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Abstract: Mantle cell lymphoma (MCL) is an aggressive B-cell non-Hodgkin lymphoma (NHL) subtype
characterized by overexpression of CCND1 and SOX11 genes. It is generally associated with clinically
poor outcomes despite recent improvements in therapeutic approaches. The genes associated with the
development and prognosis of MCL are still largely unknown. Through whole transcriptome sequencing
(WTS), we identified mRNAs, lncRNAs, and alternative transcripts differentially expressed in MCL cases
compared with reactive tonsil B-cell subsets. CCND1, VCAM1, and VWF mRNAs, as well as MIR100HG
and ROR1-AS1 lncRNAs, were among the top 10 most significantly overexpressed, oncogenesis-related
transcripts. Survival analyses with each of the top upregulated transcripts showed that MCL cases
with high expression of VWF mRNA and low expression of FTX lncRNA were associated with poor
overall survival. Similarly, high expression of MSTRG.153013.3, an overexpressed alternative transcript,
was associated with shortened MCL survival. Known tumor suppressor candidates (e.g., PI3KIP1, UBXN)
were significantly downregulated in MCL cases. Top differentially expressed protein-coding genes were
enriched in signaling pathways related to invasion and metastasis. Survival analyses based on the
abundance of tumor-infiltrating immunocytes estimated with CIBERSORTx showed that high ratios of
CD8+ T-cells or resting NK cells and low ratios of eosinophils are associated with poor overall survival in
diagnostic MCL cases. Integrative analysis of tumor-infiltrating CD8+ T-cell abundance and overexpressed
oncogene candidates showed that MCL cases with high ratio CD8+ T-cells and low expression of FTX or
PCA3 can potentially predict high-risk MCL patients. WTS results were cross-validated with qRT-PCR of
selected transcripts as well as linear correlation analyses. In conclusion, expression levels of oncogenesis-
associated transcripts and/or the ratios of microenvironmental immunocytes in MCL tumors may be used
to improve prognostication, thereby leading to better patient management and outcomes.

Keywords: mantle cell lymphoma; WTS; mRNA; lncRNA; alternative transcript; oncogene; tumor
suppressor; prognosis; tumor microenvironment
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1. Introduction

Mantle cell lymphoma (MCL) is an aggressive subtype of non-Hodgkin B-cell lym-
phoma with an incidence of 5–7% among all lymphomas [1]. MCL is genetically charac-
terized by the t(11;14) (q13;q32) translocation, which leads to constitutive overexpression
of the CCND1 proto-oncogene due to the strong activity of the IgH enhancer juxtaposed
near it, thereby leading to uncontrolled cell proliferation [2]. The majority of MCL cases
are conventional MCLs (cMCLs) that are considered to originate from the neoplastic trans-
formation of naive-like B-cells with no or a minimal number of IGVH mutations, whereas
cases of the leukemic non-nodal MCL (nnMCL) subtype originate from memory-like B-cells
with the IGVH gene mutated [3]. SOX11 transcription factor was reported to act as a
proto-oncogene, which is overexpressed in all cMCLs corresponding to 90% of all MCLs [4].

MCL is an incurable malignancy despite recent advances in treatment options [5].
Standard therapeutic approaches such as immunochemotherapy and autologous stem
cell transplantation may result in serious toxicity in MCL cases [6,7]. More importantly,
these traditional therapeutic approaches are still not effective against most relapsed MCL
patients [8]. Despite the presence of clinical heterogeneity in MCL that requires more
personalized approaches, these types of therapies do not take into account the genetic or
transcriptional alterations in tumors of individual MCL patients. Novel therapies targeting
aberrant signaling pathways (e.g., BCR signaling) or biological processes (e.g., apoptosis)
are under development [9]. However, targeted treatment approaches for MCL patients are
still not adequate to account for individual differences in the biomolecular characteristics of
the individual patients. Consequently, there is an urgent need for the identification of novel
oncogenes or tumor suppressor genes which promote the development and malignant
progression of MCLs in different MCL patient subgroups.

The prognosis of MCL may vary case-to-case; therefore, it is of utmost importance
to identify patients bearing high risk in terms of prognosis and disease progression such
that the most appropriate therapies can be applied with the correct timing. The MCL
International Prognostic Index (MIPI), as well as the simplified MIPI risk score—which are
based on the ECOG performance status, age, LDH levels, and white blood cell count—were
established to identify high-, middle-, and low-risk group MCL patients [10]. The Ki67
proliferation index was reported to independently predict overall survival; hence, it is
incorporated into MIPI, which is referred to as biological MIPI (MIPI-B) [11]. As these
prognostic indices are not sufficient to account for the differences in the clinical outcome
of MCL patients, researchers are seeking new prognostic biomarkers. As a part of this
endeavor, a recent study proposed a circular RNA-based signature to predict good or
inferior prognosis for MCL patients [12].

Several studies have previously revealed the genomic landscape of MCL tumors,
which includes recurrent mutations in cancer-related genes such as ATM, CCND1, TP53,
NOTCH2, or RB1 [13–16]. Mutations of KMT2D and inactivation of TP53 through deletions
or mutations have recently been reported to be associated with MCL progression and
short overall survival [17]. Unlike genomic investigations, only a few transcriptomic
studies have been performed with MCL cases. In one of these studies, recurrent NOTCH1
mutations were identified through analysis of whole transcriptome sequence data [18].
Another study proposed distinct molecular subsets of MCL identified through genomic
and transcriptomic analyses [19]. Of significance, LINK-A lncRNA was detected with
qRT-PCR to be overexpressed in the plasma of MCL patients, and suggested as a candidate
oncogene based on in vitro functional experiments [20]. Furthermore, it has recently
been suggested to cause ibrutinib resistance in MCL cell lines [21]. miRNA expression
profiling of MCL tumors with a microarray platform identified miR-29 as a prognostic
and pathogenic factor [22]. Among a few reports investigating the association between
lncRNA expression and MCL patient prognosis, high expression of FOXP4-AS1 [23] or
MALAT1 lncRNA [24] was shown to be associated with inferior prognosis. However,
these transcriptional analyses in MCLs did not include a systematic investigation of the
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prognostic significance of mRNAs and lncRNAs upregulated in tumor cells as well as the
immune cells in the tumor microenvironment (TME).

Previous reports on other cancer types including, but not limited to, non-small-cell
lung cancer, breast cancer, and ovarian cancer showed that prognosis can be predicted
by dichotomizing the patients based on transcript expression levels of mRNAs [25,26],
lncRNAs [27,28], or alternative transcripts [29,30] in tumor tissues. The immune-cell
composition in the tumor microenvironment is known to be associated with cancer patient
prognosis [31,32]. With the development of the CIBERSORTx program, which identifies
enriched immune cells within the tumor microenvironment using gene expression profile
data [33], investigations that focus on the relationship between tumor microenvironment
immune-cell ratios and cancer patient prognosis have sped up [34–36].

In this study, we first identified differentially expressed transcripts through whole
transcriptome sequencing and revealed novel oncogene and tumor suppressor candidates.
Furthermore, we performed survival analyses with mRNAs, lncRNAs, or alternative tran-
scripts upregulated in MCL cases, as well as with tumor microenvironmental immunocytes
enriched in MCL cases, to discover novel transcriptional and/or cellular biomarkers that
can potentially be used during diagnosis for prognostication.

2. Materials and Methods
2.1. MCL Patient Information

Twenty-seven newly diagnosed and four relapsed MCL patients whose tumor biopsies
were available at the Department of Medical Pathology at Dokuz Eylül University (DEU)
Hospital between 2008–2017 were included in this study. All MCL cases were evaluated
according to the WHO 2016 classification using morphological criteria and an appropriate
immunohistochemical panel. All of the samples had a neoplastic lymphoid infiltrate
composed of a monotonous population of small/medium sized cells with CD20, CD5,
and cyclin D1 positive immunostaining. The tumor tissues were obtained during diagnosis
for 25 of 27 diagnostic MCL cases and during relapse for the 4 relapsed MCL cases. A tumor
biopsy of one of these MCL patients (Case-11) was obtained in November 2014. However,
further diagnostic evaluations of this MCL patient were performed at a hospital other
than DEU in a different city. In that hospital, the patient was diagnosed with MCL in
November 2015. Another MCL patient was diagnosed with MCL in July 2013 at a center
other than DEU. This patient was then followed up without any treatment until a tumor
biopsy was obtained in January 2014 at the DEU Hospital. In addition to tumor tissue
samples, the demographic, clinical, and pathological information of MCL patients available
as DEU Hospital records were obtained for this study. Clinicopathologic and demographic
information of 31 MCL patients are summarized in Table S1.

2.2. Total RNA Isolation from MCL Tumor Sections

Tissue sections were obtained by microtome from formalin-fixed paraffin-embedded
(FFPE) tumor tissues from the Histopathology Core facility at IBG. At least 5 tumor sections,
each of which being 8 µM thick, were prepared, and placed into 1.5 mL Eppendorf tubes.
To minimize RNA degradation, tumor sections were stored at +4 ◦C until RNA isolation [37].
Total RNA isolations of MCL tumor sections were performed with the RNeasy FFPE kit
(Qiagen Inc., Hilden, Germany) according to the manufacturer’s instructions.

2.3. FACS Sorting of Reactive Tonsil B-Cell Subtypes and RNA Isolations
2.3.1. Preparation of Reactive Tonsil Cell Suspensions

Fresh tonsil tissues were obtained through routine tonsillectomy operations performed
by the Department of Otorhinolaryngology at Dokuz Eylül University. Tonsil tissues were
immediately placed into a container with 1X PBS (Gibco Life Technologies, Waltham, MA,
USA) solution after the operation. Then, they were carried to the Department of Medical
Pathology where half of the tonsil tissues were provided for diagnostic purposes. Tonsil
tissues were homogenized by using forceps, and cell suspensions were prepared in 50 mL
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of 1X PBS/5 mM EDTA (Analiz Kimya, İzmir, Türkiye) solution. Tonsil cell suspensions
were passed through 100 micron Falcon™ Cell Strainers (Corning, Glendale, AZ, USA) for
the elimination of cell clumps and debris. After that, cell suspensions were incubated in
the 1X ACK Lysing Buffer (ThermoFisher Scientific, Waltham, MA, USA) at a 1:4 ratio for
15 min. After centrifugation and washing with 1X PBS/5 mM EDTA solution, cells were
suspended in 20 mL of 1X PBS/5 mM EDTA solution. Reactive tonsil cells were counted
with the trypan blue (Sigma, St. Louis, MO, USA) exclusion assay.

2.3.2. Immunostaining, FACS Sorting, and RNA Isolations

Thirty million cells were used for each reactive tonsil sample. Tonsil cells were stained
with a cocktail of antibodies for CD77, CD38, CD23, and IgD, and incubated in ice for
20 min in a dark place. After that, cells were washed with 6 mL 1X PBS/5 mM EDTA
solution and centrifuged at 400× g for 10 min. Cells were resuspended in 1 mL 1X PBS
/5 mM EDTA after centrifugation. For dead cell labeling, 6 µL DAPI (BioLegend, San Diego,
CA, USA) was added into tubes stained or unstained with the antibody cocktail. Each
B-cell subtype was sorted with the FACS Aria III equipment at the IBG Flow Cytometry
Unit into FACS tubes containing 1 mL RPMI 1640 (Gibco Life Technologies, Waltham,
MA, USA). The sorted B-cell subtypes and their cell-surface antigen phenotype is as
follows: Naive B-cells, IgD+/CD23−; centrocytes, IgD−/CD38+/CD77−; memory B-cells,
CD38−/IgD−. The following antibodies were used during tonsil cell immunostainings:
FITC mouse anti-human CD77 (BD Biosciences, San Jose, CA, USA), FITC anti-human CD77
(BioLegend, San Diego, CA, USA), PE mouse anti-human CD38 (BD Biosciences, San Jose,
CA, USA), PE anti-human CD38 (BioLegend, San Diego, USA), PerCP-Cy™5.5 mouse
anti-human CD23 (BD Biosciences, San Jose, CA, USA), PerCP/Cyanine5.5 anti-human
CD23 (BioLegend, San Diego, CA, USA), APC mouse anti-human IgD (BD Biosciences,
San Jose, CA, USA), and APC anti-human IgD (BioLegend, San Diego, CA, USA). FACS
results were analyzed with the BD FACSDiva 8.0 software (BD Biosciences, San Jose,
CA, USA). A representative FACS gating report is shown in Figure S1. B-cell subtypes
were transferred to Eppendorf tubes post-sorting, followed by centrifugation at 500× g
for 5 min. Supernatants were discarded, and cell pellets were resuspended in TRIzol
reagent (ThermoFisher Scientific, Waltham, MA, USA). After that, total RNA samples were
isolated with the RNeasy Mini Kit (Qiagen, Hilden, Germany) as per the manufacturer’s
recommendations.

2.4. Whole Transcriptome Sequencing

Whole transcriptome sequencing of 10 MCL tumor RNA samples as well as 8 MCL
tumor samples, one reactive tonsil naive B-cell sample, and one reactive tonsil centrocyte
sample were performed, respectively, at Macrogen and Novogene as follows: An Agilent
2100 Bioanalyzer was used to evaluate the quantity and integrity of total RNA samples at
Macrogen. A Qubit 2.0 Fluorometer (Life Technologies, Waltham, MA, USA), Agilent 2100
Bioanalyzer, and qPCR were used to evaluate the quantity and integrity of RNA samples
delivered to Novogene for WTS. The RIN and DV200 scores of the total RNA samples
sequenced are available in Table S2. The NGS libraries were prepared using Illumina
TruSeq Stranded Total RNA with Ribo-Zero Human/Mouse/Rat Kit. First, ribosomal RNA
biomolecules were removed from total RNA samples with the rRNA Removal Kit. Then,
RNA was fragmented with a fragmentation buffer, and converted to cDNA with random
hexamers as primers. Second-strand cDNA synthesis was performed by DNA Polymerase
I in the presence of buffer solution, dNTPs, and RnazH. Having repaired ends of cDNAs,
adenine nucleotides—and then, sequencing adaptors—were attached to cDNA fragments.
After size selection and PCR enrichment steps, cDNA libraries were prepared. Paired-end
100 bp (Macrogene) or 150 bp (Novogene) NGS reads were obtained through sequencing
with the Illumina HiSeq platform. Around 80 million total (i.e., 40 million paired-end) NGS
reads were obtained per sequenced sample. Whole transcriptome sequencing of 17 total
RNA samples (14 MCL cases, one naive B-cell [Control-02], one centrocyte [Control-05],
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and one memory B-cell [Control-03]) was performed at Novogene using the NEBNext
Ultra Directional RNA Library Prep Kit according to the manufacturer’s recommendations,
which follows the same procedure as the Illumina TruSeq Stranded Total RNA with Ribo-
Zero Human/Mouse/Rat Kit. As the amounts of B-cell subset RNAs were, by themselves,
not enough for WTS apart from Control-01 and Control-04, they were combined to obtain
enough RNA samples. Control-02 is a combination of the total RNAs of naive B-cells
isolated from the reactive tonsils of control cases 2, 3, 4, and 5. Control-03 sample is a
combination of reactive tonsil memory B-cells of control cases 1, 6, and 7. Control-05
represented a combination of total RNA samples from centrocytes from control cases 3, 4,
and 5 (Table S3).

2.5. Quantification of the Expressed Transcripts in MCL Tumor and Control Samples
2.5.1. Quality Control of the Raw WTS Data

The initial quality control of the WTS data was performed by analyzing the basic
NGS statistics (Table S4). Quality control (QC) for raw reads was performed by using the
FASTQC tool (https://www.bioinformatics.babraham.ac.uk/projects/fastqc/, accessed on
21 July 2020). FASTQC tool provides a read-quality report in html format which includes
scores such as k-mer score, per base sequence quality, per sequence quality, sequence
duplication levels, and more.

2.5.2. Mapping Reads to a Reference Genome

RNA-Seq reads were mapped to the current reference genome (UCSC GRCh38/Hg38)
with HISAT2, a splice-aware mapping tool that applies the Burrows–Wheeler transform
(BWT) and the Ferragina–Manzini (FM) indexing scheme [38].

2.5.3. Counting Reads

After the alignment of the NGS reads to the reference genome, gene-expression levels
in WTS data were estimated by generating a count matrix using the featureCounts tool [39].
“gencode.v29.gff3.gz” was used as the gene annotation reference file.

2.6. Principal Component Analysis

We assessed the transcriptomic similarities among the samples by performing sample-
level QC through Principal Component Analysis (PCA) using the WTS data of the 32 tumor
tissue as well as the 5 reactive tonsil B-cell subset samples. After obtaining count data by
DESeq2 analysis, the data was transformed using the vst transformation algorithm, and the
PCA object was created. PCA plots were produced by ggplot2 (version 3.3.6, Hadley
Wickham, New York, NY, USA), ggfortify (version 0.4.14, Masaaki Horikoshi and Yuan
Tang, https://CRAN.R-project.org/package=ggfortify; accessed on 15 October 2022) and
ggrepel (version 0.9.1, Kamil Slowikowski, https://CRAN.R-project.org/package=ggrepel,
accessed on 16 October 2022) libraries in RStudio.

2.7. Identification of the Differentially Expressed mRNAs, lncRNAs, and Alternative Transcripts

DESeq2 software [40] was used for the identification of differentially expressed mR-
NAs and lncRNAs (Figure S2A). A p value of less than 0.05, log2 fold change >2, and FDR
(False Discovery Rate) <0.001 were considered as cutoffs for significantly DE genes. Dif-
ferentially expressed alternative transcripts were identified as follows: Raw NGS reads
were first aligned to the current human reference genome (Hg38) using the HISAT2 tool.
Submodules in the StringTie program were used for the determination of alternative tran-
scripts and calculating their amounts in the samples [41]. DESeq2 was used to identify
alternative transcripts that were significantly differentially expressed between MCL tumors
and the control group (Figure S2B).

https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://CRAN.R-project.org/package=ggfortify
https://CRAN.R-project.org/package=ggrepel
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2.8. Pathway Analysis of Differentially Expressed mRNAs, Alternative Transcripts, and lncRNAs

The Reactome Pathway Knowledgebase was used to identify the statistically signif-
icant pathways or biological processes associated with the top 100 mRNAs or top 100
alternative transcripts significantly differentially expressed in 32 tumor samples compared
with the 5 reactive tonsil B-cell subset samples [42]. The bioinformatics workflow ap-
plied is, briefly, as follows: First, differentially expressed gene symbols were converted
to Entrez gene IDs using the web-based geneID conversion program DAVID [43]. Then,
the ReactomePA Bioconductor package (version 1.32.0, Guangchuang Yuab and Qing-Yu
He, https://guangchuangyu.github.io/software/ReactomePA, accessed on 10 December
2022) in RStudio was used to identify the statistically significant pathways or biological
processes associated with the top 100 mRNAs or top 100 alternative transcripts significantly
differentially expressed in 32 tumor samples compared with the 5 reactive tonsil B-cell
subset samples [44]. The adjusted p-value cutoff at 0.05 was chosen for the evaluation
of statistical significance. The statistically significant pathways and biological processes
associated with the significantly differentially expressed top 100 lncRNAs were determined
by using the ncFANs program with default parameter settings [45].

2.9. Identification of the Candidate Oncogenes and Tumor Suppressor Genes

Candidate oncogenes were determined with the guidance of the differential expression
data and the previously reported literature. Starting with the top significantly overex-
pressed mRNA or lncRNA determined with differential expression analysis of 32 MCL
tumor samples and 5 control samples, each gene was searched in PubMed and Google
Scholar using the combination of the following words or phrases: gene name and cancer.
If a top significantly overexpressed mRNA or lncRNA was shown at least in one research
article to have oncogenic activity in any type of cancer, the gene is considered to be an
oncogene candidate. Ten tumor suppressor gene candidates were identified with the same
workflow, except that the gene search started from the top significantly downregulated
gene. If a top significantly down-expressed mRNA or lncRNA was shown at least in
one research article to have tumor suppressor activity in any type of cancer, the gene is
considered to be a tumor suppressor candidate. The PubMed and Google Scholar searches
were performed in September 2020.

2.10. Microenvironmental Immunocyte Ratio Estimation via CIBERSORTx Analysis

CIBERSORTx software was used to estimate the immune-cell subset abundance in the
tumor microenvironment of MCL tumor tissues based on the gene-expression profiles of
MCL tumor samples and the LM22 gene signature matrix [33]. The LM22 gene signature
matrix includes genes that distinguish 22 human hematopoietic cell phenotypes used to
deconvolve immune-cell subsets. These immune cells are memory B-cells, naive B-cells,
naive CD4+T-cells, CD8+ T-cells, activated memory CD4+ T-cells, resting memory CD4+

T-cells, Tfh, regulatory T-cells, gamma-delta T-cells, plasma cells, resting natural killer (NK)
cells, activated NK cells, monocytes, M0 macrophages, M1 macrophages, M2 macrophages,
resting mast cells, activated mast cells, resting dendritic cells, activated dendritic cells,
eosinophils, and neutrophils. CIBERSORTx was run with the “Impute Cell Fractions
Analysis” module to list the proportion of immune cells in bulk (FFPE) tissue samples
using the WTS transcript expression data. A mixture file including the normalized gene-
expression profiles of 31 MCL cases was created according to the CIBERSORTx input data
format. “B-mode (bulk mode) Batch-correction” was enabled to minimize the impact of
the cross-platform variation between signature matrix and mixture samples. The LM22
source GEP file was used for better batch-correction. Disable quantile normalization
parameter was set as TRUE, which is recommended for RNA-Seq data, and the relative
mode was used.

https://guangchuangyu.github.io/software/ReactomePA
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2.11. Immunohistochemistry and Hematoxylin–Eosin Staining

The sections from the FFPE tissues of the cases were stained with CD8 antibody
(Anti-CD8 alpha antibody [EPR20305], ready-to-use, Abcam) for CD8+ T-cell detection,
or with NCAM1 (Anti-NCAM1 antibody [EPR21827], ready-to-use, Abcam) antibody for
NK cell detection using a Ventana Benchmark Ultra system according to the manufacturer’s
instructions. CD8 or NCAM1 positivity and hematoxylin–eosin staining patterns were
evaluated, and then photographed with an Olympus BX43 light microscope by an expert
pathologist.

2.12. Survival Analysis

Survival analysis was performed to investigate the relationship between overexpressed
transcripts, microenvironmental immunocytes, or clinicodemographic variables and MCL
prognosis. Survival [46] and Survminer [47] R packages were used for survival analysis and
Kaplan–Meier graphs. When dichotomizing the cases according to the expression levels
of genes into two groups with high- and low-expressed cases, the median value of the
expression levels of each gene was used as threshold value. The median values of TME cell
ratios were set up as the thresholds to discriminate MCL patients with a high or low ratio
of each of these cell types. The time between the diagnosis date and the event was used for
overall survival analysis. Multivariate Cox’s regression analysis was performed in order to
assess the independent prognostic impact of presumed oncogenes, different immune-cell
compositions, stage of the disease, and initial treatment received. The “survival” R package
was used for the multivariate Cox’s regression analysis. Transcripts and immune-cell
compositions were binary variables with high and low values based on the median as the
cutoff. For transcripts, low expression values—and for immune-cell composition, high
ratio—were determined as the reference level. For R-CHOP treatment and for stages, stage
2 was taken as reference level. The hazard ratio of this analyses represents the patient
death rate in this analysis. Three diagnostic MCL cases (Case-07, Case-11 and Case-19)
were excluded from the Cox’s regression analyses as the patient data for the evaluated
parameters were not complete for these MCL cases.

2.13. qRT-PCR

Reverse transcription of MCL tumor tissue samples and reactive tonsil B-cell sub-
sets was performed using QuantiTect Reverse Transcription Kit (Qiagen, Germany) fol-
lowing the manufacturer’s recommendations. One to ten diluted cDNAs were used
as templates for qPCR amplifications using QuantiTect SYBR Green qPCR Master Mix
(Qiagen, Germany) and a 7500 Fast Real-Time PCR System (Applied Biosystems, Bed-
ford, MA, USA). The specificities of the amplicons were evaluated by visualization of
the melting curves generated using 7500 Software v2.3, and by running them in the
1X TAE gel if needed. Blanks were used for each primer pair and qPCR experiment
to ensure a lack of contamination. Replicate samples were amplified, and the samples
were excluded from quantification if at least one of the samples of the gene of interest
or the housekeeping gene did not generate a specific amplicon. The ∆∆Ct method was
used for calculations of the relative levels of the CCND1 mRNA and SNHG5 lncRNA
transcripts. The RPS13 gene was used as the housekeeping gene for normalization of
each evaluated gene. The nucleotide sequences of primer pairs used in this study is as
follows: CCND1-qRT-PCR-F: 5′-GCCTCACACGCTTCCTCTC-3′; CCND1-qRT-PCR-R:
5′-CTGGCGCAGGCTTGACT-3′; SNHG5-qRT-PCR-F: 5′-TGTCTTCAGTGGCACAGT-3′;
SNHG5-qRT-PCR-R: 5′-CCATTAAATATTCTCCCAGATGTTC-3′; RPS13-qRT-PCR-F: 5′-
CGAAAGCATCTTGAGAGGAACAG-3′; RPS13-qRT-PCR-R: 5′-CGGTGAATCCGGCTCT
CTATTA-3′.

2.14. Comparison of WTS and qRT-PCR Results with Linear Correlation Analysis

To evaluate the consistency between WTS and qRT-PCR expression values through
calculation of the Pearson correlation coefficients, RStudio software version 4.0.2 (RStudio
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Team, Boston, MA, USA, https://www.rstudio.com/, accessed on 23 July 2022) was used,
as described previously [48]. The WTS data values used in linear correlation analyses were
initially obtained by dividing normalized counts per million (CPM) values of CCND1 or
SNHG5 to the CPM values of the RPS13 housekeeping gene for each sample after differential
expression (DE) analysis of MCL tumor samples (n = 32) and reactive tonsil B-cell subset
samples (n = 5). Then, the mean values of the B-cell subsets (two NBC, two CC, and one
MBC) were calculated as the control group, followed by the normalization of each of the
samples to this mean value. In correlation analysis, each B-cell subset was represented by a
single value by taking the average values of each B-cell subset (i.e., NBC, CC, and MBC).
Normalized values were log2 transformed for linear correlation analysis. Samples with
CPM values lower than 1 for CCND1 or SNHG5 were excluded from the correlation analysis.
Similar to WTS data, qRT-PCR expression levels of CCND1 or SNHG5 were normalized
to those of RPS13 with the ∆∆Ct method, and two replicates of each sample were used
in experiments. After that, the relative expression values of each control group and MCL
tumor sample were normalized to the expression values of the mean of all available B-cell
subset samples (two NBC, two MBC, and two CC). In correlation analysis, each B-cell
subset was represented with their average values (i.e., NBC, CC, and MBC). At the final
stage, log2-transformed relative expression values based on qRT-PCR were calculated and
used as input for the linear correlation analyses. Samples with no amplification on either
reference or target gene in any duplicates for all qRT-PCR results were excluded from
the analysis. Moreover, samples with Ct values higher than 33 for the reference gene in
qRT-PCR were filtered out.

2.15. Statistical Analyses

For differential transcript expression analyses with DESeq2, FDR-adjusted p values
were obtained through correction of the Wald test p values with multiple testing by ap-
plying the Benjamini and Hochberg method [40]. The significance of the MCL survival
differences between two patient groups dichotomized based on the expression of transcripts
or immunocyte ratios was evaluated by calculating p values based on the log-rank test [48].
To evaluate the consistency between expression values obtained with whole transcriptome
sequencing and qRT-PCR for selected transcripts, the p values were calculated via Pearson
correlation testing for paired expressions [49].

3. Results
3.1. Overall Research and Analysis Plan of the Study

The overall workflow of this study is shown in Figure 1, and includes the following
steps: (1) Whole transcriptome sequencing (WTS) of 32 MCL tumor tissue samples as well as
5 reactive tonsil B-cell subtype samples; (2) Identification of differentially expressed mRNAs,
lncRNAs, and alternative transcripts through computational bioinformatic analyses of the
WTS data; (3) Investigation of the candidate oncogenes through a literature search of the
top significantly overexpressed mRNAs and lncRNAs, with the assumption that if a gene
is overexpressed in MCL cases, and implicated to be oncogenic in a different type of cancer,
there is a high possibility that it can promote MCL development; (4) Determination of the
tumor suppressor candidates downregulated in MCL tumor samples with the guidance
of literature data; (5) Overall survival analyses by dichotomizing all or diagnostic MCL
cases based on high or low expression for each of the candidate oncogene mRNA, lncRNA,
or alternative transcripts to identify the most likely oncogene candidates associated with
poor patent outcome; (6) CIBERSORTx analyses followed by MCL survival analyses based
on the immunocyte ratios in the tumor microenvironment; (7) Identification of the higher-
risk-group MCL cases by integrating poor prognosis-associated immunocyte ratio(s) and
cancer-related overexpressed transcripts in survival analyses; (8) qRT-PCR analyses of
selected transcripts for cross-validation of the WTS expression results, and linear correlation
analysis to check sample-by-sample correlation of expression levels based on WTS and
qRT-PCR measurements of selected transcripts.

https://www.rstudio.com/
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3.2. CCND1, SOX11, ROR1-AS1, and LINK-A Are Overexpressed in MCL Tumors

To address whether our whole transcriptome analysis results are in agreement with the
previously published literature, we evaluated the expression levels of CCND1 and SOX11
mRNAs as well as ROR1-AS1 and LINK-A (LINC001139) lncRNA expression levels in
MCL tumor tissue samples. CCND1 and SOX11 mRNAs were significantly overexpressed
in MCL cases compared with the reactive tonsil B-cell subsets (Figure 2A,B). Similarly,
ROR1-AS1 and LINK-A lncRNA expression levels in MCL cases were much higher than
those of control group samples (Figure 2C,D).
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Figure 2. CCND1, SOX11, ROR1-AS1, and LINK-A transcripts are upregulated in MCL tumors.
The transcript expression levels of CCND1 and SOX11 mRNAs as well as ROR1-AS1 and LINK-A
lncRNAs in 32 MCL samples were compared with the 5 reactive tonsil B-cell subtype samples by
DESeq2 analysis of whole transcriptome sequencing data. Box-and-whisker plots are shown for
CCND1 (A), SOX11 (B), ROR1-AS1 (C), and LINK-A (LINC001139) (D) transcripts with the statistical
significance indicated as adjusted p values over each plot.

3.3. PCA Clustering of MCL and Control Samples by Transcriptome Profiles

To evaluate the similarities and distances based on the transcriptomic profile among
MCL tumor tissue and control samples, we performed PCA analysis. This analysis revealed
that MCL cases and reactive tonsil B-cell subsets have distinct transcriptome profiles
regardless of whether mRNA (Figure 3A), lncRNA (Figure 3B), or both mRNA and lncRNA
(Figure 3C) transcriptome expression profiles were used. Of note, a diagnostic MCL sample
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(Case-18) was observed to be not present in the main MCL case cluster when mRNA
expression profiles were used (Figure 3A). Interestingly, a diagnostic (i.e., Case-14) as well
as a relapse (i.e., Case-15) MCL patient tumor sample were observed not to be inside the
main cluster of diagnostic and relapse MCL cases based on the lncRNA transcriptome data
(Figure 3B).
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Figure 3. PCA plots of reactive tonsil B-cell subsets and MCL cases. PCA plots of diagnostic, relapsed
MCL, and control samples generated based on only mRNA (A), only lncRNA (B), or both mRNA
and lncRNA (C) transcript expression profiles are shown. Control samples represent reactive tonsil
B-cell subset samples used for WTS. The patient codes of the outlier cases are indicated on the plots.

3.4. Differentially Expressed mRNAs, lncRNAs, and Alternative Transcripts in MCL
Tumor Tissues

Transcript expression analyses of 32 MCL biopsy samples with DESeq2 revealed that
6644 mRNAs and 1067 lncRNAs are significantly (FDR < 0.001) upregulated in MCL cases
compared with the reactive tonsil B-cell subset samples. In these MCL tumor samples,
2175 mRNAs and 989 lncRNAs were significantly downregulated. Next, we compared the
alternative transcript expression levels between MCL tumor samples and reactive tonsil
B-cell subsets, which revealed 10898 upregulated and 10643 downregulated alternative
transcripts in MCL samples with statistical significance of FDR < 0.001.

3.5. Cancer-Related Signaling Pathways Are Enriched in Top Differentially Expressed Genes

When the 100 protein-coding genes with the most significant differential expression in
MCL tumor tissues were analyzed on the Reactome platform, we observed that many genes
associated with invasion and metastasis are transcriptionally dysregulated in MCL tu-
mors. The most prominent statistically significant signaling pathways associated with
the first 100 genes included “non-integrin plasma membrane extracellular matrix (ECM)
interactions”, “ECM proteoglycans”, and “ECM organization” (Figure 4A). Importantly,
the most significantly differentially expressed genes were observed in “MET activates
PTK2 signaling” and “MET promotes cell motility”, which are two of the invasion- and/or
metastasis-related biological processes enriched in MCL cases. Top 100 differentially
expressed lncRNAs were associated with pathways activated in cancer, including EGF
receptor, Wnt, and mTOR signaling pathways (Figure 4B). When the top 100 alternative tran-
scripts differentially expressed in MCL tumors were analyzed with the Reactome program,
a total of 51 signaling pathways/biological processes were identified to be significantly
(FDR < 0.001) enriched in MCL cases. Antigen processing and presentation, interferon sig-
naling, and ER-phagosome pathways were among the most significant pathways associated
with dysregulated alternative transcripts (Figure 4C).
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Figure 4. Biological processes or pathways associated with top 100 differentially expressed transcripts.
Biological processes or pathways associated with statistically significant differentially expressed top
100 mRNAs (A), lncRNAs (B), and alternative transcripts (C) are shown with dot plots (A,C) or with
a horizontal bar graph (B). GeneRatio and Count on plots represent the ratio of the genes that are
annotated in a term and the number of genes that are a member to a given gene-set, respectively.

3.6. The Most Significantly Overexpressed, Cancerogenesis-Associated Gene mRNAs in MCL
Tumor Tissues

We assume that the protein-coding genes overexpressed in MCL cases are more likely
to be associated with MCL cancerogenesis if these genes are implicated to be oncogenes
in other cancer types. Based on the previously reported literature, we identified the top
ten protein-coding genes that are the most significant overexpressed oncogene candidates
in MCL tumor samples. We observed that FSTL1 (Figure 5A), VCAM1 (Figure 5B), TNS1
(Figure 5C), SEMA5A (Figure 5D), DDR2 (Figure 5E), VWF (Figure 5F), CCND1 (Figure 5G),
NFIB (Figure 5H), ANTXR1 (Figure 5I), and PBX1 (Figure 5J) are the most significantly
overexpressed genes that have been reported to be a potential oncogene in at least one
cancer type. The literature information on the cancerogenic role of these mRNAs is shown
in Table 1.
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Figure 5. The transcript levels of top 10 cancerogenesis-associated protein-coding genes. Box-and-
whisker plots of the 10 cancerogenesis-associated mRNAs that are most significantly overexpressed in
32 MCL samples compared with the 5 B-cell subtype samples are shown in the statistical significance
order (A–J).

Table 1. The list of the top 10 overexpressed oncogene-candidate protein-coding transcripts in MCL
cases.

Gene Transcript Type Associated Cancer Type Cancer-Related Functions or
Processes Promoted Reference

FSTL1 mRNA Colorectal cancer Metastasis Gu et al., 2018 [50]

VCAM1 mRNA Breast cancer Epithelial–mesenchymal
transition (EMT) Wang et al., 2014 [51]

TNS1 mRNA Colorectal cancer Proliferation and invasion Zhou et al., 2018 [52]

SEMA5A mRNA Pancreatic cancer Angiogenesis, proliferation,
migration, anti-apoptosis Sadanandam et al., 2010 [53]

DDR2 mRNA Breast cancer Metastasis, migration,
invasion, EMT Ren et al., 2014 [54]

VWF mRNA Gastric adenocarcinoma Metastasis Yang et al., 2018 [55]
CCND1 mRNA Nasopharyngeal carcinoma Cell cycle Liu et al., 2012 [56]

NFIB mRNA Breast cancer Cell survival Liu et al., 2019 [57]

ANTXR1 mRNA Glioma Proliferation, migration,
anti-apoptosis Geng et al., 2019 [58]

PBX1 mRNA Ovarian cancer Proliferation Park et al., 2008 [59]

3.7. The Most Significantly Underexpressed Tumor Suppressor Candidate Gene mRNAs in MCL
Tumor Tissues

By following the same logic, we proposed that a protein-coding gene is more likely
to be a tumor suppressor if it is implicated as a tumor suppressor gene in at least one
type of cancer in the literature. To address this possibility, we performed a literature
search for the most downregulated protein-coding genes, and identified those that are
implicated as a tumor suppressor gene in at least one type of cancer (Table 2). Based on these
criteria, we observed UBXN1 (Figure 6A), HNRNPF (Figure 6B), PPP1R15A (Figure 6C),
HNRNPA1 (Figure 6D), THRAP3 (Figure 6E), LAPTM5 (Figure 6F), DDB1 (Figure 6G),
RPL7A (Figure 6H), PIK3IP1 (Figure 6I), and DDIT4 (Figure 6J) as the most likely candidate
tumor suppressor genes in mantle cell lymphoma.
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Table 2. The list of top 10 underexpressed tumor suppressor candidate protein-coding transcripts in
MCL cases.

Gene Transcript Type Associated Cancer Type Cancer-Related Functions or
Processes Regulated Reference

UBXN1 mRNA Osteosarcoma Apoptosis Wang et al., 2015 [60]
HNRNPF mRNA Breast cancer EMT * suppression Huang et al., 2017 [61]
PPP1R15A mRNA Burkitt’s lymphoma Apoptosis Hollander et al., 2001 [62]

HNRNPA1 mRNA Ovarian cancer Proliferation, motility,
angiogenesis, and apoptosis

Rodriguez-Aguayo et al.,
2017 [63]

THRAP3 mRNA Cervical cancer DNA damage response Beli et al., 2012 [64]

LAPTM5 mRNA Multiple myeloma Cellular differentiation,
apoptosis Hayami et al., 2003 [65]

DDB1 mRNA HPV-associated cancers Cellular senescence Kotake et al., 2009 [66]
RPL7A mRNA Osteosarcoma Cell growth, differentiation Zheng et al., 2009 [67]
PIK3IP1 mRNA Hepatocellular carcinoma Proliferation, motility He et al., 2008 [68]
DDIT4 mRNA Breast cancer Proliferation, cell growth DeYoung et al., 2008 [69]

* Epithelial–mesenchymal transition.
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pressor candidates in MCL. Tumor suppressor candidate transcript expression levels that are most
significantly downregulated are shown for 32 MCL samples and 5 reactive tonsil B-cell subset sam-
ples as box-and-whisker plots in the statistical significance order (A–J). Adjusted p values show the
statistical significance of expression differences between MCL and the control samples.

3.8. The Most Significantly Overexpressed Oncogenesis-Associated lncRNA Genes

We also identified the top 10 overexpressed lncRNAs that have been implicated as
oncogene candidates in at least one type of cancer (Table 3). This analysis showed significant
upregulation of MIR100HG (Figure 7A), LINC01268 (Figure 7B), FTX (Figure 7C), ROR1-
AS1 (Figure 7D), DNM3OS (Figure 7E), KCNQ1OT1 (Figure 7F), MAGI1-IT1 (Figure 7G),
NR2F2-AS1 (Figure 7H), ADAMTS9-AS2 (Figure 7I), and PCA3 (Figure 7J) in 32 MCL
tumor samples compared with the reactive tonsil B-cell subsets.
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Table 3. The list of the top 10 overexpressed oncogene-candidate lncRNAs in MCL cases.

Gene Transcript Type Associated Cancer Type Cancer-Related Functions or
Processes Promoted Reference

MIR100HG lncRNA Laryngeal squamous cell
carcinoma

Proliferation, migration,
invasion Huang et al., 2019 [70]

LINC01268 lncRNA Acute myeloid leukemia Cell growth, anti-apoptosis Chen et al.,2020 [71]

FTX lncRNA Gastric cancer Proliferation, migration,
invasion Li et al., 2019 [72]

ROR1-AS1 lncRNA Mantle cell lymphoma Cell growth Hu et al., 2017 [73]

DNM3OS lncRNA Gastric cancer Proliferation, migration,
invasion, EMT * Wang et al., 2019 [74]

KCNQ1OT1 lncRNA Non-small-cell lung cancer Proliferation, anti-apoptosis Kang et al., 2019 [75]
MAGI1-IT1 lncRNA Epithelial ovarian cancer Invasion, metastasis Gao et al., 2019 [76]
NR2F2-AS1 lncRNA Nasopharyngeal carcinoma Proliferation, anti-apoptosis Qin and Qin, 2020 [77]
ADAMTS9-

AS2 lncRNA Tongue squamous cell
carcinoma Proliferation, migration, EMT * Li et al., 2019 [78]

PCA3 lncRNA Prostate cancer Proliferation, migration,
invasion, anti-apoptosis Zhang et al., 2019 [79]

* Epithelial–mesenchymal transition
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Figure 7. The transcript levels of top 10 cancerogenesis-associated lncRNA genes. Box-and-whisker
plots of the 10 cancerogenesis-associated lncRNAs that are most significantly overexpressed in
32 MCL tumor samples compared with the 5 reactive tonsil B-cell subtype samples are shown in the
order of decreasing statistical significance (A–J).

3.9. The Significantly Underexpressed Tumor Suppressor-Candidate Gene lncRNAs in MCL
Tumor Tissues

Similarly, we identified the top 10 most downregulated lncRNAs implicated as tu-
mor suppressor genes in at least one type of cancer (Table 4). Based on this evaluation,
LINC00877 (Figure 8A), SLC25A5-AS1 (Figure 8B), ILF3-DT (Figure 8C), LRRC75A-AS1
(Figure 8D), LINC00324 (Figure 8E), CD27-AS1 (Figure 8F), ZFAS1 (Figure 8G), SNHG5
(Figure 8H), MIR762HG (Figure 8I), and SNRK-AS1 (Figure 8J) were the top significantly
downregulated tumor suppressor candidates in MCL cases.
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Table 4. The list of the top 10 underexpressed tumor suppressor candidate lncRNAs in MCL cases.

Gene Transcript Type Associated Cancer Type Cancer-Related Functions or
Processes Regulated Reference

LINC00877 lncRNA Pheochromocytomas and
paragangliomas Metastasis Ghosal et al., 2022 [80]

SLC25A5-AS1 lncRNA Gastric cancer Cell growth, apoptosis Li et al., 2019 [81]
ILF3-DT lncRNA Cervical cancer Autophagy Feng et al., 2021 [82]

LRRC75A-
AS1 lncRNA Colorectal cancer Proliferation, migration Chen et al., 2019 [83]

LINC00324 lncRNA Breast cancer Proliferation, invasion,
migration, apoptosis Wang et al., 2020 [84]

CD27-AS1 lncRNA Acute myeloid leukemia Proliferation, cellular
senescence, apoptosis Tao et al., 2021 [85]

ZFAS1 lncRNA Breast cancer Proliferation, migration,
invasion Fan et al., 2018 [86]

SNHG5 lncRNA Gastric cancer Proliferation, metastasis Zhao et al., 2016 [87]

MIR762HG lncRNA Ovarian cancer Downregulated in ovarian
cancer Wang et al., 2019 [88]

SNRK-AS1 lncRNA Hepatocellular carcinoma Downregulated in
hepatocellular carcinoma Zhang et al., 2021 [89]
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Figure 8. The transcript expression levels of the 10 most significantly downregulated tumor sup-
pressor candidate lncRNA genes in MCL. Tumor suppressor candidate lncRNA expression levels 
that are most significantly downregulated are shown for 32 MCL samples and 5 reactive tonsil B-
cell subset samples as box-and-whisker plots in the order of decreasing statistical significance (A–
J). Adjusted p values show the statistical significance of expression differences between MCL and 
the control samples. 
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Figure 8. The transcript expression levels of the 10 most significantly downregulated tumor suppres-
sor candidate lncRNA genes in MCL. Tumor suppressor candidate lncRNA expression levels that are
most significantly downregulated are shown for 32 MCL samples and 5 reactive tonsil B-cell subset
samples as box-and-whisker plots in the order of decreasing statistical significance (A–J). Adjusted
p values show the statistical significance of expression differences between MCL and the control
samples.

3.10. The Relationship between Top Overexpressed Transcripts and MCL Survival

Next, we addressed whether transcript expression levels of the top 10 overexpressed
oncogene candidates are associated with the overall survival of MCL patients. To address
this question, we dichotomized all MCL patients (n = 31) or diagnostic MCL cases (n = 27)
based on the transcript expression level of each of the top 10 cancerogenesis-associated
protein-coding mRNA. Among these 10 protein-coding genes, VWF mRNA expression
was significantly associated with inferior overall survival in all (Figure 9A) or diagnostic
MCL cases (Figure 9B). Similarly, we performed overall survival analyses with the top
overexpressed oncogenesis-related lncRNAs by dividing MCL cases based on transcript ex-
pression levels of each of these 10 lncRNA genes. In contrast to VWF mRNA, we observed
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that MCL cases with high expression of FTX lncRNA showed a significant association to
overall survival, better than that of the low-expression group in all (Figure 9C) or diagnostic
(Figure 9D) MCL cases. Next, we evaluated whether alternative transcripts can predict
prognosis or not. To address this possibility, the top 20 overexpressed alternative tran-
scripts were tested one-by-one for their ability to predict overall survival, which revealed a
significant association between MSTRG.153013.3 transcript levels and the survival of MCL
patients (Figure 9E,F).
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Figure 9. Top overexpressed transcripts significantly associated with MCL overall survival.
MCL cases were dichotomized based on the mRNA or lncRNA expression levels of the top 10
cancerogenesis-related genes or the top 20 upregulated alternative transcripts. Kaplan–Meier curves
of VWF mRNA (A,B), FTX lncRNA (C,D) and MSTRG.153013.3 alternative transcript (E,F) whose
expression are significantly associated with poor or good overall survival in all (A,C,E) or diagnostic
cases (B,D,F). p < 0.05 is considered statistically significant. High: High transcript expression. Low:
Low transcript expression.

3.11. The Relationship between Demographic or Clinical Variables and MCL Survival

We investigated the prognostic importance of certain demographic (i.e., age, gender)
and clinical variables, as well as the MIPI (Mantle Cell Lymphoma International Prognostic
Index), in diagnostic MCL cases. We observed that older age was significantly associated
with poor overall survival (Figure S3A). However, no significant association with MCL
survival was detected for other variables evaluated (Figure S3B–E).

3.12. CD8+ T-Cells in Tumor Microenvironment Predict Inferior MCL Survival

The tumor microenvironmental immunocyte composition of MCL cases was predicted
using the CIBERSORTx program (Figure S4). To address whether there is any relationship
between immunocytes infiltrating the tumor microenvironment and the overall survival
of MCL patients, we divided all 31 patients or 27 diagnostic patients into two groups
based on the presence of each immunocyte whose abundance in TME was predicted by
the CIBERSORTx program. These analyses showed that MCL cases with a high proportion
of CD8+T-cells have significantly poorer overall survival in all (Figure 10A) or diagnostic
cases (Figure 10B). Resting NK-cell abundance in TME was associated with poor overall
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survival (Figure 10C), whereas eosinophils were associated with good survival (Figure 10D),
in diagnostic MCL cases. No significant relationship with MCL survival was detected for all
the other immunocytes evaluated. Tumor-infiltrating immune-cell abundances estimated
with CIBERSORTx were cross-validated, either with immunohistochemistry (CD8+ T or
NK cells) or with hematoxylin–eosin staining (eosinophils) in MCL cases representing high
or low ratios of these cell types (Figure S5).
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Figure 10. Microenvironmental immunocytes associated with overall survival of MCL patients.
Kaplan-Meier plots show the tumor-infiltrating immunocytes that are associated with poor (A–C) or
good (D) overall survival. High: High ratio of the immune cell. Low: Low ratio of the immune cell.
All cases: 27 diagnostic and 4 relapsed MCL.

3.13. Impact of Tumor-Infiltrating CD8+ T-Cell Abundance and Cancer-Associated Transcripts on
MCL Survival

As CD8+ T-cell abundance predicted inferior overall survival in all, as well as diagnos-
tic, MCL cases, we performed MCL survival analysis by co-analyzing CD8+ T-cell ratios
together with the top 10 cancer-associated, upregulated mRNAs or lncRNAs to evaluate
the possibility of identifying high-risk MCL cases. When tumor-infiltrating CD8+ T-cell
abundance was analyzed together with each of these transcripts, we observed that high
CD8+ T-cells with low expression levels of FTX lncRNA predicted poorer overall survival
compared to CD8+ T-cell ratio when all (Figure 11A) or diagnostic (Figure 11B) MCL cases
were analyzed. Similar to these results, MCL cases with high CD8+ T-cell ratios and low
PCA3 lncRNA levels predicted poor survival more significantly than evaluating CD8+ T-
cells alone in all (Figure 11C) as well as diagnostic (Figure 11D) MCL cases. Of significance,
MCL patients with a high ratio of CD8+ T-cells and high expression of CCND1 constituted
a high-risk group among diagnostic MCL cases (Figure S6).
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Figure 11. High tumor-infiltrating CD8+ T-cell ratio together with low FTX or PCA3 expression
predicts high-risk MCL patients. Kaplan–Meier plots showing the curves based on a combination of
tumor-infiltrating CD8+ T-cell ratios and FTX (A,B) or PCA3 (C,D) transcript expression levels. L/L:
Low CD8+ T-cell abundance and low transcript expression; L/H: Low CD8+ T-cell abundance and
high transcript expression; H/L: High CD8+ T-cell abundance and low transcript expression; H/H:
High CD8+ T-cell abundance and high transcript expression.

3.14. Multivariate Cox’s Regression Analysis Results of Overall Survival

Next, we evaluated the relationship between prognostically significant candidate
oncogenes (i.e., VWF, FTX, or MSTRG.153013.3), tumor-infiltrating immunocytes (CD8+

T-cells, resting NK cells, or eosinophils), disease stage, treatment type, and overall patient
survival by applying multivariate Cox’s regression analysis results in all (Figure S7A) or
diagnostic (Figure S7B) MCL cases. These analyses showed that high VWF transcript
expression in MCL cases was associated with poor overall survival when all MCL cases
were evaluated (Figure S7A).

3.15. qRT-PCR Cross-Validated WTS Data of CCND1 and SNHG5 Transcripts

As a proof-of-principle, we chose CCND1 mRNA and SNHG5 lncRNA for qRT-PCR
validation of whole transcriptome sequencing results of MCL cases as well as control group
samples (Table S3). Consistent with the whole transcriptome sequencing data that showed
overexpression of CCND1 transcripts in MCL tumor tissues (Figure 12A), we observed
markedly higher expression of CCND1 mRNA based on qRT-PCR (Figure 12B). SNHG5 was
one of the down-expressed genes in MCL tumor tissues based on WTS analysis (Figure 12C).
qRT-PCR also showed downregulation of SNHG5 lncRNA in MCL cases compared with
reactive tonsil B-cell subsets (Figure 12D). To further evaluate the validity of transcript
expression values determined with WTS, we performed linear correlation analyses by
comparing the expression values of CCND1 or SNHG5 based on WTS or qRT-PCR. These
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analyses revealed that WTS and qRT-PCR expression values correlate significantly across
MCL tumor samples and reactive tonsil B-cell subset samples for both CCND1 (Figure 12E)
and SNHG5 (Figure 12F).
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Figure 12. qRT-PCR cross-validates CCND1 and SNHG5 expression levels based on whole tran-
scriptome sequencing. Box-and-whisker plots showing CCND1 mRNA WTS (A) and qRT-PCR
(B) expression levels in MCL cases and control B-cell subsets. Box-and-whisker plots representing
SNHG5 lncRNA WTS (C) and qRT-PCR (D). Linear correlation graphics comparing relative expres-
sion levels based on whole transcriptome sequencing and qRT-PCR for CCND1 mRNA (E) or SNHG5
lncRNA (F). CCND1 linear correlation graphic involves one value for each of NBC, MBC, and CC
B-cell subsets as well as values for 24 MCL tumor tissue samples. SNHG5 linear correlation graphic
involves the same set of control sample values in addition to 22 MCL tumor tissue samples. WTS:
whole transcriptome sequencing; R: Pearson product-moment correlation.

4. Discussion

Mantle cell lymphoma is an aggressive but clinically heterogenous B-cell non-Hodgkin
lymphoma, of which limited knowledge exists on the role of transcripts and tumor microen-
vironment in patient prognostication. The discovery of novel transcriptional or cellular
prognostic biomarkers may potentially improve, and/or provide alternative methods for,
the current clinical evaluations to achieve better patient management, including—but
not limited to—stratifying patients for more effective therapeutic interventions. To iden-
tify prognostically significant mRNAs, lncRNAs, and microenvironmental immunocytes,
as well as to identify previously unknown MCL-associated genes in a comprehensive
manner, we have applied WTS to a reasonably large cohort of mostly diagnostic MCL cases.

Most previous studies focused on genomic alterations in MCL cases [18,90]. Among a
few reports on transcriptional alterations and pathogenesis of MCLs, certain cancer-related
transcripts were identified. In a study involving a limited number of MCL cases, ROR1-AS1
was identified to be the most significantly overexpressed lncRNA compared to control sam-
ples. In vitro overexpression experiments revealed that ROR1-AS1 may promote cancero-
genesis and decrease sensitivity to chemotherapy treatment [73]. Another study involving
a few MCL cases, as well as MCL cell lines, reported lncRNAs associated with translation
initiation complex by performing RNA immunoprecipitation (RIP)-seq [91]. Given the
scarcity of transcriptomic studies focusing on the discovery of novel MCL-related genes,
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we hypothesized that upregulated or downregulated protein-coding transcripts and lncR-
NAs can act as oncogenes or tumor suppressor genes in MCL if they are also implicated
in other cancer types. As expected, CCND1 was one of the top oncogene candidates
identified in MCL tumors confirming previous studies for constitutive overexpression
of CCND1 as an initial cancer-associated alteration that promotes uncontrolled prolifera-
tion [8]. Top underexpressed tumor suppressor candidates such as UBXN1, HNRNPA1,
PPP1R15A, and LAPTM5 may also be contributing to tumor tissue formation through inhi-
bition of apoptosis at initial stages of cancerogenesis (Table 2). Top differentially expressed
alternative transcripts may be involved in evasion of tumor cells from CD8+T-cell attack
through deregulation of antigen loading and presentation [9]. Interestingly, 7 of the top
10 oncogene candidate protein-coding genes identified (e.g., FSTL1, VCAM1, VWF) were
shown in other cancer types to promote cell migration, invasion, or metastasis. Consistent
with this finding, the top differentially expressed protein-coding genes enriched in MCL
tumors were related either to the interaction of tumor cells with the extracellular matrix
or promotion of invasion and metastasis, mainly through constitutive activation of MET
signaling (Figure 4A). Transcriptional dysregulation of several metastasis-associated genes
seems to play a critical role in dissemination of MCL tumor cells to distant sites such as
bone marrow, liver, and spleen. Many of the top oncogene candidate lncRNAs (MIR100HG,
LINC01268, FTX, etc.) were reported to promote cell growth or proliferation in different
cancer types, suggesting that these lncRNAs may be involved at initial stages of tumorigen-
esis. However, many of these lncRNAs such as MAGI1-IT1 may have roles during invasion
and metastatic dissemination.

The MCL International Prognostic Index (MIPI) is used for prognostication of MCL
cases; however, the components of MIPI are not generally specific for cancer types. For ex-
ample, high serum LDH levels may arise as a result of certain infections, anemia, or muscle
trauma [92]. As older age is associated with poor survival of mantle cell lymphoma
(Figure S3A), it was included as a component of the MIPI [10]. Interestingly, MIPI was
not associated with MCL survival in our patient cohort, although older age was asso-
ciated with inferior survival. This observation may be related to the lack of prognostic
significance of other clinical variables that are components of MIPI, such as serum LDH
levels (Figure S3D), in our MCL patients. RNA-Seq- or qRT-PCR-based quantification of
prognostically significant transcripts (e.g., VWF or MRTG.153013.3) in MCL tumor tissues
during routine clinical evaluations can potentially be used to improve prognostication of
MCL cases during diagnosis. Consistent with the association of high VWF expression and
shortened MCL survival, high expression of VWF may promote metastatic dissemination
of the MCL tumor cells, as it was reported to promote metastasis in gastric adenocarci-
noma [55] and breast cancer [93]. Many of the top overexpressed (e.g., FSTL1, TNS1, DDR2,
or VWF) or underexpressed genes were suggested to promote invasion and/or metastasis
in different cancer types. Genetic or epigenetic modulation of their expression may poten-
tially prove effective against metastatic dissemination as long as these observations are
reproduced in MCLs with in vitro or in vivo functional experiments. Alternatively, recon-
stitution of the expression of silenced tumor suppressor genes may inhibit cell proliferation
and/or metastatic dissemination. Of note, preclinical studies showed that inhibition of
VCAM1 may be an effective therapeutic option against pancreatic cancer [94]. Further-
more, inhibition of the PI3K pathway may be an effective strategy if the MCL cases with
underexpression of PIK3IP1 have constitutive activation of the PI3K signaling pathway.
Importantly, there are clinical trials evaluating the efficacy of PI3K pathway inhibitors in
MCL [91], and certain side-effects associated with PI3K pathway inhibitors may be reduced
by selecting an appropriate subset of patients through the evaluation of PI3KIP1 transcript
expression in tumor samples of diagnostic MCL cases.

Accumulating evidence suggests that tumor-infiltrating lymphocytes can be associated
with clinical outcomes for patients of different cancer types including, but not limited to,
cervical cancer [95], osteosarcoma [96], and breast cancer [97]. The observation that CD8+

T-cells were associated with poor overall survival of MCL patients is consistent with
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previous reports, indicating a poor prognostic role for these immunocytes [98,99]. Given
that MCL patients with abundant tumor-infiltrating CD8+ T-cells and low levels of FTX
or PCA3 lncRNA can predict poorer overall survival (Figure 11), it may be possible to
include WTS analysis during diagnosis to improve MCL prognostication. The observation
that high CCND1 expression could identify a high-risk MCL group in the presence of
infiltrating CD8+ T-cells (Figure S6) suggests that immunohistochemistry may potentially
be applied for prognostication as long as these transcriptomic observations are reproduced
at the protein level. Consistent with the reports on many other cancer types [100,101],
the abundance of eosinophils was associated with better overall survival for diagnostic
MCL patients. Unlike CD8+ T-cells, tumor-infiltrating resting NK cells or eosinophils were
not significantly associated with MCL survival when relapsed MM cases were included.
This observation may be related to differences in microenvironmental cell composition
within the relapsed MCL tumor tissues. Evaluation of tumor-infiltrating immunocytes,
together with clinical variables or prognostically significant transcripts, can be used to
refine risk-groups during the diagnosis of MCL cases. However, it should be noted that our
results in this study are largely exploratory, and they need to be validated in an independent
cohort of MCL cases.

There are some limitations of this study. First, the number of MCL cases included in
this study is not very large. Especially, the observations related to patient survival need to
be validated in an independent cohort of MCL patients. Second, we have not compared the
expression level changes in diagnostic vs. relapsed MCL cases, as the number of tumor
samples from relapsed MCL cases was too few. Comparison of the changes in expression
level in patient-matched tumor samples collected at diagnosis and relapse stages may
provide useful information regarding oncogenes or tumor suppressors associated with
MCL relapse. Third, our study has not evaluated the transcriptional biomarkers associated
with drug resistance, as tumor samples were not collected after therapy. Future studies
comparing transcript expression levels before and after specific types of therapies can
potentially reveal transcriptional biomarkers whose expression predicts therapy response.

A recent study proposed four different prognostically distinct clusters based on inte-
grative analysis of transcriptomic and genomic profiles [19] of MCL tumor samples. Given
that Clusters 3 and 4 were identified as being associated with poor outcome, integration of
the cancer-associated transcript (e.g., VWF) levels and/or TME immunocyte (e.g., CD8+T-
cells) ratios into this model may be useful in further refinement of these MCL subgroups.
It would also be important to evaluate the expression levels of the candidate oncogenes or
tumor suppressors identified in this study in different parts of the tumor tissues in order
to shed light onto their expression patterns and dynamics in different stages of malignant
tumorigenesis, for which single-cell transcriptomic approaches may be especially useful.
Of note, only one single-cell transcriptomic-based study has been reported for MCL tumors,
which included a limited number of MCL cases [102].

Different quality checks were applied to ensure the reliability of the WTS analyses
performed in this study, as total RNA from FFPE tumor tissues and freshly sorted tonsil
B-cell subsets were analyzed altogether. First, we addressed whether mRNAs or lncRNAs
known to be overexpressed in MCL cases have markedly high expression in our cohort of
MCL cases or not. Consistent with the observations in previous reports [103], we detected
significant upregulation of CCND1 and SOX11 mRNAs in mantle cell lymphoma cases
(Figure 2). Similarly, ROR1-AS1 lncRNA was overexpressed in MCL cases compared to
control cases in our cohort, which is in line with a previous publication showing ROR1-AS1
upregulation in MCL cases [73]. Overexpression of LINK-A lncRNA observed in MCL
tumor samples further supported the reliability of the analytical pipeline for differential
expression of WTS data applied in this study, as LINK-A was previously reported to be
overexpressed in MCL cases [20]. As a second quality check for WTS analyses, overex-
pression of CCND1 and underexpression of SNHG5 were successfully cross-validated
with qRT-PCR (Figure 12A–D). The finding that sample-by-sample comparison of CCND1
mRNA and SNHG5 lncRNA expression levels showed a strong positive correlation in
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linear correlation analyses further supported the reliability of the differential expression
analyses of the WTS data of mantle cell lymphoma cases and reactive tonsil B-cell subsets.
These observations suggest that transcript expression levels obtained from FFPE and fresh
tumor samples can be analyzed together for the identification of differentially expressed
transcripts when WTS involves ribosomal RNA depletion methods, as reported previously
by another research group [104].

5. Conclusions

In conclusion, the oncogene and tumor suppressor gene candidates identified in
MCL cases in this study may be involved in the development of MCL; however, future
studies involving in vitro and/or in vivo experiments are needed to address this possibility.
Importantly, we identified prognostically significant mRNAs and lncRNAs, as well as
microenvironmental immunocytes. The transcripts, as well as immunocytes, identified
through whole transcriptome sequencing of MCL tumors may potentially be applied in the
clinic to improve the prognostication of MCL patients during diagnosis, thereby leading to
better patient management and clinical outcomes.
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