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Abstract: Systemic sclerosis (SSc) is a systemic disease characterized by autoimmune responses, vas-
culopathy and tissue fibrosis. The pathogenic mechanisms involve a wide range of cells and soluble
factors. The complexity of interactions leads to heterogeneous clinical features in terms of the extent,
severity, and rate of progression of skin fibrosis and internal organ involvement. Available disease-
modifying drugs have only modest effects on halting disease progression and may be associated with
significant side effects. Therefore, cellular therapies have been developed aiming at the restoration of
immunologic self-tolerance in order to provide durable remissions or to foster tissue regeneration.
Currently, SSc is recommended as the ‘standard indication’ for autologous hematopoietic stem cell
transplantation by the European Society for Blood and Marrow Transplantation. This review provides
an overview on cellular therapies in SSc, from pre-clinical models to clinical applications, opening
towards more advanced cellular therapies, such as mesenchymal stem cells, regulatory T cells and
potentially CAR-T-cell therapies.

Keywords: systemic sclerosis; autoimmune diseases; cell therapies; hematopoietic stem cell
transplantation; mesenchymal stem cells; adipose tissue grafting; skin fibrosis; digital ulcers

1. Introduction

Systemic sclerosis (SSc) is a rare autoimmune systemic disease characterized by three
main dysfunctions: autoimmune responses, vasculopathy and tissue fibrosis. The result is
a progressive loss of the microvascular bed and the development of fibrosis of the skin and
internal organs, including lung and gastrointestinal tract [1]. The first and most frequent
symptom of presentation is Raynaud’s phenomenon, a direct sign of vascular dysfunction
often complicated by digital ulcers (DU), one of the major burdens for SSc patients [2].
Another manifestation of vasculopathy is pulmonary arterial hypertension which, along
with extensive skin and internal organ fibrosis, is responsible for increased disability and
mortality in SSc patients [3,4].

The etiopathogenesis of the disease is complex, but substantial progress has been made
in understanding the mechanisms involved. It is assumed that, in a genetically predisposed
population, environmental factors lead to cytokines release, immune cell activation and
connective tissue repair dysregulation [5–7]. Indeed, the fibrotic changes observed in SSc
patients are likely due to a dysfunctional repair of connective tissues in response to injuries
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like oxidative stress. A wide range of cellular components are involved, mainly endothelial
cells, mesenchymal cells, and T and B lymphocytes. Fibrosis is caused by excessive collagen
and other extracellular matrix proteins’ production by myofibroblasts. The transition of
endothelial cells to myofibroblast is induced by cytokines released by activated B and T
cells (IL-6, IFN-alfa, IL-10, TGF-beta, PDGF) [8].

Currently, SSc is considered as incurable. The recent introduction of biologic disease-
modifying drugs (DMARDs) and anti-fibrotic therapies has provided more specificity and
effectiveness. However, such therapies usually only slow the disease progression and rarely
reverse disease manifestations. Moreover, maintenance therapies expose patients to side ef-
fects, such as infections, and may be associated with a cumulative risk of co-morbidities [9].
The need to reset autoimmune pathogenic mechanisms before the appearance of exten-
sive and irreversible damage has led to many efforts to develop cell-based therapies able
to restore self-tolerance, from animal models to clinical practice [10]. Along with their
tolerogenic properties, cell-based therapies showed an interesting potential as regenerative
therapies able to repair tissues already damaged.

Here, we review the available literature on cell-based therapies in SSc, from pre-clinical
models to clinical applications, and approaches adopted in other autoimmune diseases
potentially of interest for future investigations in SSc patients.

2. Hematopoietic Stem Cell Transplantation

Hematopoietic stem cell transplantation (HSCT) has a consolidate role in treating
hematologic malignancies. For more than 20 years, there has been a growing interest
in its application for the treatment of autoimmune diseases, and as a consequence of
three positive RCT, autologous HSCT is now considered a standard therapy in refractory
SSc [11,12]. HSCT is a multistep procedure designed to replace the hematopoietic system of
a patient with a new one derived from HSCs, which can be collected from a healthy donor
(allogeneic HSCT) or from the same patient (autologous). The graft can undergo CD34
selection in order to enrich HSCs and potentially remove self-reactive lymphocytes or can
be infused unmanipulated. The ablation of autoreactive immune cells is achieved through a
conditioning regimen, which can be highly variable in intensity, ranging from fully to non-
myeloablative, and generally includes anti-thymocyte globulin (ATG). A myeloablative
regimen can be busulfan- or total body irradiation-based, whereas non-myeloablative regi-
men are mostly cyclophosphamide- or fludarabine-based. Intermediate intensity regimens
are also adopted, especially in neurological autoimmune diseases [13–17].

The rationale of autologous HSCT for autoimmune diseases is to reset a dysfunctional,
autoreactive immune system with the intent to restore a more naïve, self-tolerant one [18,19].
Several mechanisms that might participate in immunologic reset have been described,
including thymic reactivation [20,21] with a vast diversification of the TCR repertoire [21],
expansion of regulatory T cells, [22,23] and restoration of a naïve B-cell compartment with
re-emergence of regulatory B cells [21].

Among initial reports in SSc, [24,25] Farge and colleagues documented the safety and
clinical benefit of autologous HSCT in 12 patients within a phase I-II study. Hematopoi-
etic recovery was observed in all patients, and 8 out of 11 evaluable patients achieved
significant clinical response [26]. After these promising initial results, three randomized–
controlled studies have been conducted for SSc, comparing autologous HSCT to standard
immunosuppressive therapies. The phase II ASSIST trial randomized nineteen SSc patients
to receive either non-myeloablative, unmanipulated HSCT or monthly cyclophosphamide.
All patients in the HSCT arm showed both cutaneous and pulmonary improvements,
compared to lack of significant long-term benefit after standard immunosuppression with
cyclophosphamide. Notably, the authors suggested that interstitial lung disease, long
considered as being irreversible, might be at least partially reversed after HSCT, with
sustained improvements observed years after transplant [15]. In the phase III ASTIS trial,
156 patients were randomized to receive either non-myeloablative, CD34-selected HSCT
or standard immunosuppression with monthly cyclophosphamide pulse. Despite higher
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early treatment-related mortality in the HSCT arm (10% versus none, mainly attributed
to SSc-related cardiac dysfunction), event-free survival and overall survival was superior
to cyclophosphamide during follow-up [16]. Finally, in the SCOT trial, 75 patients re-
ceived either myeloablative, total body irradiation-based CD34-selected HSCT or monthly
cyclophosphamide pulses. In this study, there was remarkably low treatment-related mor-
tality in the HSCT group, which might be explained by more stringent inclusion criteria
at patient’s selection. Patients in the HSCT arm had a higher risk of severe infections in
the early stages, but after a median of 54 months of follow up, the HSCT-group showed
significant benefit in term of clinical outcomes compared to the control group [14]. HSCT
effects in SSc patients were also evaluated at a molecular level by Assassi and colleagues
comparing whole blood transcript and serum protein levels between patients in the HSCT
arm and in the cyclophosphamide arm of the SCOT trial. The authors focused on a specific
molecular signature of SSc, including high interferon level, high neutrophil gene expression
profile and low cytotoxic/NK profile, and reported a significant amelioration of all parame-
ters in the HSCT group, suggesting that HSCT may “correct” SSc-related dysfunction at
a deeper level as compared to cyclophosphamide group. Interestingly, these molecular
changes reflected improvement in pulmonary and skin involvement [27].

All these studies impressively demonstrated that sustained clinical improvements
over years after HSCT are achievable, which led autologous HSCT to be acknowledged
as standard of care for refractory SSc. However, careful patient selection is crucial for
identifying subjects who might benefit from HSCT without major complications. In this
regard, severe cardiopulmonary dysfunction at the time of transplant was identified as a
major risk for treatment-related mortality, suggesting that candidate screening through right
heart catheterization, cardiac imaging, and pulmonary function testing is recommended,
and that a patient-tailored treatment should be adopted in high-risk categories [28,29].

More recently, results from a non-interventional prospective study with 80 included
SSc patients demonstrated a 2-year progression-free survival of 81% after autologous HSCT.
By multivariate analysis, higher baseline skin-modified Rodnan skin score and older age at
transplant have been identified as predictors for lower progression-free survival, whereas
graft manipulation CD34-selection was associated with superior responses [30]. The ne-
cessity of CD34 graft selection is controversial. Some studies reported improved clinical
outcomes and better progression-free survival of CD34-selected transplants compared to
unmanipulated transplants, with comparable toxicity and infection rate [30,31], while other
failed to show any significant difference [32].

By May 2022, 776 patients with SSc have been treated with HSCT within the EBMT reg-
istry (Figure 1). While autologous HSCT is considered to be a standard treatment option [33],
use of allogeneic HSCT for SSc remains anecdotal due to higher risk of transplant-related
complications [34–37]. Reduced-toxicity HSCT platforms are needed to further investigate
and expand allogeneic procedure in AD patients [38].
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3. Adoptive Cellular Therapies

Alongside HSCT, other innovative therapeutic strategies with immunomodulatory
properties have been investigated in the context of autoimmune disease, including SSc [12]
(Figure 2).
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Figure 2. Cellular therapies might be adopted for both systemic and loco-regional use in patients
with SSc. On the left side: systemic treatments including hematopoietic stem cell transplantation,
mesenchymal stem cells, CAR-T cells and tolerogenic dendritic cells. On the right side: local
treatments rely on mesenchymal stem cells obtained from adipose tissue or bone marrow successively
engrafted to digits or perioral area.



Cells 2022, 11, 3346 5 of 21

4. Mesenchymal Stem Cells (MSC)

Mesenchymal stem cells, a heterogeneous population of stromal cells with high regen-
erative capacity that can be isolated, cultured, and expanded ex vivo, represent a promising
source for cellular therapy approaches targeting SSc due to their immunosuppressive,
angiogenic and anti-fibrotic properties [39]. Bone marrow (BM) stroma has been the main
source for MSCs for decades; however, it became evident that MSCs with similar biolog-
ical properties can also be isolated from placenta, Wharton’s jelly, blood vessels, dental
pulp, derma and adipose tissue. The clinical interest in MSCs arises from their ability to
differentiate toward mesodermal cell lineage, including chondroblasts, adipocytes and
osteoblasts, and from their paracrine effects exerted through the secretion of trophic factors,
cytokines, and other bioactive molecules within extracellular vesicles. MSCs plasticity and
their regenerative and immunomodulatory properties are known to be driven by micro-
environmental factors. This cellular plasticity reflects also on surfaces’ markers expression,
which changes overtime due to senescence, inflammation, micro-environment changes and
other pathological conditions. The International Society of Cellular Therapy (ISCT) has
released guidelines regarding the minimum criteria that need to be met to define MSCs,
which include multi-lineage differentiation potency, capacity to adhere to plastic surfaces,
positive expression of CD105, CD73 and CD90 surface markers and negative expression of
CD45, CD34, CD14, CD19 and HLA-DR surface markers [40].

MSCs of different tissue origin have been investigated for treating several indications,
including tissue injuries, autoimmune diseases, and metastatic cancer [41–46]. Use of both
autologous and allogeneic MSCs has been investigated. Given the low HLA expression on
MSCs, there is not HLA-matching restriction when searching from MSC donors, minimizing
the risk for immunological reactions [47]. However, recent studies reported some innate and
adaptive immune responses triggered by allogeneic MSCs administration [48,49] despite
being less potent compared to responses triggered by other cell lines.

Indeed, the destiny and long-term persistence of infused MSCs are a matter of debate.
In preclinical models, syngeneic MSCs can persist for a long time, whereas allogeneic MSCs
tend to be eliminated more rapidly [50]. Eggenhofer et al. observed viable MSCs only
within the lungs after intravenous infusion, but not in other tissues [51]. Finally, monitoring
of infused unmanipulated MSCs is challenging, due to a lack of cell-specific markers; a
combination of cytokines’ hyper expression and inhibition above certain limits has been
proposed as an indirect way to monitor MSCs potency and activity. In allogeneic setting,
quantitative PCR chimerism can be potentially adopted for MSCs tracking.

Interestingly, the clinical effects of MSC-based therapy can often be observed for
longer periods compared to their persistence in vivo. In a study on six patients with
osteogenesis imperfecta treated with gene-marked MSCs, Horwitz et al. documented
increased bone mineral density and reduced bone fractures despite only less than 2%
of MSCs actually engrafted [52]. In an experimental model of SSc, Maria et al. showed
how anti-fibrotic effect documented after MSCs infusion lasted up to 21 days, despite
MSCs being undetectable after 7 days [53]. Similar results were shown in other settings,
including myocardial infarction [54] and cerebral ischemia [55]; in the latter, MSCs injection
determined prolonged benefits despite the majority of MSCs failing to engraft and only a
minority differentiating into astrocytes.

This discrepancy has led to the hypothesis that MSCs’ biological effects do not rely
only on cell engraftment and differentiation, but also on paracrine effects exerted through
the secretion of trophic factors, cytokines and other bioactive molecules. For example, au-
tologous MSCs collected from patients with SSc appear to increase levels of pro-angiogenic
factors in vitro [56] and to promote revascularization in vivo [57] despite studies document-
ing their defective differentiation into endothelial cells [58]. In recent years, major interest
has grown around MSCs-derived exosome vesicles, a relevant part of MSCs’ secretome
that contain proteins, DNA, mRNA, and miRNA, which can be released in the extracellular
environment and horizontally transferred to target cells [59]. Through these and other
mechanisms, MSCs promote chemoattraction, cellular survival and growth, tissue repair.
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Furthermore, Bartholomew and colleagues initially reported that MSCs can influence
immune system function by suppressing lymphocytes response and preventing in vivo
rejection of skin graft. Subsequent experiments showed that MSCs shape the immune
system by favoring the shift towards a regulatory T cell phenotype, inhibiting dendritic
cell maturation and natural killer (NK) cells’ cytotoxicity, and downregulating B-cell pro-
liferation. Notably, MSCs’ immunomodulatory properties depend on the inflammatory
status, again confirming the susceptibility to the surrounding micro-environment. Indeed,
some [60,61], but not all authors [62,63], reported that MSCs collected from patients with
autoimmune diseases, despite showing similar differentiating potential, phenotype and
surface markers expression compared to MSCs from healthy donors, display reduced
clonogenic, proliferating and migrating capacity. A pro-fibrotic phenotype has also been
reported in MSCs from these patients [64,65].

All these complex and fascinating characteristics have induced investigations towards
MSCs as treatment for immune system dysregulation. A paradigmatic example is graft-
versus-host disease [GvHD]. Since the first report of the successful use of third-party MSCs
in a case of refractory acute GvHD [66], several phase I–II studies have shown the safety
and applicability of this approach [67,68]. Despite some authors have raised concerns
about higher infection rate [69] and relapse rate [70], subsequent studies did not confirm
these observations. Remestemcel-L (Prochymal), an off-the-shelf BM-derived MSC product,
has shown to be effective in combination with steroids as a first-line treatment for acute
GvHD [71]; in the steroid-refractory GvHD setting, Remestemcel-L as a single agent led
to 61% of overall response and significant improvement of survival outcomes [72]. MSCs
role in GVHD prophylaxis is anecdotal, with controversial results; whereas some authors
reported faster engraftment [73], decrease in acute GvHD rate [73–75] and chronic GvHD
rate [76] in patients receiving prophylactic peri-transplant MSC infusion, others failed to
observe any significant improvements [77,78]. Non-homogeneity of MSCs subtypes, dose
and timing might partially explain these observations.

4.1. Intravenous MSCs Use

In animal models of SSc, several in vivo studies showed that the infusion of MSCs
could limit the cellular damage and collagen deposition. For example, bone marrow-
derived MSCs infused intravenously after exposure to bleomycin in a rat model of SSc
resulted in decreased levels of tissue injury markers within the bronchoalveolar lavage fluid
and decreased levels of proinflammatory cytokines [79]. Similarly, Moodley et al. reported
improvement of pulmonary fibrosis after the infusion of umbilical cord-derived MSCs in a
bleomycin-induced SSc model, with reduced levels of TGF-beta and IFN-gamma, as well as
decreased collagen deposition within the lungs [80]. Subsequently, Yang et al. documented
improvements in cutaneous fibrosis after the infusion of umbilical cord-derived MSCs in
the a bleomycin-induced SSc model, with decreased collagen synthesis and inhibition of
Th-17 cell function [81]. Analogous results have been obtained in the HOCI-induced model,
in which the elevated levels of plasmatic nitric oxide and of cutaneous/lung tissue α-SMA
and TGF-β1 normalized after umbilical cord- or bone marrow-derived MSC infusions,
reaching nearly a normal histopathology of lung and skin [82–84] Interestingly, also the
administration of extracellular vesicles derived from MSCs primed with IFN-gamma has
been demonstrated to improve lung-fibrosis in preclinical studies [85,86].

Given these experiences in preclinical models, MSCs have been investigated in patients
with SSc in recent decades. Published data are restricted to small case series or retrospective
studies, but all reported high safety of the treatment with a very low rate of therapy-related
mortality (Table 1) [57,87,88].
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Table 1. Clinical trials investigating mesenchymal cells for the treatment of systemic sclerosis.

MSC
Isolation

Administration
Route Source Treated

Patients
Clinical
Target Outcome

Major
Adverse
Events

References

BM-derived
MSCs Intravenous Allo 1 Severe

diffuse SSc

Ulcer healing and
improved skin

elastic-
ity/vascularization

None Christopeit
et al., 2008

BM-derived
MSCs Intravenous Allo 5 Severe

diffuse SSc

All patients had
temporary clinical

improvement

Minor
respiratory
infection

Keyzer
et al., 2011

BM-derived
MSCs Intravenous Allo 20 Severe

diffuse SSc

15 patients showed
sustained

improvement in skin
thickness

None Farge
et al., 2022

BM-derived
MSCs and
peripheral

blood MSCs

Intramuscular
injection Auto

6
(4 SSc, 2
mixed

connective
tissue disease)

Severe
ischaemia

and necrosis
in fingers

and/or toes

Pain relief in 5/6
patients None Kamata

et al., 2007

BM-derived
MSCs and
peripheral

blood MSCs

Intramuscular
injection Auto 2

Severe digital
and malleolar

ulcers

All had
improvements with
ulcers healing, pain
relief, reduction of

RP

None Nevskaya
et al., 2009

BM-derived
MSCs and
peripheral

blood MSCs

Intramuscular
injection Auto

46
(24 SSc, 22

other
connective

tissue
diseases)

Severe digital
ulcers

20/23 SSc patients
had improvement in

pain and ulcers
None Takahashi

et al., 2009

BM-derived
MSCs

Intramuscular
injection Auto 8 Severe digital

ulcers

All had ulcers size
and pain

improvement
None Ishigatsubo

et al., 2010

BM-derived
MSCs

Intramuscular
injection Auto

40
(11 SSc, 29
with arte-

riosclerosis
obliterans)

Severe digital
ulcers

All had pain and
trans-cutaneous
oxygen tension
improvement

Major limb
amputation

due to
pre-existing

osteomyelitis

Takagi
et al., 2014

Adipose
derived cell

fractions

Subcutaneous
injection Auto 13 Raynaud’s

phenomenon

10 patients had
clinical benefit, 3

reported no changes.
None Bank et al.,

2014

Adipose
derived cell

fractions

Subcutaneous
injection Auto 20 Peri-oral

fibrosis

All patients had
improved skin
elasticity and

vascularization

Small areas
of

ecchymosis

Del Papa
et al., 2015

Adipose
derived cell

fractions

Subcutaneous
injection Auto 15 Severe digital

ulcers

All patients
displayed clinical
benefit with fast
healing of digital

ulcers

None Del Papa
et al., 2015

Adipose
derived cell

fractions plus
platelet-rich

plasma

Subcutaneous
injection Auto 6 Peri-oral

fibrosis

All patients had
improved skin
elasticity and

vascularization

None Virzì et al.,
2017
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Table 1. Cont.

MSC
Isolation

Administration
Route Source Treated

Patients
Clinical
Target Outcome

Major
Adverse
Events

References

Adipose
derived cell

fractions

Subcutaneaous/
perioral
injection

Auto 6 Skin
scleroderma

Improvement in 4
patients,

stabilization in all
None Scuderi

et al., 2013

Adipose
derived cell

fractions

Subcutaneous
injection Auto 5 Peri-oral

fibrosis

All patients had
improvement to
perioral fibrosis

None Onesti
et al., 2016

Adipose
derived cell

fractions plus
platelet-rich

plasma

Subcutaneous
injection Auto 7 Peri-oral

fibrosis

All patients had
improvement to
perioral fibrosis

None Blezien
et al., 2017

Adipose
derived cell

fractions

Subcutaneous
injection Auto 62 Peri-oral

fibrosis
Improvement in
mouth opening

Superficial
wound

infection

Almadori
et al., 2019

SVF Subcutaneous
injection Auto 12 Severe hand

dysfunction

Improvement of
pain, grasping
capacity, finger

oedema, Raynaud’s
phenomenom,
quality of life

None

Guillaume-
Jugnot

et al., 2016,
Daumas

et al., 2017,
Granel

et al., 2015

SVF Subcutaneous
injection Auto 18 Severe hand

dysfunction

Improvement of skin
fibrosis, hand

oedema, and quality
of life

None Park et al.,
2020

Adipose
derived cell

fractions

Subcutaneous
injection Auto 9 Severe digital

ulcers

All patients had pain
improvement,
digital ulcers

improvement or
healing

None Del Bene
et al., 2014

Adipose
derived cell
fractions vs

placebo

Subcutaneous
injection Auto 25 vs. 13 Severe digital

ulcers

23/25 and 1/13
patients had digital
ulcers improvement

and healing, pain
reduction and

improvement on nail
fold capillaroscopy

None Del Papa
et al., 2019

SVF
vs placebo

Subcutaneous
injection Auto 20 vs. 20 Severe hand

dysfunction

Improvement of
hand function in

both groups, with no
superiority of the

SVF

Hypoxaemia
during the

surgical
process

Daumas
et al., 2022

Adipose
derived cell
fractions vs

placebo

Subcutaneous
injection Auto 48 vs. 40 Severe hand

dysfunction
No improvement of

hand function

Aspiration
pneumonia,
hypotension,

angina

Khanna
et al., 2022

BM, bone marrow; MSCs, mesenchymal stem cells; SVF, stromal vascular fraction; SSc, systemic sclerosis. Adapted from
Rozier et al. [89].

In a retrospective study, Liang et al. investigated the safety of a single dose of intra-
venous allogeneic MSCs from either a bone marrow or cord blood source; the study focused
on 404 patients with autoimmune diseases treated from 2007 and 2016, including 39 cases
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with SSc. The primary endpoint was safety and tolerability of the treatment. The five-year
overall survival was about 90%, with disease-progression or disease-related complication
being the most frequent cause of death, and only one patient experiencing therapy-related
death. The infection rate was up to 30%, with severe infection being around 13%, which,
according to the authors, could not only be explained as a treatment complication, but
might have been partially explained by disease-related immune dysfunction [90].

Zhang et al. investigated the combination of plasmapheresis and allogeneic MSC trans-
plant in 14 patients with SSc. As per study design, patients received repeated plasmaphere-
sis, with subsequent three cyclophosphamide pulse and a single dose of 1 × 106 cells/kg of
body weight of MSC. Efficacy was measured through serologic testing and organ function
analysis. The authors observed significant improvements in the mean modified Rodnan
skin score after one year of follow up, as well as in pulmonary function tests in a subset
of patients with lung fibrosis. Levels of anti-Scl70 autoantibodies, VEGF and TGF-beta
decreased overtime [91].

More recently, Farge et al. reported the use of bone marrow-derived MSCs in 20 pa-
tients with insufficient response or contraindications to immunosuppressive therapy or
HSCT. MSCs-infused doses were either 1 × 106 or 3 × 106 per body weight kilogram.
The infusion was overall well tolerated, without treatment-related severe adverse events.
Fifteen patients responded, with clinical benefits in terms of skin thickness [92].

Small case series have been reported as well, all showing at least transitory clinical
improvements [57,88]. Optimal cell doses, administration timing, as well as source (autolo-
gous versus allogeneic) are still a matter of debate, and large, prospective clinical studies
are warranted. Van Rhijn-Brouwer [93] reported the opening of a randomized, placebo-
controlled study proposal (MANUS trial, NCT03211793) using intramuscular MSC injection
in 20 patients suffering from SSc with DU refractory to standard treatments. Other studies
have been posted on clinicaltrials.gov, aiming to investigate allogeneic MSC infusion in
this setting (NCT05016804, NCT04432545, NCT04356287, NCT02213705).

4.2. Loco-Regional MSCs Use

Loco-regional MSCs use may have the advantage of treating specific SSc manifestations
that severely impact quality of life, like ischaemic ulcers and skin fibrosis, in a targeted
way. A promising MSCs source for local treatments appears to be the adipose tissue (AT), a
tissue enriched in MSCs 500-fold greater than BM, AT-MSCs that are more easily available
with painfulness collection procedures and minimal ethical considerations. AT-MSCs can
be collected through liposuction from subcutaneous AT of abdominal wall or AT biopsy
and expanded in vitro [83]. The harvested AT is composed of mature adipocytes (90%),
extracellular matrix, and a stromal vascular fraction (SVF) which consists of AT-MSCs,
along with endothelial progenitor cells, immune cells, fibroblasts, smooth muscle cells,
mature endothelial cells, pericytes and cells not characterized yet [94]. SVF contains a
percentage of MSCs estimated at 2–10% [95].

The regenerative potential of AT-MSCs is dependent on the paracrine effects of their
secretome, constituted by a wide range of chemokines, cytokines, and protein growth
factors: prostaglandin 2, vascular endothelial growth factor (VEGF) and interleukin (IL)-4,
IL-6, IL-10 and IL-1 receptor antagonist [96,97]. All together, these soluble mediators sustain
angiogenesis and tissue remodeling and suppress local inflammatory responses based on
the local environment. Indeed, hypoxic conditions enhance a pro-angiogenic profile of
AT-MSCs [98,99]. To obtain SVF, some authors used the commercially available Cytori
therapeutics Celution800/CRS device (Cytori Therapeutics, San Diego, CA, USA) that
processes a fat aspirate to remove fat and lipids and extract SVF or, as referred to by the
company, “adipose derived regenerative cells (ADRC)”. The advantage of this technique
is that removal of fat cells allows for the injection of the processed SVF or ADRC directly
into arteries without risk of fat embolism. However, in order to reduce the time and costs
of carrying out fat grafting without a cell lab, other authors centrifuged the harvested fat
tissue and eliminated the upper oily supernatant as well as blood and debris at the bottom
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of the centrifuge. Only the middle layer containing adipose-derived cell fractions, such as
AT-MSCs and endothelial progenitor cells, is then used for loco-regional use.

AT-MSCs have already been applied to regenerate tissues in many diseases like car-
diovascular diseases, breast reconstruction after radiation and burn injuries [100–102]. In
SSc, AT-MSCs have been used locally to treat skin fibrosis and DU, both responsible for
important disability and morbidity. First studies have been conducted in localized scle-
roderma lesions, i.e., linear scleroderma and morphea, and showed an improvement in
skin elasticity and appearance [103]. Granel et al. described a significant improvement in
hand skin elasticity and function [104], later confirmed by other authors [105–107]. In addi-
tion, several authors reported improved labial rhyme opening through reduced perioral
fibrosis and neoproliferation of dermal capillaries [108–112]. More recently, two controlled
trials failed to reach the primary endpoint of significant improvement of hand function
in SSc patients treated with SVF [113,114]. Larger trials are needed to better understand
the therapeutic efficacy of AT-MSCs injection on skin fibrosis of SSc patients. Really, the
micro-environment of the site of injection may have compromised the regenerative capacity
of AT-MSCs or induced a myo-fibroblast-like differentiation; in addition, the use of SVF
instead of whole fat may have contributed. Indeed, it is thought that SVF may be superior,
since adipocytes and other cells are eliminated leaving higher concentrations of MSCs, but
clear demonstration is lacking [115].

The pro-angiogenic properties of AT-MSCs have been exploited through subcutaneous
injection in patients affected by DU resistant to standard treatment, with different protocols
and wide variations in the harvesting, processing, and injection techniques. The use of
AT-MSCs as DU therapy has been encouraged by clinical data obtained from intramuscular
injection of BM-MSCs in 49 patients with DU enrolled in five different studies [116–120].

Bank et al. [121] were the first authors to treat with autologous fat grafting primary and
secondary Raynaud’s phenomenon. In this way, the authors have observed a significant
decrease in DU with minor side effects (transient numbness, cellulitis responsive at antibi-
otics in 1 case). Subsequently, two pilot studies demonstrated the efficacy of autologous
fat grafting in inducing ulcer healing when injected at the border of the larger ulcers or
at the base of the corresponding finger. Del Bene et al. treated 9 SSc patients for a total
of 15 ulcers, achieving the healing of 10 DU and the size reduction above 50% of 2 DU in
8–12 weeks, with pain improvement in almost all patients. Only DUs that were located
in the lower extremity or associated with atherosclerosis did not heal [122]. Del Papa
et al. treated 15 SSc patients with long-lasting DU, achieving healing in all the patients
in 2–7 weeks and with a significant reduction of pain in a few weeks. Interestingly, they
also observed an increase in nail-fold capillaries at capillaroscopy at 3 and 6 months, and a
significant after-treatment reduction of digit artery resistivity measured by high-resolution
echo-color-Doppler, strongly supporting the pro-angiogenic efficacy of regional autologous
fat grafting [123].

Encouraged by these data, in order to overcome pilot study limits, a monocentric
randomized controlled study has been conducted. SSc patients were randomly assigned
to receive either autologous fat grafting (n = 25) or a sham procedure with saline solution
injection (n = 13). DU healing occurred in 23/25 and 1/13 patients treated with fat grafting
and sham procedure, respectively. The 12 patients who received the unsuccessful sham
procedure subsequently underwent rescue autologous fat grafting with DU healing in all
of the patients within 8 weeks. The authors also confirmed significant pain improvement
and an increase in nailfold capillaries already observed in the pilot study [124].

These studies have demonstrated that AT-MSCs therapies based on subcutaneous
injection are safe and efficacious in treating microvascular complications of SSc such as
long-lasting DU and could be the milestone for future clinical trials and applications.

5. Regulatory T Cells and Chimeric Antigen Receptor T Cells

Regulatory T cells (Tregs), a subtype of CD4 T helper cells with immune suppressive
properties, are dysfunctional in several autoimmune syndromes [125]. The frequency of
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circulating Tregs was found to be inversely correlated with the disease activity and severity
of SSc patients [126]. Theoretically, administering Tregs in this population can potentially
lead to more tolerogenic micro-environment. Kamio and colleagues reported fibrosis
regression after the infusion of splenic-derived Tregs in an animal model of bleomycin-
induced pulmonary fibrosis [127]. Initial studies in humans using T regs (or IL-2, with
subsequent boost of T regs) have focused on GvHD prophylaxis and treatment in allogeneic
transplant recipients [128–131]. Despite being safe overall, polyclonal Tregs mediated
sub-optimal responses in initial clinical trials, mainly due to the low amount of disease-
relevant antigen-specific T cells [132,133]. A phase I/II clinical trial is currently being
conducted to evaluate the tolerability and efficacy of autologous Tregs in patients with SSc
(NCT05214014).

Chimeric antigen receptor (CAR) T cells are an engineered cellular product that com-
bine B-cell antibody-based antigen recognition with T-cell cytotoxicity. This technology is
redefining therapeutic strategies in the onco-hematologic field; however, the CAR ability
of conferring new antigen-specificity while boosting cellular activation can be potentially
employed in other setting. Indeed, in autoimmune diseases, the abrogation of autoreactive
cells obtained through CAR T cells may be more profound and prolonged and might over-
come the inaccessibility of inflamed tissues compared to standard drug-based approach.

In preclinical studies on models of autoimmunity, Ellebrecht et al. reported chimeric
autoantibody receptors (CAARs), in which the engineered chimeric receptor displays the
target protein of autoantibodies in its extracellular domain; through this mechanism, CAAR
T cell would specifically bind the B-cell receptors of an autoreactive B cell, triggering
its apoptosis and reducing its autoantibody production [134]. Different autoantibodies
described in SSc appear to be associated with different clinical presentation and might
be investigated for developing SSc-specific CAAR T cells. Whereas in some autoimmune
disease specific antigen targets can be identified (e.g., insulin in type 1 diabetes), in other
subtypes, including systemic sclerosis, the lack of one single autoantigen represents an
obstacle for CAR-T cells’ efficacy.

CAR-T cells are also being studied as an anti-fibrotic approach. An interesting pre-
clinical analysis published by Aghajanian and colleagues reported the use of CAR-T cells
directed against fibroblast activation protein in a mouse model of cardiac fibrosis. In this
model, CAR-T CD8+ cells successfully ablated cardiac fibroblast expressing xenogeneic
antigen [135]. This approach has been further explored by the same group through the
adoption of transient anti-fibrotic CAR-T cells in vivo by delivering modified messenger
RNA in T cell–targeted lipid nanoparticles in order to improve its safety [136].

Despite these promising results in pre-clinical models, clinical trials in patients with
connective tissue diseases are still preliminary. Following the positive results of the first
CAR-T-cell therapy in systemic lupus erythematosus [125], the authors recently presented
an update of five patients with multi-organ involvement and insufficient response to
multiple previous therapies [137]. All patients received autologous CD19-directed CAR-T
cells, without developing relevant toxicities, and only three patients experienced fever
(cytokine-release syndrome grade 1), one received a single infusion of tocilizumab with
symptoms relief; no infection occurred. After a follow-up of three months, circulating
CAR-T cells were still detectable, along with a re-emergence of B cells after a median
110 of days post-infusion. All patients had a normalization of serum double-stranded
DNA antibodies and complement levels and, most importantly, the resolution of nephritis
and other disease-related symptoms. These data suggest a rapid response of autoimmune
disease to CAR-T-cell therapy, although follow up is needed to determine long-term efficacy.

Major concerns regarding CD19-directed CAR-T cells is prolonged B-cell depletion and
the subsequent increase of infection rate, which is already consistently high in population
autoimmune diseases. In this regard, alternative approaches include T regs, a potential
platform for CAR construct engineering with less B-cell-depleting capacity and more
immune-modulating properties. CAR-T regs might potentially target either autoreactive
B-cell markers (e.g., CD19), or antigens expressed on the tissue under autoimmune attack,
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or pathologic immune-complexes [138]. Elinav and colleagues firstly reported the use of
CAR-T regs in a murine model of autoimmune colitis, showing their ability to specifically
modulate pathologic effector cells, improving colitis-associated signs [139]. Other authors
have investigated CAR-T regs in autoimmune models: Blat et al. reported decreased
severity of ulcerative colitis after infusion of carcinoembryonic antigen-specific CAR-T
regs [140], whereas Tenspolde et al. reported safety and long-term in vivo persistence of
insulin-specific CAR-T regs in type 1 diabetes mellitus [141]. Compared to unmanipulated
T regs, potential advantages of CAR-T reg technology include the ability to redirect T
regs’ suppressive capacities while increasing the number of antigen-specific cells to be
transferred to the patient. Compared to other CAR-T products, CAR T regs might have a
higher safety profile in terms of off-target toxicity and effect on immune competence [138].

Ongoing studies using CAR-T cells directed against CD19 and B-cell maturation
antigen (BCMA) in patients with SSc are available on clinicaltrials.gov (NCT05085444).

6. Tolerogenic Dendritic Cells

The surrounding micro-environment can skew the maturation path of immature
dendritic cells toward either an immunogenic or a tolerogenic, semi-mature phenotype.
Tolerogenic dendritic cells (tolDCs) play central roles in maintaining peripheral tolerance
homeostasis, through secretion of anti-inflammatory cytokines (e.g., IL-10) and the ex-
pression of inhibitory molecules during antigen presentation. Indeed, after cell-to-cell
interaction between T cells and tolDC, the absence of co-stimulatory molecules on tolDC
prevents T-cell activation, whereas the presence of inhibitory molecules induces T-cell
anergy or differentiation toward T regs.

Many protocols for in vitro and in vivo generation of tolDCs from human monocytes
have been investigated, mainly in animal models. The characterization of tolDC phenotype
has been reported by Comi and colleagues [142]. In this context, tolDCs loaded with
disease-specific target antigens have the potential to reset and re-educate the dysfunctional
immune system by abrogating pathological autoreactive T cells and promoting their anergy
or differentiation toward regulatory phenotype. In a murine model of multiple sclerosis,
Mansilla and colleagues reported that infusion of tolDCs loaded with myelin oligoden-
drocyte glycoprotein increased regulatory T cells population and decreased autoreactive
T cells’ clones, which translated into neurological improvements [143]. After infusion,
tolDCs have been traced to several organs, including lungs, kidney, liver, spleen, lymph
nodes, thymus, bone marrow and central nervous system. However, different generation
platforms as well as route of administration appear to influence tolDCs anti-inflammatory
properties, their expression of trafficking chemokine receptors and their migration capacity
into target organs [144,145].

TolDCs have been investigated in phase I studies in patients with multiple sclerosis,
autoimmune arthritis, Crohn’s disease, and type 1 diabetes [146]; these preliminary analyses
proved that tolDC administration was overall safe, determined a trend of decrease of
pro-inflammatory cytokines and T cells and increase of T regs, as observed in murine
models, and improved clinical symptoms. However, standardization of protocols for tolDC
generation and administration is needed before their routine clinical use is possible, as well
as better knowledge of immune monitoring to measure in vivo biological effect. No studies
on tolDCs-based therapy for SSc have been published yet.

7. Open Questions and Future Perspectives

The biological complexity and the clinical heterogeneity of SSc raise several challenges
to finding the optimal treatment (Figure 3). Autoreactive B- and T-cell clones and the
dysregulation of adaptive and innate immune systems play central roles in the disease
pathogenesis. Several therapeutic approaches to target them have been investigated;
however, as of now, there are no biologic or immunosuppressive drugs able to effectively
improve long-term drug-free survival [147].
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The lack of effective therapies has guided several approaches toward the development
of cell-based therapies able to restore self-tolerance [10]. Autologous hematopoietic stem
cell transplant has been investigated in SSc patients in order to obtain profound immune
ablation of self-reactive cells. Several phase III trials proved its benefit over standard
immunosuppressive drugs in terms of long-term disease control. However, patients with
severe cardiopulmonary dysfunction who undergo HSCT are at higher risk of transplant-
related morbidity and mortality, thus, we could speculate that HSCT should be offered
at earlier stages of their disease before the development of cardiopulmonary impairment.
The appropriate patient selection and the investigation of patient-tailored, low intensity
conditioning regimen represent important steps in the transplant algorithm for SSc.

Efforts have been made to investigate other non-transplant, cell-based therapies.
Despite the increasing knowledge of SSc physiology, it is still unclear which patients
would not have sustained response from immunosuppressants and thus could benefit from
early use of cellular-based treatments. Among all, mesenchymal stem cells have raised
significant interest: along with their tolerogenic properties, MSC-based treatments showed
an interesting potential as regenerative therapies, able to repair tissues already damaged,
without conferring the potential toxicities secondary to conditioning regimen and aplasia
of HSCT. Both local and systemic use of MSCs have been studied in phase I and II studies,
documenting their overall safety and potential efficacy in stabilizing, or improving, the
disease. Systemic therapies may have application in diffuse cutaneous thickening and
internal organ fibrosis such as interstitial lung disease, one of the most frequent causes
of mortality in SSc patients and an exclusion criterion for HSCT, when extended. Local
MSCs therapies have been applied in digital ulcers and skin fibrosis (mainly perioral) with
improvement of both vascularization and elasticity. These techniques could be an add-on
therapy to standard drug treatments in refractory disease. MSCs exert their regenerative
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properties also trough their secretome, that prolong their biological effect in situ. More
studies are needed in order to evaluate the persistence of MSCs engrafted or infused and
the long-term effects of these cells in SSc patients.

Another emerging potential approach could be the use of T-cell therapies. The use
of polyclonal T regulatory cells is intriguing as, theoretically, restoration of this cellular
subset which is dysfunctional in patients with SSc might provide immune modulation and
disease control. Unfortunately, challenges in in vitro expansion and long-term persistence,
as well as difficulties in the identification of specific antigens, have significantly slowed
T-regs introduction in clinical fields. Results from ongoing studies are awaited.

Engineering of T cells through the creation of chimeric antigen receptors has led to
substantial changes in the treatment of onco-hematologic diseases. CAR-T cells have the
advantage of recognizing antigen in an HLA-independent fashion. Targeting B-cell-specific
antigens like CD19 and B-cell maturation antigen might determine a broad depletion of
autoreactive B cells, also within affected tissues, thus resetting the autoimmune process.
However, these benefits might be counterbalanced by profound normal B-cell depletion, as
seen in hematologic patients receiving CAR-T cells, leading to prolonged infectious risk.
Recent reports of patients with systemic lupus erythematosus receiving CD19-CAR-T-cell
therapy are promising, showing sustained disease remission and low toxicity [137,148].
However, more clinical studies are warranted to determine the long-term safety in patients
with autoimmune diseases. Using T regs as substrate for CAR-T cells might be safer in this
context, as they do not have a cytotoxic profile and could potentially restore immunologic
tolerance. Choice of alternative CAR-T-cell target is also a matter of debate: fibroblasts
are a potential targetable pathway, as shown by Aghajanian et al. [135] in murine models
of cardiac fibrosis, although it is unclear, given the complex pathophysiology of SSc, if
targeting only the final steps of the biological process could translate into sustained clinical
resolution. Nevertheless, the CAR-T-cell strategy could potentially be similarly effective as
autologous HSCT, yet with less toxicity, and might be a valid alternative in frail patients who
cannot undergo HSCT. Also, modulation of chemotherapy dosages in the lymphodepletion
regimen is being evaluated in onco-hematologic patients receiving CAR-T cells and could
translate into a less toxic preparative regimen.

In conclusion, at this stage, more data are needed to draw conclusions regarding
which patients might benefit from which approach. Treatment for SSc is an evolving
field, and new approaches are currently under evaluation. Better understanding of the
pathologic mechanisms will lead to the development of new, specific therapies to target
cellular interactions and to impact clinical outcomes.
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man clinical results of the treatment of patients with graft versus host disease with human ex vivo expanded CD4+CD25+CD127-
T regulatory cells. Clin. Immunol. 2009, 133, 22–26. [CrossRef]

129. Brunstein, C.G.; Miller, J.S.; Cao, Q.; McKenna, D.H.; Hippen, K.L.; Curtsinger, J.; Defor, T.; Levine, B.L.; June, C.H.; Rubinstein,
P.; et al. Infusion of ex vivo expanded T regulatory cells in adults transplanted with umbilical cord blood: Safety profile and
detection kinetics. Blood 2011, 117, 1061–1070. [CrossRef]

130. Di Ianni, M.; Falzetti, F.; Carotti, A.; Terenzi, A.; Castellino, F.; Bonifacio, E.; Del Papa, B.; Zei, T.; Ostini, R.I.; Cecchini, D.; et al.
Tregs prevent GVHD and promote immune reconstitution in HLA-haploidentical transplantation. Blood 2011, 117, 3921–3928.
[CrossRef]

131. Matsuoka, K.; Koreth, J.; Kim, H.T.; Bascug, G.; McDonough, S.; Kawano, Y.; Murase, K.; Cutler, C.; Ho, V.T.; Alyea, E.P.; et al.
Low-dose interleukin-2 therapy restores regulatory T cell homeostasis in patients with chronic graft-versus-host disease. Sci.
Transl. Med. 2013, 5, 179ra143. [CrossRef] [PubMed]

132. Bluestone, J.A.; Buckner, J.H.; Fitch, M.; Gitelman, S.E.; Gupta, S.; Hellerstein, M.K.; Herold, K.C.; Lares, A.; Lee, M.R.; Li, K.; et al.
Type 1 diabetes immunotherapy using polyclonal regulatory T cells. Sci. Transl. Med. 2015, 7, 315ra189. [CrossRef] [PubMed]
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