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Abstract: Colorectal cancer (CRC) represents the third most prevalent cancer worldwide and a lead-
ing cause of mortality among the population of western countries. However, CRC is frequently a
preventable malignancy due to various screening tests being available. While failing to obtain real-
time data, current screening methods (either endoscopic or stool-based tests) also require disagreeable
preparation protocols and tissue sampling through invasive procedures, rendering adherence to CRC
screening programs suboptimal. In this context, the necessity for novel, less invasive biomarkers able
to identify and assess cancer at an early stage is evident. Liquid biopsy comes as a promising mini-
mally invasive diagnostic tool, able to provide comprehensive information on tumor heterogeneity
and dynamics during carcinogenesis. This review focuses on the potential use of circulating tumor
cells (CTCs), circulating nucleic acids (CNAs) and extracellular vesicles as emerging liquid biopsy
markers with clinical application in the setting of CRC screening. The review also examines the
opportunity to implement liquid biopsy analysis during everyday practice and provides highlights
on clinical trials researching blood tests designed for early cancer diagnosis. Additionally, the review
explores potential applications of liquid biopsies in the era of immunotherapy.

Keywords: liquid biopsy; circulating tumor cells; circulating nucleic acids; circulating DNA;
microRNA; exosomes; colorectal cancer; screening

1. Introduction

According to the GLOBOCAN database, colorectal cancer (CRC) is the third most
prevalent cancer worldwide, representing the second leading cause of cancer-related mor-
tality around the globe [1]. Albeit the incidence of CRC is significantly higher in western
countries, lower-income communities are experiencing an increase in CRC cases [2]. Var-
ious factors have been associated with a higher risk of developing CRC, including race,
older age, male sex, personal history of colorectal polyps or inflammatory bowel disease,
type 2 diabetes mellitus and insulin resistance, family history of cancer of the large intestine
and rectum and hereditary colorectal cancer syndromes (Lynch Syndrome, familial ade-
nomatous polyposis, MUTYH-associated polyposis) [3,4]. Additional risk factors include
obesity, increased alcohol use, smoking and frequent consumption of red and processed
meat [4]. Diagnosed at an early stage (I and II) the 5-year survival rates of CRC patients
reach 90% [5]. However, once the disease has spread to the lymph nodes and distant organs
(stages III and IV), the survival rate decreases significantly [5,6].

Despite the high mortality rates observed in the advanced stages, CRC is frequently
a preventable malignancy through screening methods [7]. The vast majority of CRC
cancers progress gradually, as a result of multiple histological, morphological and genetic
alterations. Before the primary tumor produces notable symptoms (pain, constipation,
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bowel obstruction and bleeding), the stages of CRC evolution can be observed with the
help of screening tests [5]. Screening methods require either direct visualization of the
lesion by endoscopic evaluation (colonoscopy, sigmoidoscopy, or computed tomography
colonography), or detection of abnormal DNA and/or hemoglobin as indicators of occult
blood in the stool through stool-based tests (fecal occult blood test, fecal immunochemical
test, or multitarget stool DNA testing) [8].

Even with the various screening technologies available, with colonoscopy representing
the gold standard, adherence to CRC screening programs remains suboptimal among some
populations [9,10]. Endoscopic methods require a disagreeable bowel preparation protocol
in addition to anesthesia or sedation, bearing the risks of an invasive procedure (bleeding,
or bowel perforation) [5,11]. Stool-based tests have an inferior precision in detecting
precancerous lesions less prone to bleeding, and their accuracy is defined by an inferior
sensitivity value [11]. Therefore, a less invasive screening method, fitted to identify cancer
in asymptomatic patients remains an unmet need. Liquid biopsies represent a promising
novel technology, attempting to overcome the limitation of current screening technologies,
as well as facilitate the staging process, assess prognosis and observe drug resistance and
minimal residual disease [12].

The aim of this article is to review the existing data on liquid biopsies and their clinical
application in detecting early-onset CRC. In addition, the review discusses the available
methods for implementing liquid biopsies in everyday practice and offers highlights on clin-
ical trials investigating blood tests designed for screening and early cancer detection. The
review also discusses the challenges met during the analysis of liquid biopsy components
and its potential future applications in the era of immunotherapy.

2. Liquid Biopsy

Recent research has been shedding light on a new diagnostic approach suited for cancer
patients, the liquid biopsy. Liquid biopsy comes as a simple, minimally invasive diagnostic
tool, attempting to overcome the limitations of conventional tissue biopsy by providing
more comprehensive data on tumor heterogeneity and dynamics at different junctures in
cancer development [13]. Liquid biopsy refers to the biological fluids obtained from cancer
patients and submitted to extensive analysis in order to isolate biomarkers indicative of
malignancy. The liquid samples considered for testing can include any biological fluid
(e.g., urine, pleural effusion, ascites, sputum, or cerebrospinal fluid), however, the main
focus is peripheral blood [14]. The main components of liquid biopsies are circulating
tumor cells (CTCs), circulating nucleic acids (circulating tumor DNA and circulating
microRNAs) and extracellular vesicles (exosomes and microvesicles) [12,15] (Figure 1).
Liquid biopsies allow a comprehensive analysis of plasma, also considered the somatic
component of the blood, which can be manipulated for the isolation of CTCs, circulating
nucleic acids and exosomes [16]. Somatic mutations can be detected through a thorough
examination of these plasma components, which are shed into the bloodstream directly from
the primary tumor and distant metastasis, therefore offering an extensive characterization
of the tumor mass [17]. In this context, liquid biopsy analytes are currently finding their
clinical application in the setting of CRC screening.

2.1. Circulating Tumor Cells (CTCs)

Originally described in 1869, CTCs are now gaining clinical importance in the man-
agement of patients with cancer [18]. CTCs define cells derived from the primary tumor,
metastases and recurrence sites that enter the circulatory system either as individual cells
or as clusters [19]. Tumor cells constitute these clusters alone or in association with fi-
broblasts, leukocytes, endothelial cells and platelets, forming tumor microemboli more
resistant against the aggression of the host’s immune system [20]. Once they have entered
the bloodstream, CTCs bear the capacity to seed the disease to secondary sites, causing
tumor metastases in distant organs and disease relapses [19] (Figure 2). Furthermore, CTCs
have shown great plasticity through their ability to undergo epithelial-to-mesenchymal
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transition (EMT) [21]. As most CTCs entering the bloodstream are exposed to mechanical
and environmental factors (oxidative stress, shear stress, immunological response, and
the absence of growth factors), their clearance is particularly rapid, with a half-life usually
limited to 1–2 h [19,22]. The number of CTCs varies between 1 to 10 cells per 10 mL of blood,
with higher counts detected in metastatic patients compared to early-stage cancers [23,24].
Given the extremely low count of CTCs, their adequate quantification requires special
enrichment, detection and characterization technologies.
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CTCs can be successfully enriched through various procedures that exploit the dissim-
ilarities observed between tumor cells and other circulating blood cells. These methods
attempt to isolate CTCs based on their particular physical characteristics and their contrast-
ing expression of cell surface proteins [25].

Positive enhancement methods, also known as label-dependent, use specific antibod-
ies targeting molecular markers expressed by CTCs (cell-surface antigens). The membrane
protein most commonly used during positive enhancement selection is the epithelial cell
adhesion molecule (EpCAM), however, other cytoplasmic markers expressed by CTCs may
be exploited (e.g., cytokeratin-8, -18, -19) [26]. EpCAM is a transmembrane glycoprotein
overexpressed in most epithelial solid tumors (breast cancer, ovarian cancer, head and neck
squamous cell cancer, as well as CRC) and it is associated with cell proliferation, migration,
invasion motility and signal transduction [27]. It has been proved that circulating epithe-
lial cells identified in cancer patients frequently carry the same genetic alterations as those
observed in the primary tumor [28]. However, CTCs are described by phenotypical hetero-
geneity, with some CTCs failing the selection process due to a lack of marker expression [29].
In these conditions, negative selection methods could successfully isolate CTCs by identify-
ing and excluding from analysis various non-malignant cells using antibodies recognizing
cell surface markers expressed by these circulating blood cells [25,30]. In comparison, label-
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independent CTC enrichment methods subject CTCs to separation based on biophysical
features such as density, size, deformability, electrical characteristics and invasiveness [31].
A new assay, isolation by size of tumor cells (ISET), was developed to aid the morphological,
immunological and molecular description of CTCs. ISET allows CTCs isolation based on
biophysical differences between cancerous cells and non-malignant blood cells, collecting
tumor cells using specific filters and chemical substances [32].
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secondary sites. By collecting blood samples, CTCs are examined to offer an in-depth description of
the disease.

Once the sample has undergone enrichment processes, CTCs require individual recog-
nition. CTC detection can be achieved through immunocytology, molecular biology, or
functional assays [33]. The most widely used approach for CTC detection facilitates direct
immunological identification by using anti-EpCAM antibody-labeled ferrofluids targeting
proteins expressed by CTCs, with the CTCs being further detected via fluorescence mi-
croscopy [19]. The development of this technique led to the implementation of CellSearch
System as the only FDA-approved biotechnology adopted by clinical studies to detect and
enhance CTCs [34]. Research has also investigated the use of diagnostic leukapheresis
(DLA) as a tool for enabling CTC detection when associated with the CellSearch System.
Studies have demonstrated that DLA facilitates the screening of greater blood volumes
for the presence of CTCs, as CTCs have similar densities as mononuclear cells and can be
extracted from the bloodstream during leukapheresis [35]. Another compelling approach to
CTC detection comes in the form of the CellCollector GILUPI device, assessed as an in vivo
CTC detection technique [36]. On a molecular level, CTCs can be detected by extracting nu-
cleic acids (mRNA, DNA, miRNAs) and then further submitting them to analysis through
real-time polymerase chain reaction (RT-PCR) or next-generation sequencing (NGS) [37].
Functional assays have been extensively researched as different techniques suited for CTC
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detection. The EPISPOT assay was tested as an in vitro CTC detection tool, able to select
viable CTCs by recognizing specific proteins that are either secreted, released, or shed by
cancerous cells [38]. The EPISPOT assay was tested, among other settings, in the CRC
setting, with encouraging results [39]. Another approach to CTC selection comes in the
form of dielectrophoresis. By utilizing specific electric fields, the DEPArray system allows
the separation of single cells that can be later advanced to further comprehensive molecular
characterization [40].

CTCs can be extensively characterized using a range of techniques. Profiling proteins
expressed by CTCs represents one of the most commonly used methods and it requires
immunostaining with antibodies to specific markers of cell proliferation and apoptosis [41].
A different approach is to characterize CTCs on a transcriptomic level by multiplex quanti-
tative RT-PCR (qRT-PCR) analysis [42], RNA sequencing assays [43], or via in situ RNA
hybridization [44]. In addition, following CTC isolation, copy-number alterations can be
identified by submitting the DNA of single CTCs to whole genome sequencing (WGA)
analysis [45]. Individual mutations are further determined using NGS [45]. In addition
to these techniques, genomic aberrations expressed by CTCs may also be singled out via
fluorescence in situ hybridization (FISH) [25].

The available scientific data showed the importance of CTCs in different CRC stages.
In the nonmetastatic setting, the CTCs count was found to be lower, therefore, the cutoff
for many of the clinical trials conducted was set for ≥1 CTC/7.7 mL of blood, while in the
metastatic setting, the cutoff was set higher (≥5 CTCs/7.5 mL of blood) [46]. Even if the
current gold standard for CRC screening and diagnosis remains colonoscopy with tissue
biopsy, CTC analysis could favor better compliance among patients and a decrease in the
economic burden [47].

In this regard, a prospective clinical study was presented at ASCO GI 2018 [48].
The study was conducted on 620 patients categorized as 138 healthy individuals and
438 patients with precancerous and cancerous lesions (adenomas, polyps and CRC stages I
to IV). After processing blood samples from all 620 patients, CTCs were successfully
captured and enumerated. The results of the study showed 88% overall accuracy for both
precancerous and cancerous lesions in all stages of cancerous disease. Further research into
the clinical application of liquid biopsy as a test for CRC screening has identified clusters
of circulating endothelial cells derived from the tumor (ECC). ECCs were described as
benign cells, originating from the tumor vasculature. By recognizing and enumerating
ECCs, healthy individuals were differentiated from patients with early CRC [49]. CTCs
detection may have the potential to become the new gold standard for CRC diagnostics
once the specificity limitations are overcome.

Moreover, CTCs were shown to evaluate patients’ prognoses and predict metastasis
and recurrence. A meta-analysis including 1847 patients from 11 studies revealed that an
increased CTC baseline count represents an independent and strong prognostic factor for
OS (HR = 2; 95% CI 1.5–2.7) and PFS (HR = 1.8; 95% CI 1.5–2.1) in metastatic CRC [50]. By
analyzing the data from the Unicancer Prodige-14 trial, François et al. showed that a high
(≥3/7.5 mL of blood) CTC count before and one month after treatment was correlated with
a poor OS in metastatic CRC patients having potentially resectable liver metastasis [51].
A phase III clinical trial (VESNÚ-1) was conducted on metastatic CRC patients in the
first-line setting, presenting a CTC count ≥ 3/7.5 mL blood. The study aimed to evaluate
whether a four-drug chemotherapy regimen consisting of FOLFIRINOX+Bevacizumab can
lead to better outcomes when compared to the three-drug regimen FOLFOX+Bevacizumab,
in a high-risk population. The results showed that first-line FOLFIRINOX+Bevacizumab
led to a significantly improved PFS (12 months; 95% CI 11.2–14.0) in metastatic CRC
with >3 CTCs/7.5 mL blood, compared to FOLFOX+Bevacizumab (9.3 months; 95% CI
8.5–10.7) [52].

However, despite promising results reported by clinical trials, the scientific community
will have to overcome several limitations in order to further use the information provided
by CTCs in clinical practice.
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2.2. Circulating Nucleic Acids (CNAs)

The analysis of circulating nucleic acids (CNAs) represents a novel minimally invasive
approach, able to assess the tumor and its molecular characteristics while allowing a
more accurate description of tumor heterogeneity and evolution in time. CNAs, more
specifically, circulating tumor DNA (ctDNA) and circulating microRNA (miRNA), are
generally isolated from blood; however, other biological fluids could represent a source of
CNAs (saliva, cerebrospinal fluid, pleural effusions, urine and stool, etc.) [53]. CNAs enter
the bloodstream by passive release or through active secretion. The passive release of CNAs
results from increased production and subsequent shedding of cell debris produced by
tumor necrosis and apoptosis [12,54,55]. The active release mechanism sees CNAs packed
inside extracellular vesicles such as exosomes to be further secreted by tumor cells [56].

2.2.1. Circulating Tumor DNA (ctDNA)

Numerous amounts of cell-free DNA (cfDNA) fragments are detected in blood plasma
as a result of cellular death, with sizes ranging between 180 and 200 base pairs [57]. It has
been proved that healthy individuals display considerably lower levels of cfDNA compared
to cancer patients who experience an increased cell turnover proportionate with tumor
growth [58]. Various other conditions may lead to an increase in cfDNA levels, such as
infection, systemic inflammation, cerebral infarction, acute trauma, or post-transplantation;
however, healthy individuals may also experience a rise in cfDNA concentrations during
physical exercise [58,59]. ctDNA is a part of the cfDNA released from the tumor mass
and can be identified as a double-stranded DNA fragment deriving from cfDNA. ctDNA
represents a small percentage of the total cfDNA of an individual, with sizes ranging from
0.18 to 21 kilobytes [12]. Available data suggest that the quantity of ctDNA detected in
cancer patients varies significantly, suggesting a correlation between cancer type, disease
staging and aggressiveness, the treatment followed and its outcome [60,61]. In cancer
patients, the cfDNA fraction identified as ctDNA has a particularly short circulation half-
life of 16 min to several hours and carries tumor-specific somatic mutations, therefore
offering a live portrayal of disease progression [60,62]. The liver represents a key player in
cfDNA elimination, however, the spleen, kidneys and lymphatic circulation also participate
in clearance processes. Therefore, lower levels of cfDNA may be detected in plasma
regardless of organ impairment [63].

The blood samples collected require a series of manipulations in order to identify
ctDNA and then further analyze the material for genetic aberrations. Firstly, samples are
subjected to sequential centrifugation, isolating plasma as the main source for cfDNA [64].
ctDNA is then separated from cfDNA through specific library preparation methods [64].
Following isolation, the ctDNA fragment serves as material for subsequent analysis that
can be achieved using targeted or untargeted techniques. Targeted techniques allow the
identification of known, recurring genetic mutations that can further guide therapeutic
decisions [64,65]. The methods currently available for targeted analysis of ctDNA are rt-
PCR, digital PCR (droplet digital PCR—ddPCR and BEAMing) and targeted NGS [66–68].
Untargeted techniques enable the analysis of a broader part of the genome, facilitating the
identification of unknown aberrations [69]. Untargeted studies can be completed using
NGS assays (whole genome sequencing and whole exome sequencing) [70].

Extensive research focusing on circulating DNA (cDNA) analysis has successfully
discovered its clinical utility in CRC screening. A series of markers indicative of aberrant
DNA methylation have been described and utilized to detect CRC in early stages and
precancerous lesions [71] (Table 1).

Tumor suppressor gene septin-9 (SEPT9) is one of the most widely researched methy-
lation markers in CRC pathogenesis. A study conducted by Warren et al. [72] evaluated
the efficiency of SEPT9 methylated DNA testing in diagnosing early cases of CRC. The test
results showed promising accuracy, leading to FDA approval of the EpiProcolon assay as a
CRC cancer screening test aimed at detecting SEPT9 gene methylation in DNA fragments
released by cancerous cells (circulating DNA or ctDNA) [73]. The diagnostic value of the
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assay has been extensively reviewed through vast meta-analysis [74,75]. In recent years,
more tests have investigated the value of SEPT9 methylation as an indicator of early cancer
occurrence, reaching encouraging results either as an individual marker or in association
with other markers [71]. Another methylation marker, SHOX2, was found to gradually
increase in its levels from non-cancerous tissues to non-advanced adenomas, advanced
adenomas, finally peaking in CRC cases [76]. Additional genes undergoing hypermethyla-
tion in CRC patients have been described. BCAT1 and IKZF1 were analyzed in prospective
cohorts of more than 2000 patients. Following extraction from blood samples, the cfDNA
was analyzed for methylation in the BCAT1 and IKZF1 genes, resulting in a strong correla-
tion between tumor aggressiveness and positivity rates delivered through testing [77,78].
In addition, ctDNA methylation marker cg10673833 demonstrated an important accuracy
value in identifying malignant tumors, as well as precancerous lesions [79]. A recently pub-
lished study presented the results obtained by implementing a cfDNA methylation-based
model of 11 biomarkers fit to detect advanced adenomas and early-stage CRC. The model
reached a high sensitivity rate for both stage I CRC and advanced adenomas, with a strong
specificity value confirmed in the validation cohort [80]. Further studies aiming to define
the ability of hypermethylated cfDNA to identify CRC cancer revealed that ALX4 gene
methylation could correctly confirm the presence of colon adenomas, as well as colorectal
tumors. However, better screening accuracy was achieved when ALX4 was included in a
panel of seven hypermethylated promoter regions (BMP3, NPTX2, RARB, SDC2, SEPT9
and VIM) [81]. Methylation of SFRP genes was observed in plasma samples collected from
CRC patients and patients with colorectal adenomas. When analyzed as a panel, SFRP1
and SFRP2 methylation in association with SDC2 and PRIMA1, colorectal tumors were
diagnosed with a sensitivity and specificity value greater than 90% [82]. SDC2 methyla-
tion has also been tested as an individual marker suggestive of cancerous lesions, with a
sensitivity rate approaching 90% and a specificity rate above 95% [83]. SFRP2 was also
investigated as an individual biomarker for CRC, although with a poorer accuracy [84].
The methylation of the SFRP1 gene was analyzed together with onscostatin M receptor
(OSMR) gene, with the results showing a significant increase in expression levels in patients
with colorectal adenomas and those with cancerous lesions [85].

Several multi-cancer detection tests have been thoroughly analyzed as potential screen-
ing tools in a new era of preventive medicine (Table 2). CancerSEEK assesses the levels
of circulating protein biomarkers and ctDNA aberrations in an attempt to diagnose eight
of the most common malignancies, including CRC [86]. Cohen et al. applied this test on
a cohort of more than 1000 patients with previously confirmed non-metastatic cancers
with impressive results [87]. PanSeer is another blood-based analysis designed to identify
ctDNA methylation biomarkers [88]. The blood test was applied to 605 plasma samples
obtained from asymptomatic individuals during the Taizhou Longitudinal Study [88].
Within 4 years, 191 of the controls were diagnosed with one of the five most common cancer
types (lung, colorectal, stomach, esophageal, or liver cancer), with PanSeer identifying
the disease in 95% of the asymptomatic controls who later developed malignancies [88].
Similarly, the Galleri test was designed to successfully identify 12 different types of cancer,
including CRC, in the early stages of evolution [86] with promising results [89]. A group of
European scientists proposed a series of cfDNA methylation-based panels aiming to detect
early-stage colorectal neoplasia, breast cancer and lung cancer in the female population [90].
The study results proved encouraging: the PanCancer panel showed a 72% sensitivity in
identifying one of the three cancers with a 74% specificity, while the employment of the
CancerType panel signaled the most probable cancer localization with an 80% specificity.
The ColoDefense [91] test is another blood-based CRC screening assay designed to detect
methylation in the SEPT9 gene, as well as the syndecan-2 (SDC2) gene. The results of
the test showed an overall sensitivity in CRC detection of nearly 90% and a specificity of
92.8%. Interestingly, of the two methylation markers, SDC2 proved a higher sensitivity in
detecting advanced adenomas [91].
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Table 1. Outline on methylation markers with confirmed validity in CRC screening and early diagnosis.

Gene DNA
Sample

No. of
Cases

No. of
Controls

Case
Characteristics Sample Type Se. (%) Sp. (%) AUC Value Observations Ref.

SEPT9 N/A 50 94 I+II: 3/4 of all
samples Plasma CRC: 90;

I+II: 86.8; CRC: 88;
SEPT9 DNA methylation test
identifies all late-stage
CRC cancers

[72]

SEPT9 ctDNA 2613 6030 Plasma
Serum 48.2–95.6 79.1–99.1

Meta-analysis including
25 studies;
Epi proColon 2.0 exhibits the
highest diagnostic value

[74]

SEPT9 cfDNA 1801 470 Plasma 69 92

Meta-analysis including
22 studies;
Epi proColon 2.0 exhibits the
highest diagnostic value;

[75]

SHOX2 cfDNA 103 63

I: 7;
IIA: 7;
IIB: 3;
IIIA: 3;
IIIB: 1;
IIIC: 4;
IV: 3;
CA: 75;

Plasma - -

CRC: 88
p < 0.001;
CA: 0.90
p < 0.001;

SHOX2 does not distinguish
CRC from CA;
SHOX2 methylation levels
shows gradual increase from
non-cancerous lesions
to CRC;

[76]

BCAT1
IZKF1 cfDNA 129 1291

I: 29;
II: 42;
III: 40;
IV: 16;
Unknown: 2;
CA: 685;

Plasma 66 -

Sensitivity of BCAT1 and
IZKF1 is low for CA, but
increases in CRC patients
according to tumor staging;
Specificity of BCAT1 and
IZKF1 for non-neoplastic
is 94%;

[77]

BCAT1IZKF1 ctDNA 187 -

I: 40;
II: 54;
III: 63;
IV: 30;

Plasma 62 92

BCAT1 and IZKF1
methylation levels increase
with CRC stage and decrease
after surgical resection;

[78]

cg10673833 ctDNA 801 1021 N/A Plasma 89.7 86.8

Dynamic changes in
cg10673833 methylation are
consistent with treatment
outcomes

[79]
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Table 1. Cont.

Gene DNA
Sample

No. of
Cases

No. of
Controls

Case
Characteristics Sample Type Se. (%) Sp. (%) AUC Value Observations Ref.

11
methylation
Markers *

cfDNA 123 67

I: 34;
II: 42;
III: 30;
IV: 17;

Plasma 84.6 86.6 0.92 Results obtained during
validation cohort [80]

ALX4
BMP3NPTX
RARB SDC2
SEPT9VIM

cfDNA 193 102

T1: 3;
T2: 30;
T3: 120;
T4: 34;
T unknown: 6;
N0: 121;
N1: 38;
N2: 28;
N unknown:6;
M0: 159;
M1: 34;

Plasma CRC: 90.7;
I+II: 88.7;

CRC: 72.5;
I+II: 73.5;

CRC: 0.86;
I+II: 0.85;

Individual hypermethylated
DNA promoter regions have
limited diagnostic value
for CRC;
The 7 hypermethylated
model shows good CRC
detection value;

[81]

SFRP1
SFRP2
SDC2
PRIMA1

cfDNA 84 37 CRC: 47;
CA: 37; Plasma CRC: 91.5;

CA: 89.2
CRC: 97.3;
CA: 86.5

SFRP1, SFRP2, SDC2 and
PRIMA1 show increased
methylation in both tissue
samples and plasma;

[82]

SDC2 cfDNA 131 125

I: 26;
II: 57;
III: 36;
IV: 12;

Serum CRC: 87 CRC: 95.2
SDC methylation concludes
a 92.3% sensitivity rate for
stage I CRC detection;

[83]

SFRP2 cfDNA 69 55

I: 13;
II: 27;
III: 17;
IV: 5;
AA: 7;

Serum CRC: 69.4;
AA: 42.9;

CRC: 87.3;

Diagnostic value of SFRP2
methylation for detecting
CRC could improve with
higher input
sample volumes;

[84]

OSMR
SFRP1 cfDNA 136 561

I: 38;
II: 29;
III: 32;
IV: 15;
CA: 22;

Plasma CRC: 0.710;

Significantly higher levels of
cfDNA are present in CRC
patients with advanced
histopathological stage;

[85]

* cg00310855, cg01857475, cg01922936, cg11320449, cg11407741, cg11596863, cg15020425, cg22329423, cg24733262, cg25300584, cg26337020; Se. (%): Sensitivity; Sp. (%): Specificity; AUC:
Area Under the Curve; I: CRC stage I; II: CRC stage II; IIA: CRC stage IIA; IIB: CRC stage IIB; III: CRC stage III; IIIA: CRC stage IIIA; IIIB: CRC stage IIIB; IV: CRC stage IV; CA: colorectal
adenomas; AA: advanced adenomas; T: primary tumor; N: regional lymph nodes; M: distant metastases; N/A: information not available.
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Table 2. Outline on blood-based liquid biopsy tests with confirmed validity in CRC screening and early diagnosis.

Test Analytes Purpose of Test Case Characteristics Observations Ref.

CancerSEEK
ctDNA;
Protein biomarkers released
by tumors;

Detection of multiple types
of cancer;

1005 patients with stage I to III cancers
of the breast, colorectum, esophagus,
liver, lung, ovary, pancreas, stomach;

The highest prediction accuracy
appears for CRC;
The test shows a specificity >99% in
detecting the 8 types of cancer;
Sensitivity rates vary from 33% (breast
cancer) to 98% (ovarian cancer);
The median sensitivity varies from
48% (stage I) to 78% (stage III);

[87]

PanSeer cfDNA Detection of cancer in
asymptomatic individuals;

Plasma samples collected from
123,115 healthy subjects who were
monitored over 10 years for
cancer detection

The tests show 96% specificity;
The test detects cancer in 95% of
asymptomatic individuals who are
later diagnosed with one of 5 cancers
(stomach, colorectal, liver,
lung, esophagus).

[88]

Galleri cfDNA

Detection of distinct
methylation patterns
associated with
specific cancers;
Provide information about
the organ of origin;

Plasma samples collected from
15,254 participants (44%—non cancer
patients; 56%—cancer patients) with
50+ cancer types;

The test detects 12 types of cancer in
early stages (anorectal, colorectal,
esophageal, gastric, head and neck,
HR+ breast, liver, lung, ovarian,
pancreatic, MM, lymphoid neoplasms);
The test sets a 99.3% specificity;
Identification of tissue of cancer origin
shows a 93% accuracy;
Detection rate increases with
tumor stage;

[86,89]

PanCancer and CanceType cfDNA

Simultaneous detection of
breast cancer, CRC and lung
cancer based on a cfDNA
methylation model;

Plasma samples collected from female
patients with breast cancer, CRC and
lung cancer, as well as
asymptomatic controls;

PanCancer panel detects cancer cases
with a 72.4% sensitivity and
73.5% specificity;
CancerType panel indicates the most
likely cancer topography with
specificity of over 80%, but with
limited sensitivity;

[90]

ColoDefense cfDNA

Combined detection of SEPT9
and SDC2 methylation for
improved detection of AA
and early-stage CRC;

Plasma samples collected from
117 CRC patients, 23 patients with AA,
78 patients with small polyps and
166 normal individuals;

CRC detection shows an overall
sensitivity of 88.9% and specificity
of 92.8%;
Test results prove a significantly
improved accuracy compared to the
single methylation marker detection;

[91]

HR+: hormone receptor-positive; MM: multiple myeloma; AA: advanced adenomas.
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2.2.2. Circulating microRNAs (miRNA)

Circulating miRNAs represent the purpose of extensive research focusing on can-
cer biomarkers. miRNA can be identified in biological fluids as a result of tissue injury
and apoptosis or following active selective secretion by CTCs and tumor cells from the
primary site or metastases [92,93]. The infiltrating immune cells forming the tumor mi-
croenvironment have been studied as potential origins for miRNAs [94]. miRNAs may
also be found in circulation encapsulated in exosomes and microvesicles [92]. miRNA is
a single-stranded, non-coding RNA molecule, of small lengths containing approximately
25 nucleotides, responsible for RNA slicing processes and post-transcriptional gene expres-
sion regulation [95]. miRNAs pair with complementary sequences of messenger RNAs
(mRNAs), binding to 3′ untranslated regions (3′UTR) of target mRNAs which leads to
inhibition at the translation level [96]. miRNAs represent key players in numerous bio-
logical processes, both physiological and pathological, such as immune system activation,
inflammatory responses, proliferation and differentiation of cells and apoptosis [96]. Re-
search into the role of miRNAs in oncogenesis has discovered that numerous miRNAs
are either downregulated or upregulated in cancers. In addition, miRNA genes were
commonly found in genomic regions linked to cancer and fragile chromosomal sites, as
well as regions of heterozygosity loss. These findings have prompted the conclusion that
miRNAs play an important role in tumorigenesis, acting as oncogenes, as well as tumor
suppressors [97]. Following isolation from cells, tissues, or body fluids, miRNA analysis
is assisted by RT-PCR, dPCR and microarrays [98,99]. qRT-PCR is the most widely used
method for miRNA quantification, as it requests limited amounts of RNA while offering
good sensitivity rates [100]. Microarrays allow the simultaneous detection of important
numbers of circulating miRNAs [101]. In addition to these methods, NGS facilitates the
analysis of both known and unknown miRNAs; however, it requires large quantities of
material [55].

Even though the interest in miRNA as a liquid biopsy biomarker is relatively novel,
research has already found its potential value for CRC screening (Table 3).

Several miRNA clusters appear up-regulated in CRC [102], of which the miRNA-
17/92a gene cluster has been extensively researched. Members of the miRNA-17/92a
cluster were found elevated in plasma samples collected from patients with CRC and
precancerous lesions in multiple studies [103–105]. A vast meta-analysis, including more
than 900 CRC patients and 638 healthy controls, proved that miRNA-17 could identify CRC
cases with satisfying accuracy [106]. Furthermore, the diagnostic value of miRNA-17 was
confirmed by another study set to verify the accuracy of a panel formed by eight plasma
miRNAs in recognizing CR adenomas [107]. More studies found the levels of miRNA-92a to
be significantly elevated in the plasma of patients with advanced adenomas and those with
CRC when compared to healthy controls [108,109]. Additionally, miRNA-92a also showed
prognostic value in cases of CRC [108]. The same study investigated the diagnostic value of
miRNA-21 with similar results [108]. More members of the miRNA-17/92a cluster, notably
miRNA-19a and miRNA-19b, were found up-regulated in patients with CRC and those with
precancerous lesions [104]. miRNA-18a, another member of the miRNA-17/92a cluster,
demonstrated an 84.6% sensitivity and 75.6% specificity in diagnosing CRC when tested in
association with miRNA-200c [110]. miRNA-18a also showed significant upregulation in
patients with advanced adenomas [104,111]. Further studies found miRNA-29a to have
an important diagnostic value for advanced adenomas and CRC cases when analyzed
together with miRNA-92a [109]. miRNA-29a was further investigated in the setting of
CRC and premalignant polyps, showing significant upregulation and valuable potential
as a non-invasive biomarker for CRC screening [104]. A recent meta-analysis initiated in
China sought to assess the role of circulating miRNA-21 in the diagnosis of CRC. The study
was conducted on approximately 2000 samples collected from CRC patients, as well as
healthy individuals, resulting in a sensitivity and specificity greater than 75% for CRC
diagnosis [112]. Interestingly, a separate study found miRNA-21 levels to be elevated
several years before diagnosis [113].
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Table 3. Outline on blood circulating microRNAs with confirmed validity in CRC screening and early diagnosis.

Circulating
miRNA No. of Cases No. of Control Case

Characteristics Sample Type Expression Se. (%) Sp. (%) Observations Ref.

miR-92 25 20 N/A Plasma ↑ 89 70 Plasma levels reduced after
surgery in 10 patients [103]

miR-18a

123 73

I: 12;
II: 21;
III: 22;
IV: 8;
AA: 60;

Plasma ↑

- -

miR-18a shows upregulation in
AA vs. controls

[104]

miR-19a

miR-19b

miR-15b

miR-29a

miR-335

miR-19a+
mir-19b 78.5 92.4

miR-19a+
miR-19b+
miR-15b

78.5 79.2

miR-19a+
miR-19b+
miR-15b+
miR-29a+
miR-335+
miR-18a

197 100

I: 20;
II: 23;
III: 34;
IV: 14;
Unknown: 5;
AA: 101;

Plasma ↑ CRC: 91;
AA: 95;

CRC: 90;
AA: 90;

Detection rate in early CRC
shows comparable results with
late CRC

[105]

miR-17 938 638
Serum
Plasma
Stool

↑ 75 68 Meta-analysis including
10 studies [106]

miR-532-3p+
miR-331+
miR-195+
miR-17+
miR-142-3p+
miR-15b+
miR-532+
miR-652

61 26

I: 3;
II: 12;
III: 15;
IV: 15;
AA: 16;

Plasma ↑
AA: 88; AA: 64; Average polyp size in the

validation group: 1.6 cm; [107]

miR-431+
miR-139-3p CRC: 91; CRC: 57;
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Table 3. Cont.

Circulating
miRNA No. of Cases No. of Control Case

Characteristics Sample Type Expression Se. (%) Sp. (%) Observations Ref.

miR-21+
miR-92a 250 80 CRC: 200;

AA: 50; Serum ↑ CRC: 68;
AA: 70;

CRC: 91.2;
AA: 70;

Overexpression of miR-92a is
independently associated with
poor survival

[108]

CRC: 69 CRC: 89.1
miR-29a AA: 62.2 AA: 84.7

CRC: 84 CRC: 71.2
miR-92a AA: 64.9 AA: 81.4

CRC: 83 CRC: 84.7miR-29a+
miR-92a

137 59

I: 27;
II: 25;
III: 38;
IV: 10;
AA: 37;

Plasma ↑

AA: 73 AA: 79.7

AA express lower levels of
miR-29a and miR-92a compared
to CRC
miR-29a can act as both tumor
suppressor and oncogene.

[109]

miR-200c

78 86
I, II: 36;
III, IV: 42; Plasma ↑

64.1 73.3
Plasma levels of miR-18a show
a tendency to increase with
TNM stage

[110]
miR-18a 73.1 79.1

miR-18a+
miR-200c 84.6 75.6

miR-18a 66 24
CRC: 30;
IBD: 18;
CP: 18;

Of the significantly ↑miR in CR
diseases, only miR-18 shows
significant↑ in CP;

miR-223 100 N/A N/A

Serum ↑ - -
Of the significantly ↑miRs in
CRC, only miR-223 shows
significant ↑ in the validation set;

[111]

miR-21 1129 951 N/A Plasma
Serum Stool ↑ 77 83 Meta-analysis including

18 studies [112]

miR-18a+
miR-21+
miR-22+
miR-25

77 134

I: 10;
II: 21;
III: 15;
IV: 21;

Plasma ↑ 67 90 Serum miR-21 appear elevated
several years before diagnosis [113]

Se. (%) Sensitivity; Sp. (%): Specificity; I: CRC stage I; II: CRC stage II; IIA: CRC stage IIA; IIB: CRC stage IIB; III: CRC stage III; IIIA: CRC stage IIIA; IIIB: CRC stage IIIB; IV: CRC stage
IV; N/A: information not available; AA: advanced adenomas; CP: colorectal polyps; IBD: inflammatory bowel disease; ↑: upregulated expression.
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2.3. Exosomes

Present in all biological fluids, exosomes represent cell-derived nanovesicles with
sizes ranging from 30 to 150 nm in diameter [114]. Exosomes develop from the intracellu-
lar endosomal compartment following a process of inward expansion from the limiting
membrane that generates multivesicular bodies (MVBs) [115]. MVBs are then discharged
into the extracellular matrix as a result of their fusion with the cytoplasmic membrane,
releasing their content in the form of exosomes [116]. Exosomal secretion occurs in both
physiological and pathological processes, with various types of cells producing exosomes
(cancer cells, as well as adipocytes, immune cells and brain cells) [117]. Exosomes play
a series of roles within the cell, notably the removal of waste, antigen presentation and
cytokine release [118]. However, their essential function is intercell communication of
molecular information [119]. Exosomal cargo, mainly cytoplasmic components such as
proteins, bio-functional lipids and nucleic acids (mRNA, miRNA and DNA fragments)
are key players in the signaling pathways between cells [120]. Communication between
exosomes and their target cells can be acquired through interaction with surface-expressed
ligands, through phagocytosis, or by exosomal fusion with cell membranes [121].

An increasing amount of evidence has identified exosomes as essential participants
in cancer development processes. Exosomes secreted by tumor cells have been found
responsible for alterations in the immune response that lead to suppression of antitumor re-
sponse [122]. In addition, exosomes play important roles in tumor microenvironment (TME)
remodeling, angiogenesis and tumor growth, therefore favoring disease progression [118].
Exosomes were found to promote EMT, migration and invasion, causing distant cancer
dissemination through various proteins and miRNAs [123]. Furthermore, research has
proved that exosomal signaling pathways are also involved in therapy resistance [123,124].
Since exosomes have the ability to target specific cells [125], technologies have investigated
the possibility of manipulating exosomes for therapeutical purposes, by using them as
potential vehicles for drug delivery inside tumor cells [126].

Exosome concentration in biological fluids is relatively low, thus making their isolation,
detection and further analysis relatively challenging. Isolation of exosomes can be achieved
based on their physical properties (size and density), electromagnetic characteristics, or ac-
cording to their immunological properties [127]. Isolation through ultracentrifugation repre-
sents the gold standard, however, other techniques, such as ultrafiltration, chromatography,
hydrostatic filtration dialysis, precipitation, microfluidic chips, or immunoaffinity-based
methods, may also facilitate exosome isolation [127]. Following isolation, the detection
and characterization of exosomes from a morphological point of view is obtained through
transmission electron microscopy [128]. Nanoparticle tracking analysis can determine size
and concentration characteristics [129]. Protein expression and functions can be assessed
using Western blot and ELISA methods, while exosome content can be identified via spec-
trophotometric assays and different other focused approaches (e.g., RT-qPCR, Western blot
and mass spectrometry) [127,130].

Exosomal microRNAs have been attracting considerable attention as promising biomark-
ers suitable for cancer diagnosis. Multiple exosomal miRNAs have been studied, with
some of them showing substantial value in identifying early cases of CRC (Table 4).
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Table 4. Outline of blood exosomal molecules with confirmed validity in CRC screening and early diagnosis.

Exosomal
miRNA No. of Cases No. of Control Case

Characteristic Sample Type Expression AUC Value p Value Observations Ref.

miR-23a 0.953 <0.0001
miR-1246 0.948 <0.001
miR-21 0.798 <0.0001
miR-150 0.758 <0.0001
let-7a 0.670 <0.0001
miR-223 0.716 <0.0001
miR-1224-5p 0.610 =0.142

miR-1229

88 11

I: 20;
II: 20;
IIIA: 20;
IIIB: 16;
IV: 12;

Serum ↑

0.614 <0.0001

Exosomal levels of miRNAs are
not dependent on clinical
CRC stage
Exosomal levels of miR-23a and
miR-1246 prove better sensitivity
for stage I CRC detection than
CEA and CA19-9 assessment

[131]

miR-23a

25 13 II: 12; III: 13; Serum ↑
0.890 <0.05 Exosomal levels of miRNAs are

not correlated with
clinicopathological
characteristics of CRC cases

[132]
miR-301a 0.840 <0.05

miR-6803-5p 168 20

I: 21;
II: 48;
III: 68;
IV: 31;

Serum ↑ 0.740 <0.05

High levels of exosomal
miR-6803-5p correlates with
advanced TNM stage, lymph
node metastases, liver
metastases, poorer DFS and OS

[133]

miR-486-5p 50 50 I+II: 25;
III+IV: 25; Plasma ↑ 0.713 <0.05

High expression of exosomal
mR-486-5p in CRC samples
contrasts low expression of
miR-468-5p in CRC
tissue samples

[134]

miR-125a-3p 0.685 <0.001
miR-125a-
3p+CEA 0.855 <0.0001

miR-320c

50 50
I: 3;
IIA: 43;
IIB: 4;

Plasma
↑

0.598 =0.145

Exosome miR-125a-3p and
miR-320c levels correlate with
tumoral nerve infiltration

[135]

miR-150-5p

133 60

I: 32;
II: 43;
III: 28;
IV: 30;

Serum ↓
0.870 <0.05 Decreased exosomal miR-150-3p

correlates with advanced TNM
stage, lymph node metastases,
poorly differentiated tumors

[136]miR-150-
5p+CEA 0.910 <0.05
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Table 4. Cont.

Exosomal
miRNA No. of Cases No. of Control Case

Characteristic Sample Type Expression AUC Value p Value Observations Ref.

miR-92b 62 52

I: 22;
II: 9;
III: 6;
Unknown: 3;
CA: 22;

Plasma ↓ 0.793 <0.001
Highest accuracy reported for
differentiating CRC II/III
from NC

[137]

miR-196b-5p 150 90 N/A Serum ↑ 0.880 <0.001
Exosomal miR-196b-5p detects
CRC with higher accuracy than
serum miR-196b-5p

[138]

miR-139-3p 80 23

T1+T2: 26;
T3+T4: 54;
N0: 42;
N1: 18;
N2: 20;
M0: 78;
M1: 2;

Plasma ↓ 0.726 <0.001 Levels correlate with disease
progression [139]

miR-27a

100 50
CRC: 50;
CA: 50; Plasma ↑

0.746 <0.001

External validation phase results [140]miR-130a 0.697 <0.001

miR-27a+miR-
130a 0.801 <0.001

miR-1539 51 49
I+II: 19;
III+IV: 31;
Unknown: 1;

Serum ↑ 0.673 <0.003 Decreased serum expression of
miR-1539 indicates LCRC [141]

AUC: Area Under the Curve; I: CRC stage I; II: CRC stage II; IIA: CRC stage IIA; IIB: CRC stage IIB; III: CRC stage III; IIIA: CRC stage IIIA; IIIB: CRC stage IIIB; IV: CRC stage IV;
N/A: information not available; CA: colorectal adenomas; T: primary tumor; N: regional lymph nodes; M: distant metastases; LCRC: left-sided CRC; ↑: upregulated expression; ↓:
downregulated expression.
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Research has identified several significantly up-regulated miRNAs in the setting of
CRC, including cases of early-stage disease. One study found miRNA-23a to have an impor-
tant diagnostic accuracy with an area under the curve (AUC) of 0.953, while miRNA-1246
and miRNA-21 also showed encouraging results [131]. Overexpression of exosomal
miRNA-23a was successfully confirmed by another study that additionally investigated the
diagnostic value of exosomal miRNA-301a [132]. Another study conducted by a Chinese
team demonstrated the overexpression of exosomal miRNA-6803-5p in the serum of CRC
patients [133]. Similarly, the expression of miRNA-486-5p in plasma exosomes was found
to be significantly upregulated in CRC patients, corresponding to disease staging [134].
Circulating exosomal miRNA-125a-3p is another upregulated analyte with confirmed
value in detecting early-stage CRC patients. The predictive accuracy was improved when
associating miRNA-125a-3p with CEA analysis [135]. The same study found exosomal
miRNA-320c to be up-regulated in plasma samples collected from CRC patients, validating
it as a potential biomarker for early diagnosis [135]. Downregulation of serum exosomal
miRNA-150-5p proved to be a conclusive indicator of colorectal malignancy, while com-
bined analysis with CEA resulted in a higher diagnostic value for CRC identification [136].
Interestingly, expression of exosomal miRNA-92b was found to be significantly reduced
in patients presenting with CRC, as well as individuals with adenomas of the colon [137].
Furthermore, serum samples and serum exosomes isolated from CRC patients also showed
a considerable expression of mRNA-196b-5p [138]. Additional data identified a downregu-
lation in exosomal miRNA-139-3p expression in plasma samples collected from patients
with CRC, correlating with disease aggressiveness [139]. Furthermore, plasma collected
from CRC patients was found to express important levels of exosomal miRNA-27a and
miRNA-130a [140]. A different study found upregulation of miRNA-1359 in exosomes
isolated from CRC patients, leading to an accurate differentiation of CRC cases from healthy
individuals [141]. Exosomal miRNAs are receiving a growing interest, with several other
studies aiming to identify and validate promising biomarkers for early CRC diagnosis and
population screening [131,142–144]. In the given circumstances, the need to improve the
accuracy of these biomarkers is evident.

3. The Future Applications of Liquid Biopsies in CRC

Over the past few years, immunotherapy has changed the treatment paradigm for
many cancer types. In CRC, the MSI-high phenotype was associated with a significant
response to immune checkpoint inhibitors (ICIs) [145]. Moreover, the tumor mutational
burden (TMB), referring to the number of somatic mutations, was significantly correlated
with the outcome of CRC patients treated with ICIs [146]. Despite the promising results
reported by the scientific community, we face a poor prediction of response to ICIs, along
with important rates of innate or acquired resistance leading to heterogenous responses
among patients [147]. Biomarker-directed use immunotherapy is an important frontier in
precision medicine.

To date, liquid biopsies are investigated for use as biomarkers to predict and eval-
uate the response to immunotherapy. CTCs, circulating DNA (cDNA), circulating RNA
(cRNA) and exosomes hold a generous amount of tumor-related information. Moreover,
liquid biopsies may provide a more comprehensive and dynamic overview of the tumor
microenvironment and heterogeneity than single-site tissue biopsies [148]. The utility
of cDNA as a prognostic and predictive biomarker for immunotherapy was shown in a
phase II trial including patients with advanced or metastatic solid tumors treated with an
anti-PD1 agent. The study reported that higher pretreatment variant allele frequencies
(VAF) were associated with a poorer OS. However, on-treatment VAF and on-treatment
reduction in VAF were correlated with longer PFS and OS [149]. These findings suggest
that on-treatment cDNA variations can predict a beneficial response to ICIs. Similarly,
another phase II prospective trial assessed cDNA in patients with advanced solid tumors
under treatment with pembrolizumab. Low baseline cDNA levels were correlated with PFS,
OS, clinical response and clinical benefit. Moreover, the reduction of cDNA after only two
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cycles of pembrolizumab and cDNA clearance on-treatment identified a good prognosis
subset of patients [150].

A better selection of the patients receiving immunotherapy could be guided by specific
somatic mutations detectable in cDNA. In this regard, a genomic mutation signature was
developed to characterize immunophenotypes and predict response to immunotherapy
in gastrointestinal cancers [151]. As mentioned above, the number of somatic mutations
known as TMB represents an independent predictor of response to ICIs in many solid
tumors, including CRC. TMB-high cases (≥20 mutations/megabase) typically occur in
microsatellite instable tumors (MSI) or those harboring pathogenic mutations emerging
in the DNA polymerases POLD and POLE [152]. Currently, the standard evaluation for
TMB is based on tissue samples and encounters many limitations. Tissue-based biopsies
cannot correctly assess intratumoral heterogeneity or evaluate the changes occurring during
treatment [153]. In this regard, cDNA-based evaluation of TMB (cTMB) is currently being
investigated in clinical trials, with encouraging results obtained in non-small cell lung
cancer (NSCLC). The concordance between tissue-based TMB and cDNA-based TMB was
strong in clinical trials, suggesting that cTMB could be a feasible predictive biomarker for
ICIs [154]. Due to recent technological advances, circulating tumor cell PD-L1 expression
is being investigated in clinical trials as a predictive biomarker for response to ICIs [155].
However, further scientific evidence is needed to clarify the similarities between PD-L1
detection on CTCs and tissue expression of PD-L1. Moreover, considering their rarity in
the bloodstream, the utility of CTCs in immunotherapy is still in the early stages [156].
Nonetheless, emerging studies are documenting the role of extravesicles (EVs) as potential
biomarkers for immunotherapy. Therefore, EV-based liquid biopsies could eventually
identify tumor-expressed proteins, DNA mutations, RNA landscape, and T-cell reactivity
in patients under treatment with ICIs [157].

RAS assessment in mCRC is essential to select patients suitable for anti-EGFR therapy.
The concordance between tissue detection and somatic mutations detected in ctDNA ap-
peared high in patients with advanced tumors, supporting blood-based testing. Moreover,
ctDNA was shown to be highly useful for monitoring treatment response. However, some
clinicopathological features, including tumor histology (mucinous) and metastatic sites
(peritoneal, lung), negatively influenced RAS detection in ctDNA [158]. Along with RAS
mutation, TP53 mutations were widely detected in the ctDNA of CRC patients, with a high
correlation between tissue and plasma detection. In CRC patients who did not progress
to metastatic disease after primary surgery, the VAF for TP53 mutations decreased. By
contrast, increased levels were associated with the development of liver metastasis [159].
Moreover, TP53 mutations were significantly correlated with increased VEGFA mRNA
tissue expression, suggesting that these patients are expected to benefit from anti-VEGF
therapy [160]. Nonetheless, TP53 mutations might occur as a consequence of several treat-
ment strategies. In CRC, these mutations were particularly linked to cetuximab therapy,
leading to resistant clones, and, therefore, influencing treatment opportunities [161].

Immunotherapy and targeted therapy are major therapeutic breakthroughs in cancer
care, and one of the most challenging concerns is proper patient selection. To overcome
these shortcomings, liquid biopsy-based biomarkers represent a promising tool, hence they
require detection methods with sufficient specificity, sensitivity and predictive power [162].

4. Remaining Obstacles in Clinical Applications of Liquid Biopsy

Despite many pieces of scientific evidence highlighting the potential benefits of liquid
biopsies in cancer care, numerous limitations remain for their clinical use.

CTCs have great potential as diagnostic, prognostic, predictive, as well as monitoring
tools. However, their translation into clinical practice is still restricted amid their isolation
from the bloodstream [163]. To correctly identify and analyze CTCs, it is essential to
understand the obstacles surrounding their use. An important challenge is their extreme
rarity, which makes them hard to locate. Among blood cells, CTCs are considered to be
one in a million, or a billion [164]. Moreover, their concentration is much lower in the early
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stages compared to metastatic disease. Another important issue regards the size, physical
characteristics and complexity of surface protein expression [165]. The main techniques
used for CTCs enrichment are antigen-dependent (positive or negative selection), antigen-
independent, or a combination of both [166]. In the case of positive selection, the efficacy of
CTCs affinity is mainly influenced by antibody selectivity in the enrichment process. In
this regard, the antibodies utilized may suffer from low selectivity as the target cell-surface
proteins could also be expressed on other cells. Antibody cocktails targeting several cell-
surface proteins have been used to overcome this limitation [166]. Moreover, the negative
enrichment methods using magnetic bands to deplete circulating platelets and leucocytes
have also been used to overcome the limitations of positive enrichment [167]. While using
antigen-independent methods, the isolation of CTCs depends on the electric charge, density,
size and deformability. However, with these techniques, CTCs purity is usually low due to
size overlapping with WBC [168].

For exosomal segregation, ultracentrifugation is thought to be the most efficient
method. Although convenient and requiring reasonable costs, ultracentrifugation encoun-
ters several limitations. A significant concern is the co-purification of lipoproteins and
protein aggregates along with EVs [169]. Hence, it could be overcome by combining ultra-
centrifugation with density-gradient mechanisms. However, the structures with similar
densities are indistinguishable. Immune isolation targets EVs with a particular surface
marker representing a more specific method. Nonetheless, the targeted surface marker
could also be found on other EV subsets [170].

ctDNA is a small fraction representing about 0.01% of cfDNA. One of the main
logistical reasons limiting the extensive use of cDNA-based analysis is represented by their
feasibility outside the academic cancer centers [171]. The available techniques for cDNA
detection are based on PCR and NGS. These techniques were updated over time to better fit
the low concentrations in the bloodstream. However, despite their sensitivity, PCR-based
assays are limited by a low multiplexing capacity that permits the analysis of a small
number of loci [172]. On the other hand, the sensitivity of NGS-based assays is low and
inversely proportional to the examined loci [163,173]. Another concerning issue implies the
predictive value of a small set of mutations which could also be found in healthy individuals
due to clonal hematopoiesis [173]. Moreover, the preanalytical sample preparation of
cDNA lacks standardization limiting its implementation into clinical practice. Currently, a
significant limitation preventing cDNA molecular panels in CRC is the lack of precise data
showing that liquid biopsy findings could drive the therapeutic approach [174]. Similar to
cDNA, the most relevant limitation in cRNA analysis is represented by preanalytical and
analytical phases, along with a lack of standard extraction protocols [175]. A critical issue
implies the hemolytic process, which occurs during extraction and preparation and can
influence the levels of detected miRNAs. For this reason, monitoring the hemolysis of all
samples in a pre-analytical phase is mandatory [176]. Another essential constraint regards
residual platelets and microparticles resulting from plasma processing that can influence
miRNA measurements [177]. Moreover, it is difficult to determine if the levels of plasma
miRNA are confounded by comorbidities or are cancer-related. Therefore, a significant
challenge is establishing which body fluid detection method is the most appropriate for
CRC screening [78].

Even if several logistic and biological limitations are encountered at the present mo-
ment, liquid biopsies will more likely become a fundamental tool in the management of
CRC patients in all stages of disease-related interventions. Evaluation of ctDNA levels in
patients with stage II CRC has led to a decrease in adjuvant chemotherapy administration
while maintaining a favorable recurrence-free survival (DYNAMIC II study) [178]. Addi-
tionally, the ongoing DYNAMIC III study attempts to evaluate a ctDNA-guided treatment
approach in the setting of stage III CRC [179]. Liquid biopsy also plays an important role
in assessing minimal residual disease, guiding the timing of therapeutic interventions
based on ctDNA levels obtained at crucial points during treatment [180]. Furthermore,
extensive research has proved that liquid biopsy offers strong indicators of early disease
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recurrence, with a significant median lead time of 8.7 months over conventional assess-
ment methods [181]. Liquid biopsies have demonstrated valuable clinical application in
detecting patients with acquired resistance to anti-EGFR therapy, therefore allowing a
better selection of cases who may benefit from an EGFR rechallenge [182]. For CRC early
diagnosis, however, comprehensive studies comparing the available data on liquid biopsy
to current screening methods are necessary in order to find the most advantageous clinical
use in everyday practice.

5. Conclusions

Despite the implementation of extensive programs designed to diagnose CRC in
the early stages, the adherence of the general population to screening protocols remains
unsatisfactory. Liquid biopsy comes as a novel, minimally invasive tool, adequate for
early diagnosis of malignancy while also attempting to overcome the limitation showed
by traditional CRC screening and tissue sampling methods. Research has proved that
liquid biopsy analytes and biomarkers offer valuable information regarding carcinogenesis
and could indeed single out individuals at risk for developing CRC or those presenting
early-stage CRC otherwise undetected during conventional screening tests.

Since FDA has taken the necessary steps to approve CellSearch System for CTC de-
tection and enhancement during clinical studies, the scientific community could soon
implement the test in everyday clinical practice. In addition, studies have identified nu-
merous methylation markers indicative of malignancy. In this regard, the detection of
SEPT9 gene methylation in DNA fragments derivative from tumor masses is the most
widely explored sequence and therefore experiences more promising results. As a result
of thorough research, the SEPT9 methylation model comes within reach of validation for
current practice, with tests such as Epi proColon expressing significant diagnostic values
for CRC early detection. Several extensively researched miRNAs are also approaching
clinical utility in everyday practice. miRNA-92a proves relevant sensitivity and specificity
values in detecting early CRC cases, as well as advanced adenomas, while panels including
multiple miRNAs show improved accuracy when compared to single markers. Addi-
tionally, exosomal miRNA-23a has been shown to differentiate patients with early-stage
disease with high accuracy, indicating that protocols defining its clinical applicability could
be imminent.

However, in order to successfully isolate compelling biomarkers, blood samples
require complex manipulation techniques that often show unsatisfactory efficiency and
prove to be time-consuming and costly. Studies conducted thus far have demonstrated
encouraging accuracy, yet further research is critical in order to validate liquid biopsy as a
screening and early diagnostic technique. Furthermore, the utility of liquid biopsies in the
era of precision medicine is an important frontier that demands thorough inquiry.
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