/HO-1 expression in the OGD/R model was elevated, owing to
the regulation of SLC7A11, and cell death was substantially reduced, confirming that
NRF2 can suppress ferroptosis by modulating SLC7A11 and HO-1 [141]. Previous studies
have revealed that the inhibition or knockdown of HO-1 and MAO-B reduces endothelial
cell loss and protects the vascular endothelium after reperfusion. Apigenin-7-O-β-D-(-
6”-p-coumaroyl)-glucopyranoside (APG), a flavonoid glycoside with strong antioxidant
capacity, specifically binds to HO-1 and MAO-B. APG also attenuates ROS generation
and Fe2+ accumulation, thus inhibiting ferroptosis in intestinal IRI in a dose-dependent
manner [142].

Capsiate (CAT) is a metabolite of intestinal flora, and preoperative fecal CAT levels
in patients with extracorporeal circulation are negatively correlated with intestinal IRI.
The alleviation of CAT in intestinal IRI can be abrogated by RSL3. By activating transient
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receptor potential cation channel subfamily V member 1, CAT induces upregulation of
GPX4 expression and prevention of ferroptosis [143]. The inhibition of ACSL4 prior to
reperfusion has been demonstrated to be effective in preventing ferroptosis and cell death.
Special protein 1 (Sp1) was identified as an essential contributor to ACSL4 expression in
intestinal IRI. As a key transcription factor that promotes ACSL4 expression, Sp1 enhances
ACSL4 transcription by binding to its promoter region of ACSL4 [144]. Ferroptosis has
also been reported to be involved in intestinal I/R-induced acute lung injury (ALI). iASPP
reportedly inhibits ferroptosis, in part via NRF2 signaling, thereby attenuating intestinal
I/R-induced ALI. The protective function of iASPP against intestinal I/R-induced ALI is
mediated through stimulation of NRF2/HIF-1/TF [145].

3.5. Ferroptosis and Hepatic IRI

Hepatic IRI can be induced by shock (sepsis and bleeding) or liver surgery (liver trans-
plantation or partial hepatectomy). Severe hepatic IRI can result in hepatic impairment
and acute liver failure [146,147]. IRI occurs as a result of oxidative stress, along with nutri-
tional deficiency, diminished circulation supply, and inflammation [148]. Iron-mediated
cell death may be related to oxidative stress caused by ROS, particularly during blood
reperfusion [149].

Ferroptosis caused by GPX4 inactivation is recognized as a contributing factor to
hepatic IRI, and lip-1 can effectively diminish hepatic injury and substantially ameliorate
hepatic function [92]. Yamada et al. studied the role of ferroptosis in hepatic IRI by
establishing mouse models. Hepatic I/R significantly induced upregulation of PTGS2 (a
ferroptosis marker), lipid peroxidation, and hepatic injury. Additionally, all hepatocyte
injuries were reduced by Fer-1 and iron chelation. Thus, iron overload may be a critical
factor in hepatic IRI [147]. In a retrospective study of 202 pediatric living donors for
liver transplantation (LT), iron overload in the donor was identified as an independent
risk factor for hepatic injury after LT, and ferroptosis was identified as a pathogenesis of
hepatic IRI. Moreover, in a mouse model of hepatic IRI, hepatic injury, lipid peroxidation,
inflammatory response, and the increase in PTGS2 were considerably attenuated by Fer-1
or α-tocopherol. Iron chelation effectively attenuates hepatic IRI, whereas iron overload
induced by a high-iron diet aggravates hepatic IRI [147].

Previous studies have demonstrated that both inflammatory cytokines and cellular
markers can be inhibited by Fer-1. Ferroptosis during hepatocyte death may be closely
related to the inflammatory response in hepatic IRI. It has been hypothesized that the
inflammatory reaction brought on by hepatic IRI leads to iron accumulation in hepatocytes.
Increasing evidence suggests that iron plays a central role in numerous aspects of the innate
immune response, including ROS generation and modulation of host inflammation. Iron
overload leads to metabolic disorders, and defective nutritional immunity resulting from
oversaturation of host transferrin increases susceptibility to infection [147,150,151].

Moreover, maresin conjugate in tissue regeneration 1 (MCTR1) ameliorates ferroptosis
in hepatic IRI by promoting the nuclear aggregation of NRF2. MCTR1 treatment reduced
iron content and serum LDH release levels, as well as ROS, MDA, IL-1β, COX2, and TFRC
levels, in I/R-treated mice and OGD/R AML12 cells. Additionally, the levels of IL-10, GSH,
and antioxidant biomarkers SOD and GPX4 were upregulated by MCTR1 [152]. miR-29a-3p
in exosomes from HO-1-modified BMSC significantly ameliorated steatotic hepatic IRI
in vivo and in vitro by suppressing ferroptosis via IREB2. The protective function of HO-
1/BMMSC exosomes against IRI in SHP-HR cells was abrogated by downregulation of miR-
29a-3p [153]. Macrophage extracellular traps (METs) have therapeutic potential to reduce
hepatic IRI. Remarkable formation of hepatocyte METs occurs in patients undergoing
hepatectomy with portal occlusion, as well as in mice with hepatic IRI. Interestingly, the
activation of ferroptosis and decreased hepatocyte survival induced by I/R can be reversed
by MET inhibition [154].
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3.6. Ferroptosis and Pulmonary IRI

The lungs are fragile and susceptible to IRI. Pulmonary I/R raises the Fe2+ content
and lipid peroxidation buildup, and key protein (GPX4 and ACSL4) levels change upon
reperfusion. Lip-1 pretreatment diminishes ferroptosis and appreciably reduces lung injury
caused by I/R in vitro and in vivo.

ACSL4, a crucial enzyme implicated in ferroptosis, has been confirmed to reduce
pulmonary IRI. Xu et al. reported that ACSL4 knockdown blocked the accumulation of lipid
peroxidation and decreased the susceptibility of lung epithelial cells to ferroptosis [155].
Additionally, administration of rosiglitazone (an ACSL4 inhibitor) prior to ischemia reduced
ferroptotic damage of lung tissue upon reperfusion [155]. Signal transducer and activator
of transcription 3 (STAT3) can be phosphorylated to pSTAT3 in response to the onset
of tissue injury and serves as a warning sign to reinforce inflammation. Studies have
confirmed that NRF2 is upregulated in OGD/R-treated MLE12 cells and drives STAT3
phosphorylation to amplify downstream signaling and cascade responses. Subsequently,
the activation of pSTAT3 inhibits OGD/R-induced ferroptotic damage in MLE12 cells and
pathological processes associated with ALI by modulating SLC7A11 [156]. Irisin, a muscle-
derived myokine with potent protective effects, inhibits ferroptosis in pulmonary IRI both
in vitro and in vivo [157]. Consistent with the action of Fer-1, inhibition of ferroptosis
in pulmonary IRI by irisin was manifested by lower ROS, MDA, and Fe2+ levels and
increased the expression levels of GPX4, which was achieved by promoting NRF2/HO-1
signaling. The cytoprotective capacity of irisin is abrogated when NRF2 is silenced [158].
Lidocaine inhibits ferroptosis in H/R-treated lung epithelial cells via the p38/MAPK
pathway. Intracellular ROS and iron levels were diminished by lidocaine administration in
a concentration-dependent manner. Moreover, lidocaine upregulated the expression levels
of FTH1, GPX4, and SOD. Pretreatment with p79350 (an agonist of p38) partially weakens
the protective function of lidocaine against H/R-treated lung epithelial cells [159].

HO-1 expression levels are associated with increased tissue iron and ferritin levels,
as well as inflammatory/antioxidant load. Human lung allografts suffering from acute
cellular rejection and occlusive capillary bronchitis exhibit elevated HO-1 expression lev-
els [160]. Furthermore, abnormally high levels of Fe and its homeostasis proteins were
detected in lung allografts, with levels possibly increasing with time. The disruption of
iron homeostasis after transplantation indicates that iron-depleting therapy is a potential
strategy for prevention of lung allograft injury [160,161]. Similarly, in a study by Liu et al.,
untreated lung allografts were reported to contain higher concentrations of iron, which can
be substantially diminished by pirfenidone, thereby limiting acute pulmonary allograft
injury [162]. In Figure 3 and Table 2, we provide an overview of mechanisms and targeted
therapies for ferroptosis in organ IRI.

Table 2. Potential therapeutic agents for organ I/R injury targeting ferroptosis.

I/R Injury Model Reagents Target References

Myocardial I/R injury

Ferrostatin-1 Inhibit lipid peroxidation [73]
Deferoxamine Chelation of iron [59,163]
Dexrazoxane Chelation of iron [164]
Liproxstatin-1 Reduce ROS levels/VDAC1 [74]
Histochrome Increase expression of NRF2 [75]

Dexmedetomidine AMPK/GSK-3β/Nrf2 [76]
Britanin AMPK/GSK3β/Nrf2 [77]

Gossypol acetic acid Inhibit lipid peroxidation [78]
Etomidate Nrf2/HO-1 [79]

Naringenin Nrf2/System xc-/Gpx4 [80]



Cells 2022, 11, 3653 14 of 24

Table 2. Cont.

I/R Injury Model Reagents Target References

Myocardial I/R injury

Ferrostatin-1 Inhibit lipid peroxidation [73]

Xanthohumol Inhibit lipid peroxidation
/Chelation of iron [81]

Ferulic acid Increase activity of antioxidant
enzymes/AMPKα2 [82]

Compound 968 Inhibit glutamine catabolism [83]

Resveratrol Reduce oxidative stress/
USP19-Beclin1 [84]

Cyanidin-3-Glucoside Inhibit oxidative stress [85]
Propofol microRNA-451/HMGB1 [86]
SR9009 Inhibit ferritinophagy [87]

Renal I/R injury

Liproxstatin-1 Inhibit lipid peroxidation [92]
Deferoxamine Chelation of iron [93]
Ferrostatin-1 Inhibit lipid peroxidation [103]

16-86 Inhibit lipid peroxidation [103]
XJB-5-131 GPX4, ACSL4 [105]

Dexmedetomidine Inhibit ACSL4 via α2-AR [106]
Quercetin ATF3 [107]

Pachymic acid NRF2/SLC7A11/GPX4 [108]
Melatonin NRF2/Slc7a11 [109]

Entacapone p62/KEAP1/NRF2/Slc7a11 [110]

Cerebral I/R injury

Baicalein GPX4/ACSL4/ACSL3 [120]
Rehmannioside A PI3K/AKT/Nrf2 and SLC7A11/GPX4 [121]
β-Caryophyllene NRF2/HO-1 [122]

Kaempferol Nrf2/SLC7A11/GPX4 [123]
Ferrostatin-1 Inhibit lipid peroxidation [115]

Galangin SLC7A11/GPX4 [124]
Carvacrol GPX4 [125]

Carthamin yellow Fe2+/ROS/lipid peroxidation [126]
Resveratrol Fe2+/ROS [127]

Liproxstatin-1 Inhibit lipid peroxidation [115]

Hepatic I/R injury

Ferrostatin-1 Inhibit lipid peroxidation [92,147]
Deferoxamine Reduce intracellular iron [147]
Liproxstatin-1 Inhibit lipid peroxidation [115]
α-tocopherol Inhibit lipid peroxidation [147]

Intestinal I/R injury

APG HO-1 and MAO-B inhibition [142]
Dioscin miR-351-5p/oxidative stress [139]

Liproxstatin-1 Inhibit lipid peroxidation [144]
Rosiglitazone Inhibit ACSL4 [144]

Capsiate GPX4, TRPV1 [143]

Lung I/R injury

Liproxstatin-1 Inhibit lipid peroxidation [155]
Lidocaine p38 MAPK pathway [159]

Rosiglitazone
ACSL4 ACSL4 [155]

Irisin Nrf2/HO-1 [158]
Pirfenidone Reduce iron levels [162]
Ferrostatin-1 Inhibit lipid peroxidation [158]
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Figure 3. Pathological mechanisms of ferroptosis in organ ischemia–reperfusion injury diseases. 
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4. Concluding Remarks and Future Perspectives

In the past few years, numerous studies have demonstrated that ferroptosis contributes
to organ IRI, making it a promising research route. Disturbances in iron metabolism,
oxidative stress, lipid peroxidation, and epigenetic regulation have been implicated in the
progression of ferroptosis in I/R. In addition to apoptosis, ferroptosis plays an integral role
in the mechanism of IRI, making the development of clinical agents targeting ferroptosis
among the promising strategies for the early mitigation of IRI. Apart from exploring more
selective and stable agents to specifically target ferroptosis, expansion of the toolset and
markers is necessary for the accurate detection of ferroptosis. Research on ferroptosis
has grown exponentially, and the role and mechanisms of ferroptosis in organ IRI have
been continuously reported and updated. However, the specific physiological functions of
ferroptosis remain ambiguous. In this paper, we summarize the recent relevant studies,
providing clues for the clinical treatment of organ IRI.

Inhibition of ferroptosis, either by chemical agents (iron chelators, synthetic com-
pounds, natural monomers, etc.) or genetic interventions, demonstrates limited yet en-
couraging success in the treatment of IRI. Nevertheless, colliding with this enthusiasm,
many unresolved problems remain with respect to ferroptosis studies on IRI. IRI activates
multiple types of cell death, especially apoptosis, which has been extensively investigated
over the past 50 years. Although the inhibition of ferroptosis has been demonstrated to
alleviate IRI, the weight and degree of importance of ferroptosis in regulated cell death
remain unclear (in particular, compared to apoptosis), which, to some extent, determines
the therapeutic efficiency of ferroptosis targeting. Ferroptosis in IRI may interact with other



Cells 2022, 11, 3653 16 of 24

cell death modalities; however, the exact mechanism remains unknown, and a combination
of multiple therapeutic approaches may lead to better outcomes. Importantly, most of the
available studies on ferroptosis pathology have been conducted at the animal and cellular
levels, and the application of these results to clinical settings requires further exploration.
Iron metabolism and ROS are indispensable for the preservation of normal intracellular
homeostasis and physiological functions; therefore, the appropriate therapeutic concen-
tration intervals for iron chelators and anti-ROS agents in different organ IRIs still need
to be explored to avoid side effects. Moreover, numerous targets for the activation and
inhibition of ferroptosis in IRI have been revealed; however, the mechanism that dominates
and provides the best therapeutic effect remains to be elucidated. In conclusion, research
on ferroptosis in IRI is currently in its early stages, although targeting ferroptosis may be a
promising therapeutic approach for IRI that deserves further research.
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Abbreviations

4-HNE 4-hydroxynonenal
AA arachidonic acid
ACSL4 acyl-CoA synthetase long-chain family member 4
AdA adrenic acid
AKI acute kidney injury
ALI acute lung injury
ALOX arachidonate lipoxygenases
AMPK AMP-activated protein kinase
APG apigenin-7-O-β-D-(-6′ ′-p-coumaroyl)-glucopyranoside
ATF3 activating transcription factor 3
BH4/BH2 tetrahydrobiopterin/dihydrobiopterin
BMSC bone marrow mesenchymal stem cells
C3G cyanidin-3-glucoside
CAT capsiate
CIRBP cold inducible RNA binding protein
CISD1 CDGSH iron sulfur domain 1
CISD2 CDGSH iron sulfur domain 1
CoQ coenzyme Q
CoQ10 coenzyme Q10
Dex dexmedetomidine
DHODH dihydroorotate dehydrogenase
DMT1 divalent metal transporter 1
ELAVL1 ELAV like RNA binding protein 1
ER endoplasmic reticulum
Fer-1 ferrostatin-1
FSP1 ferroptosis suppressor protein 1
FTH ferritin heavy chain
GAA gossypol acetic acid
GCH1 GTP cyclohydrolase 1
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GLS glutaminases
GPX4 glutathione peroxidase 4
GSK3β glycogen synthase kinase 3 beta
HC histochrome
HO-1 heme oxygenase 1
I/R ischemia-reperfusion
IDO indoleamine 2,3-dioxygenase 1
IRE1 inositol requiring enzyme 1
IRI ischemia-reperfusion injury
JNK Jun N-terminal kinase
Lgmn legumain
LH polyunsaturated lipid
LIP labile iron pool
LOO· lipid peroxyl radical
LOOH hydroperoxide
LPCAT3 lysophosphatidylcholine acyltransferase 3
LSD1 lysine-specific demethylase 1
MAPK mitogen-activated protein kinase
MCAO middle cerebral artery occlusion
MCTR1 maresin conjugate in tissue regeneration 1
MDA malondialdehyde
MDM2 murine double minute 2
METs macrophage extracellular traps
MUFA monounsaturated fatty acid
NADPH nicotinamide adenine dinucleotide phosphate
NAR naringenin
NCOA4 nuclear receptor coactivator 4
NOX4 NADPH oxidase 4
NRF2 nuclear factor erythroid 2-related factor 2
NTBI non-TF-bound iron
OGD/R oxygen-glucose deprivation/reoxygenation
OH· hydroxyl radical
OxPCs oxidized phosphatidylcholines
OXPHOS oxidative phosphorylation
Panx1 pannexin 1
PCBP poly(rC)-binding protein
PGE2 prostaglandin E2
PLOO· phospholipid hydroperoxyl radical
POR cytochrome P450 oxidoreductase
PTGS2 prostaglandin-endoperoxide synthase 2
PUFAs polyunsaturated fatty acids
PUM2 pumilio 2
QCT quercetin
Res resveratrol
ROS reactive oxygen species
SIRT1 sirtuin 1
SLC7A11 solute carrier family 7 member 11
SLC25A28 solute carrier family 25 member 28
SLC25A37 solute carrier family 25 member 37
SLC40A1/FPN solute carrier family 40 member 1
Sp1 special protein 1
TF transferrin
TFR1 transferrin receptor 1
TLR4 toll like receptor 4
USC urine-derived stem cells
VDAC1 voltage dependent anion channel 1
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