
Citation: Kiseleva, O.I.; Kurbatov, I.Y.;

Arzumanian, V.A.; Ilgisonis, E.V.;

Vakhrushev, I.V.; Lupatov, A.Y.;

Ponomarenko, E.A.; Poverennaya,

E.V. Exploring Dynamic Metabolome

of the HepG2 Cell Line: Rise and Fall.

Cells 2022, 11, 3548. https://doi.org/

10.3390/cells11223548

Academic Editors: Camino de Juan

Romero and Isabel Fabregat

Received: 6 September 2022

Accepted: 7 November 2022

Published: 10 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

cells

Article

Exploring Dynamic Metabolome of the HepG2 Cell Line: Rise
and Fall
Olga I. Kiseleva * , Ilya Yu. Kurbatov , Viktoriia A. Arzumanian , Ekaterina V. Ilgisonis, Igor V. Vakhrushev,
Alexey Yu. Lupatov, Elena A. Ponomarenko and Ekaterina V. Poverennaya

Institute of Biomedical Chemistry, 119121 Moscow, Russia
* Correspondence: olly.kiseleva@gmail.com; Tel.: +7-962-999-24-60

Abstract: Both biological and technical variations can discredit the reliability of obtained data in
omics studies. In this technical note, we investigated the effect of prolonged cultivation of the
HepG2 hepatoma cell line on its metabolomic profile. Using the GC × GC-MS approach, we
determined the degree of metabolic variability across HepG2 cells cultured in uniform conditions
for 0, 5, 10, 15, and 20 days. Post-processing of obtained data revealed substantial changes in
relative abundances of 110 metabolites among HepG2 samples under investigation. Our findings
have implications for interpreting metabolomic results obtained from immortal cells, especially
in longitudinal studies. There are still plenty of unanswered questions regarding metabolomics
variability and many potential areas for future targeted and panoramic research. However, we suggest
that the metabolome of cell lines is unstable and may undergo significant transformation over time,
even if the culture conditions remain the same. Considering metabolomics variability on a relatively
long-term basis, careful experimentation with particular attention to control samples is required to
ensure reproducibility and relevance of the research results when testing both fundamentally and
practically significant hypotheses.
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1. Introduction

Throughout the years, genomics and transcriptomics have been explored exten-
sively for mammalian cells. However, these tools fail to measure the cell’s physiological
state directly. Of all the omics layers, the metabolome is the closest to the realization of
the phenotype.

Metabolome dynamically adjusts to the current physiological state of the cell, organ,
or whole organism to guarantee the efficient usage of biological resources. The mechanisms
of perturbations of the molecular makeup in response to internal or external changes
often remain poorly understood [1]. However, the scientific community already widely
accepted that metabolomic knowledge is a real “Klondike” for understanding normal and
pathological molecular processes.

With the popularization of multi-omics studies (both assembled in the hands of one
research group and implying the analysis of metadata deposited in public repositories), the
importance of concordance and synchronicity of the obtained data is becoming more and
more evident.

To gain insights into the metabolism dynamics, we investigated changes in the
metabolomic profile of the HepG2 cell line. Cell lines are one of the most versatile tools for
understanding living systems [2]. Due to ethical compliance, reasonable cost, and batch
consistency, HepG2 has become one of the most applicable in vitro alternatives to primary
human hepatocytes for a broad spectrum of biomedical projects—from cytotoxicity studies
to the search for therapy for various liver cancers [3–5].

The general recommendation for researchers studying cell lines to answer a particular
biological question is the use of early and well-annotated passages of cancer cell lines

Cells 2022, 11, 3548. https://doi.org/10.3390/cells11223548 https://www.mdpi.com/journal/cells

https://doi.org/10.3390/cells11223548
https://doi.org/10.3390/cells11223548
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/cells
https://www.mdpi.com
https://orcid.org/0000-0003-3032-1983
https://orcid.org/0000-0002-3704-0992
https://orcid.org/0000-0002-3658-2490
https://orcid.org/0000-0003-1838-3604
https://doi.org/10.3390/cells11223548
https://www.mdpi.com/journal/cells
https://www.mdpi.com/article/10.3390/cells11223548?type=check_update&version=1


Cells 2022, 11, 3548 2 of 15

(usually up to 10–15 passages). Our work aimed to determine the significance of the
HepG2 cell metabolome’s divergence after several days of continuous cultivation. The
general request to evaluate the effect of prolonged cell line cultivation (under particular
conditions) is reflected in several omics studies [6–8]. These and other projects emphasize
the importance of developing some standards in the metabolomic community that consider
the variability of omics data obtained during the long-term cultivation of a cell line. To
estimate metabolomic stability, we compared HepG2 cell line changes on the 0th, 5th,
10th, 15th, and 20th days of cultivation. We believe that aberrations in the metabolomic
profile of the HepG2 culture over time must be considered when it is used for drug
metabolism testing [9], assessment of hepatocyte impairment [10], or development of
potential strategies to manipulate metabolism in cancer [11]. Knowledge of such changes
will allow researchers to differentiate endogenous metabolomics perturbations of the cell
line from those associated with external factors or disease development.

2. Materials and Methods
2.1. Cell Culture

HepG2 cell line (human hepatoblastoma, SCC249) was purchased from Merck, Darm-
stadt, Germany. After thawing, the cells were cultured in DMEM/F12 supplemented
with 10% fetal bovine serum and 100 units/mL penicillin/streptomycin (all from Gibco,
Waltham, MA, USA) in a humidified CO2-incubator under standard conditions (5% CO2,
37 ◦C, 100% humidity). The medium was exchanged every three days. Upon reaching
~80% confluence, the cells were detached with trypsin-EDTA solution (PanEco, Moscow,
Russia) and subcultured. Cells were grown for 5, 10, 15, and 20 days from the start of the
experiment as designated. The cell cultures were observed under the Axiovert 40 CFL (Carl
Zeiss, Dresden, Germany) inverted microscope and photographed with the D5000 digital
camera (Nikon Inc., Tokyo, Japan). To prepare cell samples for protein extraction, the cells
were detached with 0.25% trypsin-EDTA solution (PanEko, Moscow, Russia), washed three
times with PBS, and counted in Goryaev’s chamber. For each time point, 5 × 106 cells were
harvested in two biological replicates. All operations and reagents used were maximally
unified for each time-dependent cell line sample to minimize possible technical errors.

2.2. Flow Cytometry

For flow cytometric analysis, detached cells were resuspended in PBS and washed
twice by centrifugation. FITC Annexin V Apoptosis Detection Kit I (BD Biosciences,
Franklin Lakes, NJ, USA) was used to detect apoptotic and dead cells. The cells were
stained with FITC Annexin V and Propidium Iodide (PI) for 15 min according to the
manufacturer’s instructions.

Prior to intracellular staining, fixation and permeabilization of cells were performed
using BD Cytofix/Cytoperm™ solution (BD Bioscience, Franklin Lakes, NJ, USA). One-half
million permeabilized cells were stained with anti-Ki67-PE (BD Bioscience, Franklin Lakes,
NJ, USA) or anti-Ki67-BV420 (Sony Biotechnology, Tokyo, Japan) monoclonal antibody.
Unstained or treated with non-specific isotypic antibodies conjugated with PE samples
served as negative controls. All samples were washed twice with Perm/Wash™ buffer
(BD Bioscience, Franklin Lakes, NJ, USA) containing saponin. The FACSAria III flow
cytometer/cell sorter (BD Bioscience, Franklin Lakes, NJ, USA) was used for the viability
and Ki67 expression analyses.

2.3. Sample Preparation for Metabolomic Analysis

Sample preparation was performed following the protocol by O. Fiehn [12]. Briefly,
intracellular metabolites were extracted using freeze–thawing cycles. Then, the low molec-
ular weight fraction of HepG2 cells was first sequentially extracted with a mixture of
isopropanol, acetonitrile, and water (3:3:2, v/v/v) and further with a mixture of ace-
tonitrile and water (1:1, v/v). Next, the supernatant was evaporated to dryness in a
SpeedVac evaporator (Concentrator plus, Eppendorf, Germany), then oxidized with 10 µL
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of freshly prepared methoxyamine hydrochloride (20 mg/mL in pyridine) at 30 ◦C for
90 min on a thermoshaker (ThermoMixer C, Eppendorf, Germany) at 1300 rpm. Next,
the samples were derivatized by 91 µL of N-methyl-N-(trimethylsilyl)-trifluoroacetamide
(MSTFA) with a mixture of fatty acid methyl esters (FAMEs) at 37 ◦C for 30 min at a
thermoshaker at 1300 rpm. After extraction and derivatization, samples were submitted
freshly for GC × GC-MS acquisition. Quality control involved reproducibility testing by
monitoring the retention times and areas under the chromatographic curves of FAMEs
added to both cell line and blank samples.

2.4. GC × GC-MS Analysis

All GC × GC-MS applications were carried out on a 7890B chromatography system
(Agilent Technologies, Santa Clara, CA, USA) and a time-of-flight mass spectrometer
Pegasus BT 4D (LECO Corporation, Benton Harbor, MI, USA) equipped with an L-PAL3
autosampler (CTC Analytics AG, Zwingen, Switzerland).

Each sample (1 µL) was injected through the glass liner (Restek, Bellefonte, PA, USA)
under split mode (50:1). Helium (6.0 grade) was used as a carrier gas, and its constant
flow of 1 mL/min was maintained throughout the run. The oven was initially heated
to 60 ◦C, the equilibration time was 1 min, and the temperature was ramped up at the
rate of 10 ◦C/min to the final temperature of 280 ◦C, with a hold time of 12 min. The
first-dimension column was 30 m-long Restek Rxi-5Sil MS (Restek, Bellefonte, PA, USA,
catalog #13623), and the second-dimension column was 3 m-long Restek Rxi-17Sil MS
(Restek, Bellefonte, PA, USA, catalog #15123).

The transfer line of the time of MS was set at 280 ◦C, with a solvent delay of 350 s.
The ion source temperature was 250 ◦C. Spectra were collected from 35–700 m/z at 70 eV
electron ionization energy. The scan rate was 200 spectra per second. Data were acquired
by ChromaTOF software (v. 5.51, LECO Corporation, Benton Harbor, MI, USA).

2.5. Data Processing

Obtained spectrum files were processed by ChromaTOF (v. 5.51, LECO Corpora-
tion, Benton Harbor, MI, USA) for deconvolution, peak picking, alignment, and primary
database searching. To reduce the multi-dimensionality of the experimental data to sub-
stances that are changing between different “time points”, we used Fisher-ratio-based
software ChromaTOF Tile (v. 1.01, LECO, Benton Harbor, MI, USA).

The processing principle of this software is to compare the two corresponding regions
to assess the value of the difference between these 3D regions of the chromatogram (“tiles”)
and to indicate low-to-high variance among tiles. We analyzed tiles (size 3 × 24 in modula-
tion and spectra dimensions, correspondingly). Only those finds were selected for which
the signal-to-noise ratio exceeded 10. The range of analyzed masses was limited to m/z = 85
and m/z = 700. Identifications were made using the components of the NIST mass spectral
and retention index database (mainlib, replib) and Leco-Fiehn rtx5 library [13]. Only the
hits whose forward and reverse similarity exceeded 700 were considered. After processing
the initial data under the indicated conditions, in all tiles, the hits with the maximum
area difference between days of cultivation (F-ratio > 5) were accepted for further analysis.
F-ratio is calculated as the ratio of class-to-class variation to within-class variation. By the
class, we refer to one time point containing the intensities of m/z features of corresponding
metabolites in three technical repetitions.

Contaminants (e.g., propylene glycol, glycerol monopaltimate, and monostearate),
which likely originated from laboratory plasticware or chromatography columns, were not
included in the interpretation. The final list of metabolites did not include identifications,
the intensity of which, in relation to the blank, on at least one of the days, was less than three.
For all the remaining features, IDs and Sub-class were assigned according to HMDB (The
Human Metabolome Database, https://hmdb.ca/, accessed on 5 September 2022). Next,
we corrected the intensity of the selected identifications (by subtracting the corresponding
intensity values in the blank samples) and normalized the results.

https://hmdb.ca/
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Statistical analyses were performed and plots were created using the R software
environment (version 4.0, R Core Group, Vienna, Austria) [14]. We used multiple-way
analysis of variance (ANOVA) based on multiple comparisons of means. For multiple-
way ANOVA, Tukey honestly significant difference tests based on multiple comparisons
of means were deployed to determine the statistically significant pairwise comparisons.
Differences were considered significant if the adjusted p-value was less than 0.05. The
pathway enrichment analysis of differentially expressed metabolites for each time point
was performed using the online platform MetaboAnalyst 5.0 [15]. We matched identified
metabolites with the human pathway libraries (KEGG (Kyoto Encyclopedia of Genes and
Genomes [16]) and SMPDB (The Small Molecule Pathway Database [17]), and the objective
metabolites and their enriched pathways were analyzed.

3. Results and Discussion
3.1. Physiological Constancy

Panoramic discovery-based metabolomic analysis generally aims to provide a compre-
hensive snapshot of the metabolome to illuminate certain compounds or features compris-
ing the chemistry of the biological object under study. We characterized metabolic profiles
of “time points” of the HepG2 cell line, selected on the basis of the doubling time of the
culture population (ca. 2 days [18]).

To evaluate possible changes in the physiological state of cultured cells during the
experiment, some critical culture characteristics were tested at days 0 and 20. After 20 days,
the cell population did not change its doubling time and retained morphological features
(Supplementary Figure S1a). Early (Q4) and late (Q2) apoptotic cells were almost absent at
both stages of the cultivation, as can be seen from Annexin V-FITC staining (Supplementary
Figure S1b). There were also no high side and low forward scatter signals common to
apoptotic cells (left dot plots). The dead cells (Q1) detected by PI staining may have resulted
from damaging cell dissociation for flow cytometric analysis, as the HepG2 cells tend to
form aggregates. This procedure was not used to prepare samples for metabolomic analysis
since obtaining a single-cell suspension was not necessary. In addition, as seen from Ki67
expression, the percentage of proliferating cells did not differ significantly at the initial and
final stages (Supplementary Figure S1c). Thus, no significant changes were found in the
state of the culture on days 0 and 20.

3.2. Metabolome Content

Methyl esters of 20 fatty acids were used as internal standards. A comparison of
retention times within technical replications, and between samples from five time points,
showed an RSD (relative standard deviation) of less than 0.01 s. Analysis of signal areas of
each FAME on chromatograms showed that for all intraday values, coefficient of variation
(CV) did not exceed 15%. CV for each FAME calculated for all technical repetitions and all
time points did not exceed 3.3% (Supplementary Table S1).

Overall, 110 unique compounds were identified in the studied samples (the full list is
presented in Supplementary Table S2). Among them, the most prominent place is occupied
by carbohydrates and carbohydrate conjugates (37 compounds), amino acids, peptides and
their analogs (26 compounds), fatty acids (six compounds), dicarboxylic acids, and alcohols
(both with five compounds, Figure 1).

The number of metabolites we detected in the HepG2 cell line is comparable or even
superior to other studies using similar equipment recognized for metabolome studies [19,20].

Over-representation analysis using the hypergeometric test implemented on the
MetaboAnalyst platform also highlighted that amino acids and sugars were represented
more than expected by chance within the given HepG2 metabolome (see Supplementary
Figure S2). However, it should be noted that the over-representation analysis of the re-
sulting metabolome was biased by the platform of metabolome exploration used in this
work, which is inherently predisposed to certain classes of compounds and corresponding
molecular processes [21]. The applied derivatization procedure is effective for compounds
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containing amino-, hydroxy-, and carboxy-groups. Increased enrichment values for amino
acids, monosaccharides, and dicarboxylic acids are in good agreement with the features of
the method used.
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We performed a pathway analysis on the MetaboAnalyst platform (version 5.0, Xia
Research Group at McGill University, Montreal, QC, Canada) to highlight the most remark-
able metabolic pathways for a more detailed consideration of the identified compounds and
a better understanding of the nature of the fluctuations occurring during the cultivation
period. The output of MetaboAnalyst processing was examined, and pathways with the
lowest p-values were selected for further interpretation (see Supplementary Table S4 for a
complete list of significantly enriched pathways).

3.3. Leading Pathways

In the case of a study against KEGG (Figure 2a), the leaders were aminoacyl-tRNA
biosynthesis (map00970), pentose phosphate pathway (map00030), glutathione (map00480),
and purine (map00230) metabolism. We have also observed significant enrichment in sev-
eral pathways associated with the metabolism and biosynthesis of various amino acids, e.g.,
alanine; aspartate and glutamate metabolism (map00250, p-value = 3.62 × 10−4). Naturally,
these metabolic pathways are of great fundamental and practical interest, especially in the
context of the cancer cell line [22–24].

Aminoacyl-tRNA biosynthesis (map00970) determines the precise match between
nucleotide triplets and proper amino acids. The importance of this metabolic pathway
cannot be overestimated since it provides fidelity to protein synthesis [25]. Abnormalities
in protein synthesis quantity and quality of are often associated with various cancers [26],
including hepatomas. The p-value of this pathway is 3.22 × 10−9, and its match status is
17/48.
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The second most significantly enriched pathway, the pentose phosphate pathway
(PPP, map00030), is pivotal for cancer cells. PPP is of particular interest in cancer cell
line metabolome because a significant increase in glycolytic activity in the presence of
abundant oxygen is one of the most striking metabolic alterations associated with oncologi-
cal processes [27]. Alterations of this pathway provide a selective advantage for growth,
proliferation, and survival, employing increased energy production and macromolecular
biosynthesis, and counteracting oxidative stress in tumor cells. Additionally, PPP is associ-
ated with the generation of NADPH, which plays a crucial role in drug metabolism [28].
The p-value of this pathway is 5.51 × 10−6, and match status is 9/22. Interestingly, PPP
and some amino acid synthesis pathways are among the most significant in the HepG2 cell
line occasioned by organochlorines exposure [29].

Glutathione (gamma-glutamyl-cysteinyl-glycine) is the most abundant low-molecular-
weight natural tripeptide found within almost all cells. This key metabolite in glutamine
metabolism can play both healing (as a free radical scavenger) and pathogenic (through
tumor progression and increased metastasis) roles. Glutathione metabolism (map00480)
is associated with several processes, including cell division and proliferation. Moreover,
glutathione is the most commonly elevated small molecule detected during oxidative
stress [30,31]. The p-value is 2.05 × 10−3, and match status is 7/28.

All of the hallmark amino acid pathways, as well as purine metabolism (map00230, [32]),
that we observed in the cell line under study, have extensive effects in cancer [33]. These
metabolites may support the rapid growth of tumor cells by providing nucleotides, amino
acids, and cofactors as building blocks for nucleic acid and protein synthesis, as nutrient
signaling agents, neurotransmitters, epigenetic modifiers, and energy sources. In our
HepG2 samples, we detected 11 of 65 metabolites involved in the purine metabolism
pathway (p-value = 3.54 × 10−3). For amino acid associated pathways, the most signifi-
cant were alanine; aspartate and glutamate metabolism (map00250, p-value = 3.62 × 10−4,
match status = 8/28), glycine; serine and threonine metabolism (map00260, p-value = 5.56× 10−3,
match status = 7/33); and cysteine and methionine metabolism (map00270, p-value = 5.56× 10−3,
match status = 7/33).

3.4. KEGG vs. SMPDB Pathway Analysis Results

It is well known that the interpretation of metabolomic data is much less straight-
forward than that of genomic, transcriptomic, and proteomic datasets. In this regard,
we duplicated the pathway analysis against another most-used database—SMPDB—and
obtained slightly different results (Figure 2b, Table 1, Supplementary Table S5). This is
explainable: the redundancy of identifiers and the incompleteness of databases limit the
extent of the biological conclusions [34,35].
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Table 1. Ranking of the top pathway analysis results (against SMPDB and KEGG databases). The
“Rank” column reflects the degree of significance of the identified pathway against both databases.

Pathway

Rank Match Status Raw p Impact

SMPDB KEGG
SMPDB KEGG SMPDB KEGG SMPDB KEGG

Total Hits Total Hits

Aminoacyl-tRNA biosynthesis - 1 - - 48 17 - 3.22 × 10−9 - 0.17
Pentose phosphate pathway 1 2 27 8 22 9 5.83 × 10−3 5.51 × 10−6 0.65 0.47

Alanine; aspartate and
glutamate metabolism - 3 - - 28 8 - 3.62 × 10−4 - 0.62

Glutathione metabolism 28 4 19 3 28 7 3.43 × 10−1 2.05 × 10−3 0.09 0.18
Purine metabolism 3 5 63 13 65 11 1.41 × 10−2 3.54 × 10−3 0.22 0.32

Glyoxylate and
dicarboxylate metabolism - 6 - - 32 7 - 4.64 × 10−3 - 0.26

Cysteine and
methionine metabolism - 7 - - 33 7 - 5.56 × 10−3 - 0.46

Glycine; serine and
threonine metabolism - 8 - - 33 7 - 5.56 × 10−3 - 0.49

Warburg effect 2 - 49 11 - - 1.26 × 10−2 - 0.17 -
Galactose metabolism 4 15 31 8 27 5 1.42 × 10−2 3.28 × 10−2 0.18 0.17

Glycine and serine metabolism 5 - 50 11 - - 1.47 × 10−2 - 0.12 -
Homocysteine degradation 6 - 7 3 - - 3.18 × 10−2 - 0.50 -

The significant pathways are partly repeated: the leaders in the search against SMPDB
are also the processes of amino acid metabolism and PPP (SMP0000031)—we demonstrated
this duplication in Figure 2b and in Table 1. PPP is highlighted by both SMPDB and KEGG,
and it ranks first and second in significance when searching against SMPDB and KEGG,
correspondingly. However, some pathways have different significance and enrichment
statuses when analyzed against different databases. Several researchers have noticed this
feature, which is usually associated with the unique content of pathways [35–37].

Thus, we observed an inconsistency in search results across different libraries for the
hit-list of metabolic pathways related to aminoacyl-tRNA biosynthesis and various amino
acids (alanine, aspartate, glutamate, and homocysteine). This is a notable example of the
situation when the same list of detected metabolites results in discordant mapping to closely
related pathways “glycine and serine metabolism” (SMP0000004, fifth most significant
among identifications revealed via searching against SMPDB, p-value = 1.47 × 10−2) and
“glycine; serine and threonine metabolism” (map00260, eighth most significant among
identifications using KEGG, p-value = 5.56 × 10−3). The interpretation of the data obtained
can be somewhat confusing in terms of reliable GC × GC-MS detection of threonine. The
example of PPP can also illustrate the phenomenon of different mapping of the same
metabolites. According to the results obtained from the search against KEGG, the pentose
phosphate pathway contains 22 metabolites, nine of which were detected in the presented
dataset. A search against the SMPDB library for the same pathway finds 8 metabolites out
of a claimed 27.

Another interesting example of differences in pathway analysis is the Warburg ef-
fect [38], highlighted when searching against the background of SMPDB. This pathway
ranks second among significant ones. This typical hallmark of cancer cells reflects their
altered energy metabolism. The phenomenon of the Warburg effect is high rates of lactate
production and glucose uptake since glucose is preferentially utilized by glycolysis rather
than by oxidative phosphorylation, even in the presence of oxygen.

Due to the design of this observational experiment implicating no direct influence
on the cell line, it is challenging to estimate the real significance of discordant mapping
and discrepancy in the hit list of the most enriched pathways. Here, we report only the
difference in pathways rating but would like to emphasize the importance of comparing
the results of pathway analysis against different databases when the researcher is faced
with a specific task, for example, exploring the metabolomic profile of a biological object
exposed to a particular drug.
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3.5. Dynamics

The observed enrichment in metabolic pathways with significant roles in cancer
cells is anticipated concerning the object and the method of analysis. We believe that
the fluctuations of the “metabolic microenvironment” during 20 days of observation are
more interesting.

Each of the detected metabolites exhibited different signal intensities between time
points. For example, the intensity of m/z-features of 3-phosphoglyceric acid (HMDB0000807,
which precedes serine, cysteine, and glycine and is involved in the Warburg effect [39]),
increases throughout the cultivation period, with particularly active growth observed in
the last five days of monitoring (Figure 3). Cadaverine (HMDB0002322), on the contrary,
demonstrates a downward trend over the entire observation period. This diamine, the
primary source of the putrid odor in decaying tissue, arouses interest due to its association
with tumor necrosis, deriving from aggressive neoplasms. A recent study showed that
cadaverine governs carcinogenesis [40]. However, the role of this metabolite is not fully
understood, and there is evidence that cadaverine has a positive effect on the treatment
of breast cancer through reduced metastasis [40]. Moreover, cadaverine is proposed as a
potential biomarker of the effectiveness of antitumor therapy [41].
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Figure 3. Dynamics of normalized mean intensities of m/z features of the corresponding metabo-
lites (3-phosphoglyceric acid, HMDB0000807—red, cadaverine, HMDB0002322—blue, adenosine
monophosphate, and HMDB0000045—green) at five time points.

An example of chaotic changes is the behavior of adenosine monophosphate (AMP,
HMDB0000045), which is used in homeostatic energy processes during high cellular energy
demands [42]. Energy balance is controlled through 5′-AMP-activated protein kinase
(AMPK). Evidence suggests that AMPK’s role cannot simply be defined as anti- or pro-
tumor: it appears to have two faces like a double-edged sword [43], which makes studying
the metabolite directly associated with the kinase even more exciting.

3.6. Fluctuations in Metabolites Abundancies

For a more detailed study of the dynamics of metabolites, an additional analysis of
statistically significant changes in metabolites from time point to time point was carried
out using multiple testing adjustments. The following adjusted p-values were obtained
in a pairwise comparison for the metabolites detected. For most (105) metabolites, the
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adjusted p-values in at least one pair of time points were less than the confidence value of
0.05, which indicates the presence of significant intensity fluctuations between days.

The significance of the observed differences is also confirmed by the fact that for
all these metabolites the value of F-ratio exceeds 10 between HepG2 cells cultured over
different times (Supplementary Table S2). The distribution of averaged F-ratios for the list
of identified metabolites ranges from 10 to 1630 (Figure 4). In the box-and-whiskers plot,
the position of the mean and median F-ratio values relative to the total pool of values are
displayed. The most (86%) metabolites are characterized by F-ratios ranging from 20 to 180.
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Figure 4. Distribution of F-ratio values for detected metabolites presented as the histogram and
box-and-whiskers plot. The day of sampling serves as the X coordinate. The value along the Y axis is
the normalized signal intensity m/z of the feature of the selected metabolite. Most of the metabolites
(97%) have an F-ratio > 20, which characterizes the observed changes that we observed within 20 days
as statistically significant since the critical value of F-ratio (alpha = 0.05, df1 = 5, df2 = 2) = 19.3.
The cross inside the rectangle of the box-and-whiskers plot shows the mean of the F-ratios for the
metabolites, and the horizontal line inside the box is the median. The horizontal dashes at the end of
the “whiskers” indicate the maximum and minimum F-ratio values, excluding outliers.

Further study of the dynamics of the metabolite abundances led to the clusteri-
zation of metabolites into three groups according to their trends over time using the
K-means approach.

The analysis of trajectories of metabolite abundances revealed a series of characteristic
changes in the content of groups of low-molecular-weight substances over time. The list
of changing metabolites grouped in this cluster (as well as in two subsequent clusters) is
given in Supplementary Table S3.

The first group (Figure 5a), consisting of 56 metabolites, showed a downward trend
throughout cell line cultivation. This cluster is 40% carbohydrates and 20% amino acids. In
addition, most of the dicarboxylic acids and alcohols found in the experiment (four of five
in both cases) belong to this group.

The second group (Figure 5b) counts 32 metabolites with peaking abundance at
10–15 days of cultivation: 41% of them were presented by amino acids and analogs, 22% by
carbohydrates, and both purines and amines made up 6%.

The third group (Figure 5c) of 22 metabolites demonstrates noticeable zigzag fluctua-
tions in the first 15 days, with higher levels at the final stages. Four metabolites from this
small cluster are members of the fatty acids subclass. All compounds belonging to the
monoradylglycerols class are located within this cluster.
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Figure 5. Three series of clusterization of identified metabolites (with a significant difference in
abundance) using the K-means approach: (a) metabolites with a downward trend; (b) metabolites
with peaking abundances at 10–15 days of cultivation; and (c) metabolites with zigzag fluctuations
of abundances.

3.7. Affected Pathways

To test the hypothesis of co-directed regulation of metabolic pathways within a particu-
lar cluster, we again linked the metabolites inside the specific cluster to pathways according
to the SMPDB and KEGG databases. We estimated their impacts via MetaboAnalyst
(Table 2). The most relevant perturbed pathways in SMPDB were homocysteine degrada-
tion (SMP0000455), purine metabolism (SMP0000050), and glycolysis (SMP0000040). In
KEGG those were alanine; aspartate and glutamate metabolism (map00250), aminoacyl-
tRNA biosynthesis (map00970), and biosynthesis of unsaturated fatty acids (map01040).
In many ways, we are witnessing an ideological repetition of the list of the most enriched
metabolic pathways we found by analyzing the entire pool of reliably identified metabolites.

As expected, in certain cases, the degree of significance for the identified pathways was
lower than in general in the entire dataset under study. For the pentose phosphate pathway
(map00030), the p-value when working with the entire set of metabolites was 5.51 × 10−6

(KEGG). This pathway was significantly reflected in the first and second clusters. For PPP
(map00030) inside the first cluster, p-value = 7.78 × 10−4 (KEGG), for the second cluster,
p-value = 9.43 × 10−3 (KEGG). A similar conclusion was drawn about the decreased value
of KEGG match status. For the general dataset, match status was 9/22, for the first cluster,
it corresponded to 5/22, for the second, it was 3/22. It is noteworthy that this pathway,
when parsing clustered data, does not appear significant, when searching against the
SMPDB library.

We assume that the observed phenomenon has a biological basis because the metabolic
pathway is a high-dimensional nonlinear system, with members participating in several
pathways simultaneously. These metabolites form interconnected metabolic pathways that
dynamically modify in frames of the whole metabolic network.
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Table 2. Overview of the top results of pathway analysis (p-value < 0.05) conducted against SMPDB
and KEGG databases for clusterized metabolites (sorted by increasing p-values).

Database Name of the Pathway Total Hits Raw p

Cluster #1

KEGG Alanine; aspartate and glutamate metabolism 28 6 3.12 × 10−4

KEGG Pentose phosphate pathway 22 5 7.78 × 10−4

KEGG Arginine biosynthesis 14 4 1.09 × 10−3

KEGG Glutathione metabolism 28 5 2.47 × 10−3

KEGG Glyoxylate and dicarboxylate metabolism 32 5 4.53 × 10−3

SMPDB Homocysteine degradation 7 3 4.84 × 10−3

KEGG Glycine; serine and threonine metabolism 33 5 5.20 × 10−3

KEGG Aminoacyl-tRNA biosynthesis 48 6 5.87 × 10−3

KEGG Nitrogen metabolism 6 2 1.69 × 10−2

KEGG D-Glutamine and D-glutamate metabolism 6 2 1.69 × 10−2

SMPDB Methionine metabolism 39 6 1.74 × 10−2

SMPDB Galactose metabolism 31 5 2.46 × 10−2

KEGG Purine metabolism 65 6 2.48 × 10−2

KEGG Cysteine and methionine metabolism 33 4 2.70 × 10−2

KEGG Pantothenate and CoA biosynthesis 19 3 2.74 × 10−2

KEGG Citrate cycle (TCA cycle) 20 3 3.14 × 10−2

SMPDB Lactose Synthesis 14 3 3.81 × 10−2

Cluster #2

KEGG Aminoacyl-tRNA biosynthesis 48 10 1.19 × 10−8

KEGG Phenylalanine; tyrosine and tryptophan
biosynthesis 4 2 2.42 × 10−3

KEGG Pentose and glucuronate interconversions 18 3 5.29 × 10−3

KEGG Purine metabolism 65 5 9.29 × 10−3

KEGG Pentose phosphate pathway 22 3 9.43 × 10−3

KEGG Valine; leucine and isoleucine biosynthesis 8 2 1.07 × 10−2

SMPDB Purine metabolism 63 6 1.17 × 10−2

KEGG Phenylalanine metabolism 10 2 1.68 × 10−2

KEGG Cysteine and methionine metabolism 33 3 2.87 × 10−2

Cluster #3

SMPDB Glycolysis 20 3 8.07 × 10−3

KEGG Biosynthesis of unsaturated fatty acids 36 3 8.64 × 10−3

KEGG Starch and sucrose metabolism 18 2 1.94 × 10−2

KEGG Neomycin; kanamycin and gentamicin biosynthesis 2 1 2.44 × 10−2

SMPDB Alpha linolenic acid and linoleic acid metabolism 16 2 4.53 × 10−2

On the contrary, when moving from the general group of metabolites (match status = 5/20)
to “clustered” (match status = 3/20), the glycolysis (SMP0000040) pathway slightly reduced
its p-value from 5.72 × 10−2 to 8.07 × 10−3 (both according to SMPDB). This phenomenon
may be related to the peculiarities of mathematical operations occurring inside the “black
box” of MetaboAnalyst.

In addition to technical repetitions (i.e., series of measurements of the same sample
showing technical noise), we repeated the metabolomic profiling of another HepG2 sample
of the same starting passage to evaluate the biological variation.

To determine whether there was a significant difference between biological replicates,
we examined trends in the abundance of metabolites identified in the HepG2 culture.

It was discovered that the abundances of 12% of the metabolites found in both bio-
logical repetitions (including, for example, glyceric acid, HMDB0000139, and cholesterol,
HMDB0000067) change in the same direction. The behavior of 14% of core metabolites (e.g.,
creatine, HMDB0000064, and cadaverine, HMDB0002322) was completely non-reproducible
between the first and second biological replications.
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The remaining 74% of the metabolites (e.g., L-glutamine, HMDB0000641, and py-
roglutamic acid, HMDB0000267) showed different abundance alteration trends, but these
changes appeared in one or two time points. After the first five days of cultivation, we
revealed a statistically significant change in the abundance of 15% of metabolites between
the biological repetitions. We considered the change in the abundances of metabolites to
be statistically significant with values of log2 (averaged abundances fold change) > 1.2 or
<−1.2.

4. Conclusions

When studying cancer cell lines, researchers often do not specify the cultivation
conditions and neglect the recommendation of using early passages [44]. Even though the
lifespan of cancer cell lines is fundamentally infinite, its over-culturing presumably leads
to loss of cellular identity [45]. Thus, it is essential to recognize the “unsafe moment” when
the cell line does not maintain its key macro- and micro-characteristics.

Comparison of omics data is essential when searching for new molecular patterns,
processing the original data, or performing a meta-analysis. However, the piecewise
annotation of the object under study and the lack of understanding of the influence of the
passage number on metabolomic patterns may confuse the researchers.

We attempted to get closer to the answer to the intricate question—do cells sense
longitudinal monitoring with no changes in their nutrition and other treatment condi-
tions? We investigated the stability of the metabolomic profile of the cell HepG2 line: the
GC × GC-MS platform was used to assess the variability of metabolomic profiles of five
samples of the HepG2 cell line, the duration of cultivation of which varied from 0 to 20 days.
To avoid possible bias caused by the alignment of the cell colony along with their cycle
phrases, we focused on the undisturbed mixture of several million coexisting HepG2 cells.
The GC × GC-MS analysis made it possible to identify conservative metabolic patterns
of the HepG2 cells and the set of metabolic features that tend to fluctuate. Such notice-
able yet non-systemic shifts in the metabolome can potentially affect the interpretation of
experimental results. Our conclusions comply with the findings of an impressive hetero-
geneity study of the HeLa cell line, demonstrating a tight connection between late passages,
omics variations (including cell morphology, doubling time, karyotype, and mRNA and
protein expression, as well as protein turnover rate), and fully materialized phenotypic
differences [1]. The controversial moment of our conclusions may be the difference in the
state of the culture medium (in other words, the availability of nutrients at different time
points). However, during cultivation, we did not register physiological changes in cells.
In conformity with several prolonged studies [6–8] performed on cell lines, we ignored
desynchronization in changing the nutrient medium and fixing changes in the metabolome.

Our study showed, on the one hand, the significance of declaring the passage of the
cell line when publishing results and, on the other hand, considering it in meta-analysis or
testing drugs and their toxicity [9,10]. In the case of collaborations, cell passage number (or
time of cultivation) and other conditions should also be kept the same [46]. Knowing the
passage and conditions of cultivation will allow researchers to differentiate endogenous
metabolomics perturbations of the cell line from those associated with external factors or
disease development.

Further work in this area will validate the hypothesis in follow-up experiments with
orthogonal approaches (e.g., LC-MS vs. GC-MS) [47] and quantify changes for normalizing
data obtained at different passages. The maximum benefit for the metabolomic community
will also come from research on cell line panels of a particular tumor, primary cells, organoid
cultures, and pluripotent stem cells.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cells11223548/s1, Table S1: Chromatographic characteristics of
FAME standards: their retention times (RT, seconds), and coefficients of variation of areas under
curves between technical replications and biological samples; Table S2: Metabolites detected by
GC × GC-MS in HepG2 cells and averaged F-ratios for the characteristic features of a given metabolite

https://www.mdpi.com/article/10.3390/cells11223548/s1
https://www.mdpi.com/article/10.3390/cells11223548/s1
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between five time points; Table S3: Identifiers of metabolites included in the cluster 1, 2, and 3; Table
S4: Pathways with the highest significance according to the MetaboAnalyst analysis against the
KEGG library; Table S5: Pathways with the highest significance according to the MetaboAnalyst
analysis against the SMPDB library; Figure S1: The state of HepG2 culture at the initial and final
stages of its growth: (a) cell morphology and phase contrast microscopy; (b) cell viability analysis.
The cells were stained with Annexin V-FITC and propidium iodide (PI) and analyzed with flow
cytometry. Early (Q4) and late (Q2) apoptotic cells are almost absent at both stages of the cultivation,
as can be seen from Annexin V staining. There are also no high side and low forward scatter signals
common to apoptotic cells (left dot plots). The relatively high number of dead cells (Q1) detected by
PI staining may result from the preparation of the cell suspension for flow cytometric analysis, as the
HepG2 cells tend to form aggregates requiring dissociation. Purple color indicates the position of
dead cells in forward and side light scattering coordinates; and (c) the percentage of proliferating
cells. Cells were stained with one of two types of antibodies (PE or BV421 conjugated) against the
marker of proliferating cells, Ki67; Figure S2: Dot plot of enriched chemical sub-classes of metabolites
detected in HepG2, according to HMDB classification. Each circle denotes a sub-class, and the fill
color represents the significance of enrichment of that subclass from pale yellow (low significance) to
red (high significance). The enrichment p-value was calculated by comparing the observed frequency
of metabolic hit with the frequency expected by chance. The smaller the p-value, the more enriched
the resulting data set. The enrichment ratio is the ratio between observed and expected hits.
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