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Abstract: Telomeres in Drosophila melanogaster, which have inspired a large part of Sergio Pimpinelli
work, are similar to those of other eukaryotes in terms of their function. Yet, their length maintenance
relies on the transposition of the specialized retrotransposons Het-A, TART, and TAHRE, rather than
on the activity of the enzyme telomerase as it occurs in most other eukaryotic organisms. The length
of the telomeres in Drosophila thus depends on the number of copies of these transposable elements.
Our previous work has led to the isolation of a dominant mutation, Tel1, that caused a several-fold
elongation of telomeres. In this study, we molecularly identified the Tel1 mutation by a combination
of transposon-induced, site-specific recombination and next-generation sequencing. Recombination
located Tel1 to a 15 kb region in 92A. Comparison of the DNA sequence in this region with the
Drosophila Genetic Reference Panel of wild-type genomic sequences delimited Tel1 to a 3 bp deletion
inside intron 8 of Ino80. Furthermore, CRISPR/Cas9-induced deletions surrounding the same region
exhibited the Tel1 telomere phenotype, confirming a strict requirement of this intron 8 gene sequence
for a proper regulation of Drosophila telomere length.

Keywords: Drosophila melanogaster; telomere; next-generation sequencing; transposon-induced
recombination

1. Introduction

Telomeres in all eukaryotes are functionally similar, although structural differences
between some species exist [1]. Linear chromosome ends are not replicated completely,
and telomeres must compensate this end replication problem by adding new sequences
at the chromosome end. The majority of eukaryotes use a specialized reverse transcrip-
tase, telomerase, which adds a short, tandemly repeated DNA sequence to chromosome
ends for telomere elongation [2,3]. Insects in the order Diptera lack both telomerase
and the short terminal repeats found in other organisms. In particular, the telomeres of
Drosophila melanogaster contain three families of non-long terminal repeat (LTR) retrotrans-
posons, HeT-A, TART, and TAHRE (jointly termed HTT), which transpose specifically to
chromosome ends and attach using their 3’ oligo(A) tails [4,5]. Among these three families
of elements, HeT-A is most abundant, comprising as much as 80–90% of the total number of
elements [4,5]. Telomeric chromatin consists of the HTT elements and different proteins that
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are bound to them [6]. The rate of transposition of these HTT elements may depend on an
equilibrium between the level of their expression and the chromatin-bound proteins [5,7,8].

Telomere elongation may also be accomplished by a recombination-based mechanism,
including terminal gene conversion using a neighboring telomere as a template [9–11].
This mechanism has been also been observed in yeast and in certain human cancers and
immortalized mammalian cells, in which overall telomere length increases in the absence
of telomerase activity. This recombination-mediated telomere elongation mechanism is
called Alternative Lengthening of Telomeres (ALT) [12–14] and tends to be most prevalent
in tumors of mesenchymal origins [15]. A recent study showed that ALT may also be found
in normal mammalian somatic cells [16].

The genes involved in telomere elongation and the mechanisms of elongation are not
well studied in Drosophila. Two independent studies on Drosophila identified the domi-
nant factors Tel [17] and E(tc) [18], which developed telomeres several-fold longer than
controls, to the extent that these differences can be observed microscopically in polytene
chromosomes. Mutations in Su(var)205, which encodes the HP1a protein, and deficiencies
for components of the Ku70-Ku80 complex are also dominant telomere elongation mu-
tations. While Su(var)205 mutants seem to increase both HTT transposition frequencies
and terminal gene conversion, and Ku deficiencies increase gene conversion, the specific
mechanisms by which telomere elongation occurs in these mutants are not understood [4,5].
Increased expression of Het-A transcripts and elongated telomeres were also found as a
consequence of loss of the Drosophila hnRNPA1 homolog, Hrb87F [19], which plays several
roles in different processes such as gene expression, organization of the nuclear matrix, and
heterochromatin formation. However, whether these effects on telomere elongation are
indirect or due to a specific function at chromosome ends is still unclear. Interestingly, the
involvement of hnRNPA1 also in telomere regulation of higher eukaryotes [20,21] indicates
that it could serve an evolutionarily conserved role at chromosome ends.

Early efforts to map Tel [17] allowed meiotic recombination between the Tel1-bearing
chromosome and a multiply marked chromosome; the results located Tel1 at 69 on the
genetic map, which translates roughly to 92 on the cytogenetic map. Meiotic mapping
of E(tc) [18] indicated that this gene is in the same vicinity. In the present study, we took
advantage of the observation that there is no meiotic recombination in Drosophila males.
Thus, site-specific genetic recombination induced by double-strand breaks that result from
the excision of DNA transposons can be identified [22]. We used both P elements and
Minos transposons to induce recombination, which allowed the localization of Tel1 to a
15 kb region in the middle of the right arm of chromosome 3 (3R) at 92A. Whole-genome
sequencing resulted in the identification of many single-nucleotide polymorphisms (SNPs)
and small insertion/deletion polymorphisms (indels) in the Tel1-bearing genome relative
to the reference sequence. Comparison of the Tel1 genomic sequence with a collection of
inbred lines of the Drosophila Genetic Reference Panel (DGRP) [23] eliminated all of these
SNPs and most of the indels, and mapped Tel1 to a 3 bp deletion (TGT) at 3R:19,366,069-71
in the middle of intron 8 of Ino80. Finally, CRISPR/Cas9-induced deletions that removed
TGT and surrounding regions exhibited the Tel1 telomere phenotype, confirming that the
middle region of Ino80 intron is indeed required for a proper regulation of telomere length.

2. Materials and Methods
2.1. Mapping by Site-Specific Recombination

Transposon-induced male recombination was performed as per the mating scheme
reported earlier [22,24]. The chromosome carrying the Tel1 mutation was marked with two
mutations with eye color phenotypes, st and ca. An st Tel ca chromosome was made het-
erozygous in males with a P element and the ∆2-3 transposase. Recombinant chromosomes
bearing either st or ca were collected and put into stocks. Stock generation zero occurs at
the time the stock was established, two generations after the homozygous recombinants
were obtained. These stocks were maintained for a further 12 generations, flies from ho-
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mozygous recombinants at generation zero, six, nine, and twelve were collected and frozen
for DNA isolation in order to assay the HeT-A copy number over time.

Minos element-induced male recombination mapping is the same as the P element-
induced male recombination procedure, except that the P[hsILMiT] transposase was used in
place of ∆2-3. The P[hsILMiT]2.4 transposase is under the control of a heat shock promoter;
therefore, the larvae generated by the cross of heterozygous st Tel ca/Minos males, were
exposed to heat shock at 37 ◦C in a water bath for 1 hr daily from day two to day six post
egg laying [25].

2.2. Genome Sequencing, Mapping to Reference, and De Novo Assembly

DNA was isolated from approximately 30–40 adult flies by standard procedures of
lysis, phenol:chloroform extraction, and ethanol precipitation. The DNA pellet was resus-
pended in TE buffer (10 mM Tris, 0.1 mM EDTA, pH 7.8). DNA quality and concentration
were estimated using a Qubit dsDNA BR Assay Kit and measured by Qubit 2.0 Fluorometer
(Life Technologies), as per the manufacturer’s protocol. Five micrograms of DNA were
taken for library preparation.

All the Illumina genome sequence generated for this project can be found in BioProject
Accession PRJNA255315 at NCBI. Genome sequencing was done on an Illumina GA
IIx sequencer following standard protocols by the NIH Intramural Sequencing Center.
For a detailed step-wise protocol for library preparation and genome sequencing, see
Supplementary Information. For Tel, 66,654,840 paired reads of 101 bp length were obtained,
and for y w, 76,757,736 reads were obtained, representing a genome coverage of 48X and 55X,
respectively. Genomic reads for each strain were mapped to the D. melanogaster reference
by two methods. First, all the reads were imported into CLC Genomics Workbench 4.8 and
mapped using the parameters Min distance = 150, Max distance = 10,000 to the GenBank-
annotated chr3R of dm3 (Release 5 from ftp.ncbi.nih.gov). Second, the same raw reads
were mapped to the same reference sequence with bwa 0.6.0 [26] using default settings.

The genomic reads were also assembled de novo by two methods: First, in CLC
Genomics Workbench 4.8 using parameters of Min distance = 150, Max distance = 2000,
which generated the highest N50 for Tel (28.8 kb); Then, in ABySS 1.2.3 [27], a range of
kmers from 25–65 was tested using the Tel sequence, with a kmer setting of 45 generating
the highest N50 (45.3 kb). This setting was subsequently used for both genomic assemblies;
all other ABySS settings were default.

2.3. Variant Detection

SNPs and indels (referred to as deletion–insertion polymorphisms, DIPs, by CLC
Genomics Workbench) were identified from mapped reads in comparison to the reference
genome by two methods: First, using CLC Genomics Workbench 4.8 with the SNP and DIP
Detection tools at default settings. Separately, the bwa assemblies were imported into CLC
as bam files, and both SNP and indel detection were performed on these assemblies, as
above. As this software is not trained for detecting large indels (>5 bp), we scanned a large
mapped region of 79 kb (chr3R: 19,325,278–19,404,278) manually and identified additional
indels, which had not been detected by the CLC Work bench software (QIAGENE, DK-8000
Aarhus C, Denmark). To complement this SNP/indel analysis by CLC, the same assemblies
(CLC and bwa) were also analyzed for SNPs and indels using the pileup program of
SAMtools 1.6 [28].

Separately, the contigs spanning the 79 kb region of interest were extracted from each
of the de novo assemblies and were aligned to the corresponding reference region with
MAFFT 6.849 [29] and manually inspected for indels.

2.4. Comparison to DGRP Data

Files containing the SNPs identified in 162 DGRP [23] lines on chr3R were down-
loaded (Freeze 1, August 2010 release; http://www.hgsc.bcm.tmc.edu/content/drosophila-
genetic-reference-panel (accessed on 3 May 2011)), and the chromosomal coordinates of
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those 159 strains of normal telomere length were compared with the SNPs identified in
the Tel genome assembly (SNPs identified by either CLC or pileup). Any SNP identified in
the Tel genome that was also identified in the SNP collection from DGRP was ruled out as
possibly causing the Tel phenotype.

As there were no indel data for DGRP lines in Freeze 1, each indel found in the Tel
genome assembly, as described above, was compared to the DGRP data. For a subset of
eight DGRP lines, the Illumina fastq sequence was downloaded from SRA (SRP000694,
Lines 40, 85, 177, 321, 352, 405, 426, 802), imported into CLC Genomics Workbench, and
assembled to the chr3R reference, as above, and indel detection was performed. Any
indel identified in the Tel genome and also found in one or more of these DGRP lines was
ruled out as potentially causative. For the indels discovered by manual inspection of both
the Tel assembly to reference and the Tel de novo assemblies, a separate local de novo
assembly strategy was used for comparison to a subset of the DGRP population. Using
200–300 bp of reference sequence around a candidate indel as bait, BLAT [30] was used to
identify individual reads covering this region from the fasta sequence of a given DGRP line.
These reads were then extracted, assembled, and compared to both the Tel and reference
sequences. Any manually identified indel also found in one or more of these DGRP lines
was ruled out as a candidate mutation.

2.5. Real-Time PCR

DNA was isolated from 20–30 flies by using DNeasy Blood & Tissue Kit (Qiagen)
columns, as per the manufacturer’s protocol. For large numbers of samples, DNA was
isolated from 10 flies of each line using Agencourt DNAdvance Genomic DNA Isolation Kit
(Beckman Coulter), as per the manufacturer’s protocol. DNA isolation steps were handled
by Biomek 4000 Liquid Handling System (Beckman Coulter robotic system). DNA was
eluted in 50 ul water. The DNA concentration was estimated by using NanoDrop 2000
(Thermo Fisher Scientific, CA, USA) and diluted to a concentration of 10 ng/µL, using
sterile water.

Primers used for real-time PCR are:
RpS17-F: 5′AAGCGCATCTGCGAGGAG3′,
RpS17-R: 5′CCTCCTCCTGCAACTTGATG3′,
HeT-9D4GAG-ORF-F: 5′TTGTCTTCTCCTCCGTCCACC3′,
HeT-9D4GAG-ORF-R: 5′GAGCTGAGATTTTTCTCTATGCTACTG3′.
Predicted sizes of amplicons are 195 bp for RpS17 and 152 bp for the HeT-9 D4

GAG-ORF. GenBank accession number for HeT-A element 9D4 is X68130 and for RpS17 is
M22142 [31,32]. An aliquot of 20 ng of each DNA sample was taken for quantitative PCR
using 50 nM of each primer and 5 µL of 2X Power SYBR green PCR Master Mix (Applied
Biosystems) in a 10 µL reaction volume. These samples were amplified under the following
conditions: 95 ◦C for 10 min (polymerase activation), followed by 40 cycles containing
denaturation at 95 ◦C for 15 s, and annealing/extension at 60 ◦C for 1 min. Real-time PCR
was run using ABI Prism 7900 HT Sequence detection system (Applied Biosystems).

Competitive threshold (Ct) values for each sample were collected for HeT-A primers
(9D4 element GAG ORF) and for control Rps17 (ribosomal protein17) primers. Delta Ct
values for each sample were calculated by normalizing HeT-A Ct values to control Ct values
and graphed using Microsoft Excel. Each DNA sample was run in triplicate to estimate
average Ct values.

2.6. Generation of Crispr/Cas 9-Induced Deletions

To create CRISPR/Cas 9-induced deletions that include the TGT sequence (3R:19,366,069-
71) of the Ino80 intron-8 region, we introduced two sgRNAs, each containing a protospacer
sequence, into the pCFD4 U6-1 U6-3 tandem gRNAs vector. PAM sequences were selected
by using CRISPR Optimal Target Finder online tool (http://targetfinder.flycrispr.neuro.
brown.edu/ (accessed on 10 February 2020). Guide sequences were cloned into pCDF4
using a ligation-independent homology-directed cloning strategy by following CRISPR Fly

http://targetfinder.flycrispr.neuro.brown.edu/
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Design protocol (https://www.crisprflydesign.org/grna-expression-vectors/ (accessed on
14 February 2020)). The following primers were designed:

G1 F:
5’-TATATAGGAAAGATATCCGGGTGAACTTCGGGGAAAGAGGGCAAACGAAG
TTTTAGAGCTAGAAATAGCAAG-3’ containing a 5’ U6-1 promoter complementary

region followed by a G-N 19/20 sgRNA sequence (in bold) and a 3’ gRNA core comple-
mentary sequence.

G2-R:
5’-ATTTTAACTTGCTATTTCTAGCTCTAAAACTCCCTTTGAGGCCTTTCAACGAC
GTTAAATTGAAAATAGGTC-3’ with a 5’ gRNA core, N19/20 sgRNA sequence (in

bold), and 3’ U6-3 promoter reverse and complementary sequences.
Oligos were employed to amplify the pCDF4 template following the program: initial

denaturation at 98 ◦C for 30 s; 35 cycles of the denaturation step at 98 ◦C for 10 s, annealing
at 66 ◦C for 15 s, extension at 72 ◦C for 30 s; final extension at 72 ◦C for 5 min. After
purification with Nucleospin gel and PCR Clean Up Kit (Macherey-Nagel), the PCR product
was combined with linear pCFD4 plasmid, previously digested with BbsI enzyme and
gel-purified, in a cloning reaction with Neb Builder HiFi DNA kit. A final pCDF4 vector
containing both guides was sent to BestGene Inc (Chino Hills, CA) and injected into y v flies.
Transgenic v+ flies bearing the two sgRNAs (y v; gRNAs v+ Ch. II) were selected and then
crossed with y w; nos Cas9/Cyo flies, which express Cas 9 only in the germline. The resulting
gRNAs/nos Cas9 embryos were injected with the ssDNA template (BiofabResearch, Rome,
IT) containing the TGT-specific deletion flanked by homology arms of the corresponding
Ino80 intron-8 region to allow Homologous Recombination-mediated repair. The ssDNA
sequence is indicated below:

5′GGCATTTGGTGCTTGGTAGCTTGGTAGAATATTGGGGAAAGAGGGCAAACG-
AAAGGCCGATTAAATACCAATATGAGTTTTTGGTCAAATTATTCCGGTATGCGCCAA-
ATACATGAACGGCAAATACCTTTGTTCTTGTTGAAAGGCCTCAAAGGGAAGGAGAC-
GAGAATAAGGGGCCACACTCCTTCCAATGGTGTTTGAGAA 3′.

To recover lines bearing mutant third chromosomes, single adults resulting from
the ssDNA injection (designed as A, B, C, D and F) were crossed with MKRS/TM6B flies
and balanced over TM6c by crossing the TM6B progeny with the Apxa/TM6C strain. For
each ssDNA-injected fly, we established at least five independent single-chromatid stocks
(indicated as A1-5, B1-5, C1-5, etc . . . ). Total DNA from each homozygous line was
extracted, PCR-amplified, and then sequenced.

2.7. Chromosome Cytology and Immunostaining

Polytene chromosomes for anti-Hoap immunostaining were prepared as previously
described [33] and incubated with rabbit anti-HOAP (1:100). Slides were mounted in
Vectashield medium H-1200 with DAPI to stain DNA, and salivary gland preparations
were analyzed using a Zeiss Axioplan epifluorescence microscope (CarlZeiss, Oberkochen,
Germany), equipped with a cooled CCD (charge-coupled device camera; Photometrics,
Woburn, MA, USA). Greyscale digital images were acquired as separate files, which were
converted to .psd format, pseudocolored, and merged.

3. Results
3.1. Transposase-Induced Male Recombination Mapping

As there is no meiotic recombination in Drosophila males, it is possible to identify
site-specific recombination events generated by transposable elements that transpose by
a cut-and-paste mechanism and leave a double-strand DNA break in their wake [22,24].
In general, our procedure was similar to previous work [22,24]; in particular, it involved
generating heterozygous st Tel1 ca/transposon males, inducing transposition with an ex-
ogenous transposase, and recovering recombinant st or ca chromosomes to be tested for
the Tel phenotype. Initial efforts to map the Tel1 mutation by male recombination were
limited by the paucity of useful transposon insertions in the surrounding chromosomal

https://www.crisprflydesign.org/grna-expression-vectors/
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region and continued as new insertion chromosomes became available. The assay used
to identify Tel1 on the recombinant chromosomes changed over time. The assay used
in early recombination experiments (Table 1, Round 1) used a cytogenetic analysis of
heterozygous chromosomes exposed to Tel1 for two years [17]. Later, relative telomere
length was estimated by measuring the relative copy number of the open reading frame
(ORF) of HeT-A at zero, six, nine, and twelve generations after a recombinant stock was
established [31,32]. The initial round of mapping, using seven P element insertions lying in
the 91–93 cytogenetic region (Table 1), showed that Tel1 mapped between the P[PZ]Dl05151

and P[SUPor-P]CG16718KG06218 transposon insertion sites (hereafter, we refer to the trans-
poson insertions simply with their allele designation; full names are listed in Table 1). The
physical location is 3R: 19,326,218 to 3R 19,641,774, a region of 316 kb. This region showed
a surprising paucity of P element insertions.

Table 1. Recombinants obtained from each transposon used for site-specific recombination.

Round a Transposon Insertion Cytology b Coordinate c No. Recombinants Tel1 Position d

1 P{PZ}sqz02102 91F4 19,165,876 3 Right
1 P{lacW}vibj5A6 91F12 19,226,365 6 Right
1 P{PZ}l(3)0582005820 91F12 19,229,496 3 Right
1 P{PZ}Dl05151 92A2 19,326,218 2 Right
3 Mi{MIC}Ino80MI03112 92A3 19,373,898 1 Right
3 Mi{MIC}Ino80MI02316 92A3 19,388,379 1 Right
2 P{XP}Ino80d10097 92A3 19,403,413 6 Left
2 Mi{ET1}CG31221MB02141 92A3 19,414,147 5 Left
2 P{EPgy2}CG31221EY10678 92A5 19,453,650 4 Left
2 P{XP}Dysd03320 92A6 19,498,929 3 Left
2 MI{ET1}CG6231MB01639 92A11 19,629,652 6 Left
1 P{SUPor-P}CG16718KG06218 92A11 19,641,774 3 Left

1 P{PZ}Vha1305113 92A11 19,644,018–
196,44,026 3 Left

1 P{hsneo}l(3)neo501 92B3 19,836,871 3 Left
a Transposons were used to induce recombination as they became available. Succeeding rounds used slightly
different procedures, as described in the text. b Estimated cytological band as reported in FlyBase. c Nucleotide
position in the genomic sequence of chromosome arm 3R. d The position of Tel1 relative to the insertion site.

As new P element insertions became available, we used three transposons lying within
this 316 kb region: P[XP]Ino80d10097, P[EPgy2]CG31221EY10678, and P[XP]Dysd03320 (Table 1,
Round 2; Figure 1A). All three st-bearing recombinant chromosomes generated using P
element insertion d10097 showed telomere elongation from generation 0 to 12, whereas
the three ca-bearing recombinant chromosomes from the same P element did not show
significant telomere elongation (Figure 1B). Thus, Tel1 lies to the left of this P element
insertion (3R:19,403,413). Similar results were obtained for recombinants from P element
insertions EY10678 and d03320 (see Figure S1), both of which are to the right of d10097
(Figure 1A). These results mapped Tel to 3R: 19,326,218 to 19,403,413, a region of ~77 kb.

Minos elements were also used to induce recombination (Table 1), although Minos
elements had not previously been shown to induce recombination in males. Two Minos
insertions, MB02141 and MB0163, lying to the right of d10097 in the 316 kb region showed
similar results (see Figure S2), indicating that they are situated to the right of Tel1, as
expected. Two Minos insertions in the 77 kb region were selected for further mapping
studies (Table 1, Round 3; Figure 1). Even after heat shock, these Minos elements generated
only a few recombinant males. We obtained only one st-bearing recombinant chromosome
from each of these Minos transposons (Table 1). The st recombinants for MI03112 and
MI02316 showed no evidence of telomere elongation from generation zero through twelve
(Figure 1B). This result eliminated the region to the left of MI02316 as containing Tel1 and
mapped Tel1 to a ~15 kb region (3R: 19,388,379 to 3R:19,403,413).
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Figure 1. Localization of Tel1 by site-specific recombination. (A) The upper chromosome map
shows the candidate genes between two P element insertion sites, 05151 and 05113 (vertical green
lines). This region was identified as containing Tel1 based on Table 1, round 1. Positions of transposons
used for further mapping are indicated by green arrows. The Tel1 mutation is boxed in red. The lower
chromosome map shows expansion of the 92A3 region. (B) Graphs showing the change in relative
HeT-A copy number (telomere length) in recombinants of Tel1/MI02316, Tel1/MI03112, and Tel1/d10097
over 12 generations. The st recombinants are shown as red lines; ca recombinants as purple lines.
These data delimit Tel1 to a 15 kb between inserts MI02316 and d10097 (shown as red rectangles
in (A)).

3.2. Telomere Length in Transposon Insertion Lines

We measured the relative HeT-A copy number in the transposon lines used to induce
site-specific recombination. Q-PCR analysis showed that all of the lines, except one bearing
MB09416, had telomeres comparable in length to the Oregon-R control (Figure 2). The
relative HeT-A copy number in the MB09416 insertion stock was highly elevated and similar
to that of Tel1. The MB09416 Minos element is inserted at 3R: 19,398,726, which is in intron
8 of Ino80 and within the 15 kb Tel1 region identified above. UCSC genome browser maps
indicate that the insertion site lies in a not well-conserved sequence (Figure S3). As it
is likely that the high HeT-A copy number in this line might interfere with the ability to
observe an increase in telomere length, this transposon was not used in the mapping of
Tel1. It is also possible that the genome of the MB09416 line carries a genetic factor, either at
the insertion site or elsewhere, and that it has a phenotype similar to that of Tel1 and might
therefore confound the analysis.
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Figure 2. Telomere length in transposon insertion stocks. Q-PCR analysis of HeT-A copy number in
different transposon insertion stocks used for mapping Tel1 mutation. Error bars represent standard
deviation measured from the triplicate Q-PCR results. MB09416 was not used for subsequent site-
specific recombination mapping.

3.3. Effect of Tel Copy Number on Telomere Length

Different deficiencies and duplications spanning region 92A3 (Figure 3A), where Tel
was mapped, were analyzed for an effect on telomere length by measuring the relative
HeT-A copy number by Q-PCR in the respective stocks. With the exception of Df(3)BSC475
and Df(3R)DI-M2, which induced as yet unclear moderate increase and decrease in Het-A
genomic copies (p < 0.001), respectively, none of the deficiency and duplication stocks
showed a substantial accumulation of telomeric HeT-A copy number (Figure 3B). Thus, it
appears that neither a 50% increase nor a 50% decrease in the copy number of the region
around Tel had an effect on telomere length.

3.4. SNP and Indel Identification

The genomes of the three strains Tel1, y1 w1, and E(tc) were sequenced using the
Illumina GAIIx platform. As Tel1 appeared in a natural strain (caught in Endine Gaiano,
near Bergamo, Italy) that had not been outbred to any laboratory flies [17], there was no
useful wild-type control. E(tc), however, appeared in a y1 w1 laboratory stock [18]; therefore,
we used a y1 w1 stock as a wild-type control. Upon sequencing, the E(tc) genome appeared
to be highly heterozygous. We therefore assumed the stock was contaminated and did
not pursue it further. The other two stocks were sequenced to 48X and 55X coverage,
respectively. Both genomes were assembled to reference using CLC Genomics Workbench
and bwa. In addition, two de novo assemblies, using CLC Genomics Workbench and ABySS,
were generated. Concurrently with the Minos transposon recombination mapping, a 79 kb
genomic region of 3R: 19,325,278 to 19,404,278, roughly the region between inserts 05151
and d10097, extended slightly on either end, was analyzed for SNP and indel variations
with the above assemblies. Within this region, there were 626 SNPs and 88 indels identified
on the Tel1 chromosome compared to the reference using the CLC Genomics SNP and DIP
Detection analysis (Table 2). A similar number of variations (586 SNPs and 80 indels) were
also found in the y1 w1 control strain. After eliminating common variations between Tel1

and y1 w1 in this region, we are left with 332 SNPs and 53 indels that appear to be unique
to the Tel1 genome in this 79 kb region.
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Table 2. SNPs and indels found in the Tel1 genome relative to the standard reference sequence of
chromosome arm 3R between coordinates 19,325,278 and 19,404,278.

Polymorphisms SNPs Indels

Identified by CLC-Genomics 626 88
Identified by manual comparison - 13

Identified by de novo assembly - 14

Total 626 115
Not in DGRP a 0 2

a There were 159 DGRP lines used in the SNP comparison (Freeze1 data) and eight used in the indel comparison.

Current variant calling tools are only proficient at defining small indels (1–5 bp) [34,35].
To detect larger indels, we scanned Tel1 genomic assemblies manually and detected 13 poly-
morphisms of 5 bp or larger (Table 2). These large indels, present in the Tel1 genome but
not in y1 w1, were analyzed by PCR with primers flanking these indels and by Sanger
sequencing of PCR products (Supplementary Information, see Figure S4). A limitation of
the assembly to reference strategy for variant identification is that potential novel insertions
that are not present in the reference sequence are not detected by this approach. To search
for such variations, we aligned the de novo assemblies of the Tel1 genome to the reference.
Manually scanning this alignment identified an additional 14 insertions not found by the
above methods (Table 2).

3.5. Comparison of Variations to DGRP Data

To differentiate natural polymorphisms among these remaining SNP and indel varia-
tions found in the Tel1 genome, we compared them with the genomes available from the
DGRP [23], a collection of wild-caught, inbred Drosophila strains whose genomes have been
sequenced. Our hypothesis is that, if any variant found in the Tel1 genome is also found
in a DGRP line with normal-length telomeres, that variant can be ruled out as causing
the Tel phenotype. As a first step, all DGRP lines were tested for the relative HeT-A copy
number as a proxy for telomere length. The HeT-A copy number data for these strains fit
a log-normal distribution, with three outliers that had copy numbers higher than the Tel1

strain (Figure 4). These three lines, RAL-161, -703, and -882, have been excluded from the
following discussion and are described elsewhere [32].
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Figure 4. Telomere lengths in DGRP lines. A bar graph shows the log-normal distribution of
telomere lengths among the 162 DGRP lines measured. The blue arrow shows the position of the
Oregon-R control, and the red arrow shows the position of Tel1. Three lines have Het-A copy numbers
that exceed three standard deviations from the mean. These are RAL-161, -703, and -882. The red
curve indicates the expected distribution.



Cells 2022, 11, 3484 11 of 18

As the remaining DGRP lines have what we consider to be normal telomere length,
close to that found in the Oregon-R control, the SNPs identified from Freeze1 (August 2010)
of the DGRP lines [23] were compared to the SNPs in the Tel1 genome identified by the
CLC SNP detection software. All the SNPs found in the 79 kb region around Tel1 were
also found in the DGRP lines (Table 2). Thus, all the SNPs found in the Tel1 genome are
natural polymorphisms with little expected effect on telomere elongation. No indel data
were available for DGRP lines in Freeze1. We therefore identified indels in a selection of
eight DGRP lines for the 79 kb region of interest. All except two indels found on the Tel1

chromosome, a deletion of C at 3R:19,352,437, and a deletion of TGT at 3R:19,396,067-69
were also found in one or more lines from the DGRP collection (Table 2). The deletion of C
is located in a large intergenic region, 11 kb to the right of Dl and more than 16 kb to the left
of CG43203, while the deletion of TGT is located in intron 8 of Ino80. The latter is the only
indel-specific to the Tel1 genome in the 15 kb region of interest and therefore was identified
as the Tel1 mutation.

3.6. Comparison to modENCODE Data

RNA sequence coverage for the 15 kb Tel region was analyzed by comparison with the
modENCODE database, including stage and tissue-specific transcript expression levels.
This analysis shows that the candidate Tel1 mutation was not included in a transcript
at any stage in any tissue (Figure 5) and suggests that Tel1 could be acting to alter the
expression of other transcripts near or within the Ino80 locus. The UCSC Genome browser
map for this 15 kb region was examined for sequence conservation among Drosophila
species and other insect species. This analysis shows that, even though the candidate Tel1

mutation is noncoding, it is in a well-conserved region, similar in the level of conservation
to neighboring coding regions (see Figure S3).
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Figure 5. Genetic activity and conservation of the 15 kb Tel1 region. (A) The genes found in this
region are aligned with molecular coordinates. Minos insertions used for mapping are shown in
cyan triangles. Minos insertion MB09416, which showed telomere elongation, is highlighted in the
red square. (B) The University of California Santa Cruz genome browser map highlights sequence
conservation in this region among different insect species. (C) A developmental transcriptome
analysis for the same region as determined by the modENCODE project is also shown. The red
vertical line spanning all three panels indicates the position of the TGT deletion.
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3.7. Transcript Analysis

The transcript levels from the ovaries of Tel1 and Oregon-R were analyzed for nine
genes in the vicinity of the Tel1 mutation (TGT deletion), which include Ino80 and those
found within its introns. Quantitative PCR with cDNA from these two lines showed that
there is no significant difference (p > 0.05) in the expression levels between the two strains
for most of these genes (Figure 6). The transcript level of Ino80 around the exon 8–9 junction
that spans the intron 8, where Tel1 mutation is located, also showed an intact transcript
with normal expression similar to other parts of the transcript, indicating that the Tel1

mutation does not interfere with local splicing (Figure 6). CG18493, however, showed a
15-fold lower expression in Tel1 compared to the control (p = 0.0006), and CG3734 showed a
slight reduction in expression in Tel1 ovaries (p = 0.0103). Given that a 50% reduction in
the Tel+ copy number appears to have no effect on telomere length (Figure 3), that after a
Bonferroni correction the small decrease seen for CG3734 expression (Figure 6) may not
be considered significant, and the expression of CG18493 was not statistically reduced in
CRISPR/Cas9-induced Tel alleles described below, it seems likely that expression of both
CG18493 and CG3734 genes is not relevant for the Tel phenotype.
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Figure 6. Transcript analysis in the genes near Tel1. The histogram represents the relative transcript
levels from Tel1 mutant (red) and Oregon-R (blue) adult ovaries. The genes analyzed are found near
Tel1 (TGT mutation), which include Ino80 and the genes within its introns. The last bar represents
the expression of Ino80 gene spanning exons 8–9, around the position of the TGT deletion in intron 8.
The expression levels of CG31244 and CG31245 are very low, similar to the modENCODE data.



Cells 2022, 11, 3484 13 of 18

3.8. Generation of CRISPR/Cas 9-Induced Tel1 Deletion Alleles

To ask whether a deletion of the TGT sequence in the Ino80 intron 8 yields a Tel
phenotype, we sought to use CRISPR/Cas9-mediated homology repair to induce the 3 nt
deletion, as well as other small deletions encompassing TGT, and check whether these
deletions elicited elongated and/or fused telomeres. By using a 205bp ssDNA donor as
the template bearing the TGT deletion (see Methods), we obtained 22 potential viable
deletions that were established as independent stocks by September 2020. Sequence
analysis revealed that these lines identified 10 distinctive small deletions of different
sizes ranging from 6 to 222 bps, but none of them identified the 3 nt TGT deletion only
(Figure S5). We also noticed that while seven deletions (namely ∆A3, ∆A4, ∆B5, ∆C11,
∆D5, ∆F2, and ∆F5) uncovered the TGT sequence, the ∆C6, ∆C10, and ∆G3 deletions
removed small sequences of 12, 11, and 22 nt, respectively, adjacent to the expected 5′

break site, without including TGT (Supplementary Information, Figure S5). Moreover,
whereas the 3′ junction sequences of all deletions and the 5′ junction sequences of ∆C4,
∆F5, and ∆G3 were “clean” breaks, the 5′ breakpoint regions of the remaining deletions
contained either putative microhomology sequences (∆A4, ∆C10, and ∆F2) or stretches of
AATATTGG repeats that, in the case of ∆A3, ∆A4, and ∆D5, replaced the TGT-containing
region (Supplementary Information, Figure S5). We then asked whether any of these
deficiency-bearing lines exhibited a Tel phenotype. Three months after the establishment
of stocks bearing the deletions (December 2020), by immunostaining for the telomeric
specific marker HOAP [36], we found that polytene chromosomes from heterozygotes for
each deletion elicited neither elongated telomeres nor telomere associations, which are
normally diagnostic of the Tel1 phenotype [17]. However, when we repeated the cytological
characterization after 6 months (March, 2021), we observed that, in the same heterozygotes,
telomeres were longer than the wild-type and underwent fusions as expected for Tel1

mutants (Figure 7). Finally, our Q-PCR analysis revealed that these deletion-bearing lines
also show a statistically significant increase in the HeT-A copy number after 6 months,
thus confirming that these lines represent bona fide new CRISPR/Cas 9-induced Tel alleles
(Figure 7C). Interestingly, the finding that deletions which do not enclose TGT also display
elongated and fused telomeres indicates that a proper Tel function requires intact regions
within the Ino80 intron beyond TGT. Thus, although our CRISPR/Cas 9 approach failed to
induce a specific 3nt TGT deletion, it allowed the identification of additional sequences in
the Ino80 intron 8 that are required for the regulation of telomere length.
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Figure 7. Telomere elongation in the CRISPR/Cas 9-induced Tel deletion alleles. (A) anti-HOAP
immunostaining on 2L and XL chromosome tips from Tel∆F2/+ and Tel∆C11/+ hemyzygotes, respec-
tively, showing protruding telomeric DNA only on the Tel mutant chromosomes (arrows). Note
that, as expected, Tel mutant elongated telomeres do not impair HOAP localization. (B) Examples
of telomere fusions involving either two or four chromosome tips (arrowheads) from different Tel∆
hemizygotes. (C) qPCR analysis on third instar larval DNA from two representative Tel∆ deletion
alleles showing a robust increase in Het-A copy number compared to control (OR-R). Note that Tel∆B5

bears a deletion that uncovers TGT, while Tel∆C10 does not include TGT. * (p < 0.05).

4. Discussion
4.1. Mechanism of Telomere Elongation

The stability of telomeres in Drosophila depends on terminin and non-terminin telom-
eric proteins [9,37]. The terminin proteins Moi, Ver, HipHop, and HOAP are found only at
telomeres, whereas non-terminin proteins HP1, the ATM, and ATR kinases, and the pro-
teins of MRN complex also have biological roles apart from their involvement in telomere
maintenance and structure [9,37]. Mutations in any of the genes encoding these proteins
cause telomere fusions and abnormal cell divisions. However, only mutations in the HP1-
encoding gene Su(var)205 [38,39], Hrb87F [19], and the Ku70/Ku80 complex are associated
with telomere elongation. The exact mechanism and the genes involved in telomere length
homeostasis in Drosophila are largely unknown. There are reports of RNAi control over
HeT-A, TART, and TAHRE transcript levels (reviewed in [5]), but the exact mechanism
of its involvement in telomere length homeostasis is not well-characterized. Two dom-
inant mutations, Tel and E(tc), showed telomere elongation [17,18]. However, whereas
the E(tc) mutation is associated with elevated rates of gene conversion in telomeric re-
gions, the Tel mutation was previously associated with both transposition of the telomeric
retrotransposons and gene conversion [40] but not with the transcription of telomeric retro-
transposons [41]. The data thus suggest the involvement of Tel in a recombination pathway.
Interestingly, the original Tel1 mutation and our CRISPR/Cas 9-induced Tel deletion alleles
have no known phenotype other than telomere elongation and end-to-end attachment
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in polytene chromosomes [17,42] (this work). Thus, the understanding of the molecular
mechanisms that underpin the Tel phenotype and the identification of a candidate Tel gene
will provide us fundamental insights into how Drosophila regulate telomere length indepen-
dently of telomere capping and maintenance. Moreover, the molecular characterization
of Tel could also contribute to the understanding of recombination-mediated telomere
maintenance mechanisms, such as the ALT pathway found in some human cancer cells.
Although the ALT pathway is a favorite mechanism of telomere maintenance for some
human cancers, the molecular details remain still unknown [12,43].

4.2. Mapping Tel Using Transposon-Induced Male Recombination

The Tel1 mutation in Drosophila was previously localized by meiotic recombination to
69 on the genetic map [17]. Meiotic recombination in Drosophila occurs only in females, but it
is possible to induce site-specific recombination in males using transposons and use this for
mapping [22,44]. A collection of more than 15,000 publicly available P element insertions
means that, in many regions, a resolution of 5–10 kb is possible for P element-induced
recombination [45,46].

One major drawback of the P element, however, is its strong bias for insertion into
some genes (hot spots) and against insertion into others (cold spots). The region around
Tel is a cold spot for P element insertions. Minos, a member of the Tc1/Mariner family
of transposable elements, is active in diverse organisms and cultured cells; it produces
stable integrants in the germ line of several insect species, in the mouse, and in human
cells [25]. To expand the usefulness of transposon mapping in Drosophila, collections of other
transposable elements with different insertional specificities, such as Minos [47,48], have
been introduced [46]. Minos elements were found to exhibit a generally uniform distribution
in the genome [49]. We used available Minos elements to refine our mapping of the Tel1

mutation and show for the first time that these transposons can induce recombination
events useful for this purpose. This approach localized Tel1 to a region of 15 kb.

4.3. Genome Sequencing and DGRP Resources for Tel1 Mapping

The molecular lesion associated with Tel1 was identified by deep sequencing of the
Tel1 genome and analyzing this sequence for novel SNP and indel variants not found in the
DGRP lines [23]. After comparing the variants in the genome bearing Tel1 with DGRP poly-
morphisms, we ruled out all SNPs and all but one indel in intron 8 of Ino80 as candidates for
Tel1. Thus, the combination of formal genetics and next-generation sequencing resulted in
the identification of the molecular defect in Tel as a 3 bp deletion (TGT) at 3R:19,396,067-69.
To our knowledge, this is the first study using the DGRP collection to map a Mendelian
trait in D. melanogaster. The Tel1 mutant used in this study was caught near Endine Gaiano,
Bergamo, in northern Italy, likely prior to 1946 [17]. It is of interest that the natural genetic
diversity captured by DGRP in a Raleigh, North Carolina, population was of sufficient
diversity to identify all of the SNPs and all but two indels within our 79 kb region defined
by the transposon mapping. This suggests that the DGRP is an important general resource
for genetic mapping of genes in Drosophila melanogaster, even from strains not closely related
to the standard reference isolates. CRISPR/Cas9-induced deletions in the intronic region
encompassing TGT also resulted in a Tel-specific phenotype, confirming that intron 8 of
Ino80 contains the Tel locus. Telomere elongation was evident 6 months, but not 3 months,
after the induction of deletions. Consistent with our previous characterization [17], we spec-
ulate that this difference in telomere length depends on the progressive accumulation of
HTT genomic copies through recombination and/or gene conversion events over time. The
Drosophila Ino80 is the ortholog of the human INO80 ATPase, a member of the SNF2 family
of ATPases that functions as an integral component of a multisubunit ATP-dependent
chromatin remodeling complex [50]. In flies, Ino80 is involved in the regulation of homeotic
gene expression and regression of ecdysone-dependent transcription [51,52]. However, our
genetic and transcript analyses exclude the possibility that Tel1 is an Ino80 mutant allele
that specifically affects telomere length maintenance. The reason why the TGT deletion and
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all additional deletions surrounding TGT recovered by CRISPR/Cas9 yielded elongated
telomeres still remains unclear. We can speculate that Tel specifies a regulatory element
in the intron 8 of Ino80 required for telomere homeostasis. One possibility is that it may
encode a still unannotated ncRNA (i.e., microRNA), which could influence the expression
of genes required for the maintenance of chromosome end length. Moreover, this sequence
may act as a binding platform for trans-acting factors, which are required for the activity
of genes that prevent recombination events at telomeres. Although these genes are not
known, we can rule out that the genes located in the intron 8 are potential candidates, as
their expression is not affected by Tel1 mutations. Alternatively, we can envisage that the
TGT-containing sequence could regulate appropriate transcript maturation (i.e., working
as a splicing enhancer) and that its loss could affect normal splicing of adjacent exons and
generate an aberrant gain of function Ino80 isoform with a dominant effect. Whatever the
hypotheses, further genetic and transcriptomic studies are necessary to reveal the entire
sequence that identifies Tel and the genes regulated by Tel.
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indels and Minos insertion sites; Figure S3: Sequence conservation among insect species at Tel1 and
MB09416 insertion loci. Figure S4: PCR with flanking primers to large indels found in Tel genome.
Figure S5: Schematic map of CRISPR/Cas 9-induced deletions.
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