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Abstract: High-mobility group box 1 (HMGB1), a member of damage-associated molecular patterns
(DAMPs), is involved in the immune regulation of several infectious diseases. Mycoplasma gallisepticum
(MG) infection is proved to cause an abnormal immune response, but the role of HMGB1 in MG-
induced chronic respiratory disease (CRD) is unclear. In this study, we found that HMGB1 was
released from the nucleus to the extracellular in macrophages upon infection with MG. Extracellular
HMGB1 bound to TLR2 activating the NF-κB pathway triggering a severe inflammatory storm and
promoting the progression of MG infection. More importantly, TLR4 could be activated by HMGB1
to trigger immune disorders after TLR2 was silenced. This disease process could be interrupted by
ethyl pyruvate (EP) inhibition of HMGB1 release or glycyrrhizic acid (GA). Furthermore, treatment
of MG-infected chickens with GA significantly alleviated immune organ damage. In conclusion, we
demonstrate that HMGB1 is secreted extracellularly to form an inflammatory environment upon MG
infection, triggering a further cellular inflammatory storm in a positive feedback approach. Blocking
MG-induced HMGB1 release or suppression downstream of the HMGB1-TLR2/TLR4 axis may be
a promising novel strategy for the treatment of CRD. Furthermore, this study may provide a theoreti-
cal reference for understanding non-LPS-activated TLR4 events.

Keywords: HMGB1; TLR2/TLR4; Mycoplasma gallisepticum; NF-κB signaling pathway; inflammatory
cytokine storm

1. Introduction

Damage-associated molecular patterns (DAMPs) are endogenous molecules that acti-
vate the immune system by interacting with pattern recognition receptors (PRRs) such as
Toll-like receptors (TLRs), RIG-I-like receptors (RLRs), NOD-like receptors (NLRs), and
non-pattern recognition receptors [1,2]. High-mobility group box 1 (HMGB1), typical of
DAMPs, is a nuclear protein that is commonly expressed and highly conserved in almost
all eukaryotic cells with multiple roles in a variety of pathophysiological processes [3].
It can be transferred from the nucleus to cytoplasm and extracellular compartments to
perform immune functions upon exposure to cellular stress [4]. HMGB1 is released both
through active secretion or passively following various types of cell death (such as necrosis,
apoptosis, pyroptosis, and ferroptosis) and serves as an inflammatory mediator to induce
cellular immune responses [5]. Extracellular HMGB1 may bind to soluble extracellular
immune activating molecules or directly to cell surface receptors of immune cells (mainly
TLR2 and TLR4) [6]. It further propagates intracellular cascade signals that promote the
expression and release of inflammatory cytokines, mediating/triggering inflammation and
activating innate and adaptive immunity [7,8].

TLR2 and TLR4 are key TLRs types that closely relate to HMGB1. HMGB1 stimula-
tion upregulates TLR2 and TLR4 levels in macrophages [9]. It has been shown that the
mechanism of HMGB1-induced inflammation and injury is associated with TLR4/MD-2.
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TLR4/MD-2 mediates macrophage activation and overproduction of cytokine release [10].
HMGB1 itself possesses the ability to induce TLR4 signaling, presenting a new idea for
the study of TLR4 pathway activation by non-LPS or non-TLR4 ligands [11]. Numerous
studies have shown that HMGB1 activates the IKK kinase complex, including IKKα and
IKKβ, through TLR4 receptor signaling, which then leads to phosphorylation of IκB and
nuclear translocation of NF-κB [12]. The persistent activation of the NF-κB pathway leads
to sustainable cellular inflammation and triggers immune disorders [13].

A key characteristic of pathogenic mycoplasma that interferes with the host response
is its ability to alter the secretion of immunomodulatory substances [14]. Mycoplasma
gallisepticum (MG), a major pathogenic microorganism causing chronic respiratory disease
(CRD) in chickens, persistently triggers the release of immune factors after infection of the
host to maintain chronic inflammation [15–17]. HMGB1 activates TLRs receptors and is
extensively involved in the infection process of pathogens. Previous studies have shown
that MG can promote the expression of HMGB1 [18]. Another study shows that MG neither
produces LPS nor contains TLR4 ligands but activates the TLR4 pathway [19]. Therefore,
we explored the mechanism of MG infection based on the hypothesis that MG may activate
the TLR4 signaling pathway by altering the expression of HMGB1.

In this study, we investigated the mechanism of HMGB1 release during MG infection
and its role in triggering immune disorders. Our results provide a new perspective on the
treatment of MG-induced CRD. More importantly, it will facilitate theoretical reference
for comprehension of HMGB1 as a broad-spectrum anti-infectious pathogen therapeutic
target.

2. Materials and Methods
2.1. Mycoplasma Strains

MG-HS, a virulent strain, was reported in detail in our previous studies [20]. MG-
HS was presented by the State Key Laboratory of Agricultural Microbiology, College
of Veterinary Medicine, Huazhong Agricultural University (Wuhan, China). The MG-
HS strain was inoculated in modified FM-4 full-valent medium supplemented with 12%
of activated pig serum and cultured in a biochemical incubator (temperature of 37 ◦C,
humidity at 56%) until the phenol changed from red to orange in the medium. The
concentration of viable Mycoplasmas in a suspension was then determined by a color-
changing unit (CCU) assay [21]. In this study, the concentration of MG-HS used was
1 × 1012 CCU/mL.

2.2. HD-11 Cells Culture and Treatment

HD-11 cells, chicken macrophage-like cell lines transformed by avian myelocytoma
virus (MC 29), were presented by Professor Zhuang Ding of Jilin University. Dulbecco’s
Modified Eagle Medium (DMEM) (Gibco, Shanghai, China) containing 10% fetal bovine
serum (FBS) was used to culture HD-11 cells at 37 ◦C and 5% CO2 concentration.

To investigate the effect of HMGB1 release on the progression of MG infection, the
6 h post-infection cells were treated with glycyrrhizic acid (GA) (purity ≥ 98%, Luoyang,
Henan, China) or ethyl pyruvate (EP) (purity ≥ 98%, Sigma, St. Louis, MO, USA). Specifi-
cally, HD-11 cells were inoculated in 6-well plates at 1× 105 cells/well. Once the cell density
reached 60–70% confluence, cells were challenged with MG-HS (50 µL, 1 × 1012 CCU/mL)
and after 4 h, they were treated with GA (50 µg/mL) or PE (50 µg/mL) for 24 h.

2.3. Mycoplasma Gallisepticum Quantification

To determine the extent of MG infection, a standard curve was established using
a cloned MG gene recombinant plasmid to detect the absolute abundance of MG by
quantitative real time PCR [22]. Briefly, DNA from cells or spleens were extracted under
aseptic conditions and the 16Sribosomal RNA gene of MG was subsequently amplified
as part of the MG genomic DNA using qPCR and sequenced. In addition, two-step PCR
thermal cycling for DNA amplification and real-time data acquisition were performed
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with an ABI StepOnePlus™ Real-Time PCR System using the following cycle conditions:
95 ◦C for 1 min × 1 cycle, and 95 ◦C for 15 s, followed by 60 ◦C for 1 min × 40 cycles.
Fluorescence data were analyzed by the ABI StepOnePlus software and expressed as CT;
the number of cycles needed to generate a fluorescent signal above a predefined threshold.
The sequences of 16SrRNA primers are shown in the Table 1.

Table 1. Sequences of DNA primers.

Name Primer Sequence (5′-3′)

Primers for CDS Cloning
HMGB1-CDS-F CCGCTCGAGCGGATGGGCAAAGGTGATCCCAA
HMGB1-CDS-R CCGGAATTCCGGTTATTCATCATCATCATCATCTTCC

Primers for RT-qPCR
GAPDH-F GAGGGTAGTGAAGGCTGCTG
GAPDH-R CACAACACGGTTGCTGTATC
TLR-2-F CGCAAGCTTATGTTCAACCAAAG
TLR-2-R CGCCTCGAGCTATGACTTCAAGG
TLR-4-F ATCTTTCAAGGTGCCACATC
TLR-4-R GGATATGCTTGTTTCCACCA
TNF-α-F GGACAGCCTATGCCAACAAG
TNF-α-R ACACGACAGCCAAGTCAACG
IL-1β-F ACTGGGCATCAAGGGCTACA
IL-1β-R GCTGTCCAGGCGGTAGAAGA
IL-12-F TGGAACGATGAGACACCAGC
IL-12-R AGACAGGCAGGTGTAGTTGC
IL-6-F CTCCTCGCCAATCTGAAGTC
IL-6-R CCCTCACGGTCTTCTCCATA
16 SrRNA-F AGCTAATCTGTAAAGTTGGTC
16SrRNA-R CGCTTCCTTGCGGTTAGCAAC
HMGB1-F AAGGTGATCCCAAGAAGCCG
HMGB1-R GAAGCTTGTCAGCCTTTGCC

2.4. Gene Overexpression and Knockdown Assays

The CDS fragment of the HMGB1 gene was cloned into the pcDNA3.1 vector to
construct the HMGB1 overexpression plasmid (marked as End-HMGB1). HMGB1 recom-
binant protein was purchased from Abcam (Marked as Exo-HMGB1). Small interfering
RNA (siRNA) of genes were all synthesized by GenePharma (Suzhou, China) and all RNA
oligonucleotides sequences are shown in Table 2. Once 80–90% confluence was achieved,
cells were transfected with End-HMGB1 to increase the expression of endogenous HMGB1
or supplemented with Exo-HMGB1 to enhance the levels of extracellular HMGB1. In
addition, HD-11 cells were transfected with Si-HMGB1, Si-TLR2, or Si-TLR4 to knock
down the expression of each gene and were named HMGB1-KD, TLR2-KD, and TLR4-KD,
respectively.

Table 2. Sequences of RNA oligonucleotides.

Name Sequences (5′-3′)

Si-TLR2
GCCAUGCAAACUUUCACAATT
UUGUGAAAGUUUGCAUGGCTT

Si-TLR4
GCAGCCUUCCAUGGCUUAATT
UUAAGCCAUGGAAGGCUGCTT

Si-HMGB1
GCAGAUGAUAAACAGCCUUTT
AAGGCUGUUUAUCAUCUGCTT

NC
UUCUCCGAACGUGUCACGUTT
ACGUGACACGUUCGGAGAATT
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2.5. Immunofluorescent Staining

After fixation in 4% paraformaldehyde, cells were permeabilized using 0.1% Triton
X-100 and then blocked with 1% BSA. Furthermore, 200 µL Rabbit anti-NF-κB p65 primary
antibody (at 1:200 dilution) (Cell Signaling Technology, MA, USA) were incubated overnight
at 4 ◦C, and were then incubated with 200 µL fluorescently labeled secondary antibodies
(at 1:1000 dilution) for 1 h at 37 ◦C. Nuclei were stained with DAPI for 5 min. Finally,
fluorescence confocal microscopy was used to observe cellular localization of p65.

2.6. Protein Extraction and Western Blot

Twenty-four hours after infection, the total proteins were extracted from HD-11 by
lysis buffer (formulated at a ratio of 99 to 1 of RIPA to PMSF). Nucleus Protein Extrac-
tion Kits (#A10008, Abmart, Shanghai, China) and Cytoplasm and Membrane Extraction
Kits (#A10009, Abmart, Shanghai, China) were used to extract nucleus, cytoplasm, and
membrane proteins according to the manufacturer’s instructions. Then, the protein con-
centrations were determined using a Bicinchoninic acid (BCA) protein assay reagent kit
(Transgen, Shanghai, China). Then, 12% SDS-polyacrylamide gel electrophoresis (Beyotime,
China) was used to separate equal amounts of protein, followed by blocking with 5% BSA
for 1 h. Then, primary antibodies for HMGB1 (Abmart, M001355), Tubulin (Abmart,
M20005), YY1 (Abcam, ab227269), TLR-4 (Affinity Biosciences, AF7017), Caspase3(Abmart,
T4046), Bcl-2 (ABmart, A19693), Bcl-XL (ABmart, A0209), Caspase9 (Abmart, 40046), IκB-
α (Abmart, T55026), p-IκB-α (Abmart, TP56290), p65 (Abclonal, A11201), p-p65 (Abcam,
ab76302) (all at 1:2000 dilution), and GAPDH (Abmart, M20025) or β-actin (Abmart, T40104)
(at 1:5000 dilution) proteins were incubated overnight at 4 ◦C. Finally, the membrane was
incubated with a secondary antibody for 1 h after TBST washing. The enhanced chemilu-
minescence (ECL) detection system (Bio-Rad) was used to detect the protein expression.

2.7. ELISA

HD-11 cells were inoculated on a 12-well plate at 5 × 106 cells per well. Twenty-four
hours after treatment, the supernatants were collected and the HMGB1 levels were detected
with enzyme-linked immunosorbent assay kits (Meimian, Jiangsu, China, MM-168201)
according to the manufacturer’s directions.

2.8. RNA Isolation and Quantitative Real-Time PCR

According to the manufacturer’s instructions, total mRNA was isolated from post-
infected and non-infected cells via TRNzol Universal Reagent kit (TIANGEN, Beijing,
China). Then, RNA was inverse transcribed to cDNA with the first strand cDNA systhesis
kit (TaKaRa, Tokyo, Japan) and reverse transcription PCR (RT-PCR).

2.9. Experimental Animals and Treatments

One hundred and twenty chickens free of specific pathogenic bacteria were kept for
one week to adapt to the experimental conditions before the test. Ad libitum feed and
water were provided to chickens. These chickens were housed in the experimental chicken
farm of Huazhong Agricultural University. After one week, the chickens were randomly
divided into 4 experimental groups of 3 replicates each, with 10 chickens in each replicate.
Experimental groups included control group (marked as blank); GA alone treated group
(100 mg/kg) (marked as blank); infection groups challenged with MG-HS (marked as
MG); infection group treated with GA (100 mg/kg) (marked as MG + GA). Challenge and
treatment methods were detailed in previous publications [23]. One week after therapy,
chickens were humanely executed (30 chickens per group) to avoid suffering and spleen
tissues were collected for further experimental analysis.

2.10. Histopathological Analysis of Spleen

Fresh spleen tissues were collected from each group, then trimmed into small pieces of
appropriate size and fixed in 10% neutral formalin at room temperature for more than 48 h.
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Then, they were paraffin-embedded, gradient alcohol dehydrated, and hematoxylin and
eosin stained (H&E). The pathological changes of tissue were observed by optical electron
microscopy.

2.11. Terminal Deoxynucleotidyl Transferase—Mediated dUTP Nick Endlabeling Assay

Terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL)
assay was used to identify apoptotic cells in chicken spleen as described earlier [15]. In
brief, formalin-fixed tissues were dehydrated in standard ethanol and then embedded
in paraffin. Tissue sections were stained according to the manufacturer’s instructions
using the TUNEL assay kit (Elabscience, Wuhan, China) and, subsequently, fluorescent
microscopy was used to detect apoptotic cells. Apoptotic cell rate was calculated as number
of apoptotic cells/number of total cells × 100%.

2.12. Statistics

Data and results are presented as means ± SD. Student’s t-test was used to determine
significant differences between groups. A value of p < 0.05 was considered statistically
significant and >0.05 was considered non-significant. (* p < 0.05, ** p < 0.01, NS p > 0.05.).
All the graphs were made by GraphPad prism software (Created by Harvey Motulsky,
window version 8.0.2, San Diego, CA, USA).

3. Results
3.1. MG Infection Induces the Secretion of HMGB1

To investigate the role performed by HMGB1 in MG infection, its expression was
first examined in MG-infected HD-11 cells. The results showed that HMGB1 levels were
downregulated with the progression of MG infection (Figure 1A,B). Twenty-four hours after
infection, nucleus, plasma, and membrane of HD-11 were isolated and HMGB1 expression
was assayed individually in these cellular fractions. HMGB1 is decreased in the nucleus and
cytoplasm but enriched in the cell membrane in MG-infected cells (Figure 1A). Meanwhile,
the HMGB1 content of cell supernatant was measured at different times after MG infection.
We found that HMGB1 levels in cell supernatants were time-dependently upregulated
by MG infection. Interestingly, HMGB1 was not enriched in exosomes derived from MG-
infected cells (Figure 1C). Moreover, immunofluorescence results also demonstrated that
MG affected the cellular localization of HMGB1 (Figure 1D).

3.2. Extracellular HMGB1 Affects MG Replication

To explore the effect of HMGB1 release on MG infection, HD-11 cells overexpressed or
knocked down HMGB1 to assess the proliferation of MG. Cell supernatants and cells were
collected 24 h after treatment of MG-infected cells with HMGB1 release inhibitor (EP, a high
security HMGB1 release inhibitor [24]) and HMGB1 recombinant protein (Exo-HMGB1). We
found that extracellular HMGB1 increased by endogenously increasing HMGB1 expression
or by supplementing it with exogenous HMGB1, while knocking down the HMGB1 gene
or EP reduced its levels. Even though the HMGB1 gene was overexpressed, there was
no increase in HMGB1 concentration in the cell supernatant due to the specific release
inhibitory effect of EP. Meanwhile, knockdown or release inhibition of HMGB1 could
be rescued by Exo-HMGB1(Figure 2A–D). Subsequently, the load of MG was examined,
and we found a positive correlation between extracellular HMGB1 and microbial load
(Figure 2E).

3.3. Extracellular HMGB1 Activates TLR2/4 to Promote MG Proliferation

TLR2 and TLR4 as receptors for HMGB1 participate in immune responses in
macrophages [25]. MG infection significantly upregulated TLR2 but suppressed TLR4
expression (Figure 3A). TLR2 or TLR4 in MG-infected HD-11 cells were knocked down
by using siRNA and detecting their expression (Figure 3B). We subsequently further ex-
plored the targeting relationship between extracellular HMGB1 and TLRs. HMGB1 first
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activated TLR2 receptors and, thus, promoted MG replication but not TLR4. Upon deletion
of TLR2, TLR4 exhibited a compensatory effect activated by HMGB1 (Figure 3C). More
importantly, either TLR2-4 co-knockdown, EP administration or GA (a direct HMGB1 recep-
tor antagonist [26]) treatment reduced TLR2-4 expression and inhibited MG proliferation
(Figure 3C,D).
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compared to the 0 h group. Black dots in bar graph represent datasets from independent experiments.
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Figure 2. HMGB1 positive correlation with MG load. HD-11 cells were infected with MG for 24 h and
cell supernatants (A,B) and cells were collected (C,D). The HMGB1 levels were detected by ELISA.
Meanwhile, the quantity of MG was detected. EP, the HMGB1 release inhibitor; End-HMGB1, the
overexpression plasmid of HMGB1; Exo-HMGB1, the HMGB1 recombinant protein. (E) A correlation
chart between extracellular HMGB1 and MG load, their correlation degree was R = 0.83. Different
lowercase letters represent p < 0.05. Black dots in bar graph represent datasets from independent
experiments.
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3.4. HMGB1-Activated TLR2-4 Triggers Immune Disorders via NF-κB

TLRs act as recognition molecules for the immune response and activate the NF-
κB pathway to participate in immune regulation [27]. Here, we demonstrated that MG
activated the NF-κB pathway, increased the phosphorylation levels of p65 and IκB-α and
promoted p65 entry into the nucleus. This process could be alleviated by applying EP or
GA or knocking down TLRs (Figure 4A,B). In addition, we found that NF-KB activation
provoked a severe immune factor storm. Pro-inflammatory factors including IL-6, IL-1β,
IL-12, and TNF-α dramatically upregulated after secretion of HMGB1 by MG infection. As
expected, EP, GA, and TLR2-4 deletion treatments all significantly attenuated the cytokine
storm. However, the alleviation of immune disorders by knocking down TLR2 or TLR4
alone remained unimpressive due to the HMGB1 preferential recognition effect of TLR2
and the compensation effect of TLR4 (Figure 4). The immune system overreaction damages
itself. We also confirmed that TLR2-4 co-deletion, EP and GA-mitigated immune factor
storms suppressed MG-induced cell death (Figure 5A). MG promoted the expression of
pro-apoptotic genes but suppressed the level of apoptotic genes. This phenomenon is
reversed upon blocking HMGB1 binding to receptor (Figure 5B).

3.5. Disruption of HMGB1 Binding to TLR2-4 Receptors In Vivo Alleviates MG-Induced Immune
Organ Damage

The above results have demonstrated that MG induced HMGB1 release to facilitate
infection, while blocking HMGB1 release or inhibiting HMGB1 downstream were both
effective in alleviating disease progression. To further verify them, GA was performed
in vivo to inhibit the binding of HMGB1 to TLR2-4. Histopathological sections were used
to assess pathological changes in the immune organ spleen. A typical histopathological
change such as a marked decrease in lymphocytes and a significant upregulation in the
number and average size of splenic nodules was observed in the MG-infected groups. These
histopathological changes were evidently alleviated by GA (100 mg/kg) (Figure 6A,B). The
spleen apoptosis was evaluated by TUNEL assay. As shown in Figure 6, GA treatment sig-
nificantly reduced the rate of apoptosis in the MG-infected spleen compared to the infected
group (a reduction of approximately 30%). In addition, MG activated the expression of
casp3 and casp9 but inhibited bcl2 and bcl-xl in spleen tissue, which was consistent with
in vitro experiments (Figure 6C,D).
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Figure 4. HMGB1 activates the NF-κB pathway via TLRs. (A) Translocation of the NF-κB p65 subunit
from the cytoplasm into the nucleus was assessed by immunofluorescence staining. NF-κB p65
was stained with red; cell nucleus was stained blue with DAPI (scale bar, 100 µm). (B) The protein
expression of NF-κB pathway-related genes in different treatment groups were detected by Western
blotting. GAPDH was used for normalization. (C)The relative expression levels of TNF-α, IL-1β,
IL-12, and IL-6 mRNA in HD-11 cells. NS p > 0.05, * p < 0.05, and ** p < 0.01 show statistically
significant difference compared to the MG group. Black dots in bar graph represent datasets from
independent experiments.
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Figure 6. Neutralization of HMGB1 alleviates MG-induced splenic damage. (A) Spleen tissue sec-tion
(H & E staining). Orange arrows shows lymphocytes shedding and splenic lymph nodes were
significantly enlarged. Splenic corpuscle (black arrows). (B) The number of splenic corpuscles and
the mean area of splenic corpuscle. (C) TUNEL assay kit was used to detect the extent of apoptosis
in the spleen tissue. White spots (scale = 50 µm) indicate positive TUNEL staining (apoptotic cells).
Bar graph shows mean results ± SD (n = 3). (D) Left: Quantification of the degree of spleen tissue
apoptosis by fluorescence intensity. Right: The proteins of apoptosis genes were detected by Western
blotting. Tubulin was used for normalization. NS p > 0.05. * p < 0.05, and ** p < 0.01 show statistically
significant difference compared to the MG group. Black dots in bar graph represent datasets from
independent experiments.

Expectedly, MG infection increased the level of HMGB1 in chicken serum compared to
the uninfected groups (Figure 7A). GA treatment significantly moderated serum HMGB1
concentration. Similar to experiments in vitro, TLRs-NFκB pathway genes were examined.
Infection with MG increased TLR2 levels and thereby activated the NF-κB pathway. GA
decreased TLR2/4 levels in MG-infected spleen (Figure 7B). GA reduced phosphorylation,
but not levels, of p65 and IκB-α proteins (Figure 7C). More importantly, GA interrup-
tion of NF-κB activation alleviated MG-HMGB1-triggered over-release of immune factors
(Figure 7D).
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Figure 7. Inhibition of HMGB1 alleviates MG-induced inflammatory damage in spleen tissue. (A) The
level of HMGB1 in serum was detected by ELISA. (B,C) The levels of TLRs and NF-κB related-genes
were detected by qPCR and WB. (D) The relative expression levels of TNF-α, IL-1β, IL-12, and IL-6
mRNA in the spleen tissue. NS p > 0.05. * p < 0.05, and ** p < 0.01 show statistically significant
difference compared to the MG group.

4. Discussion

Damage-associated molecular patterns (DAMPs) are endogenous molecules that
activate the immune system and are associated with infectious diseases [28]. HMGB1,
a typical molecule of DAMPs, normally resides in the nucleus [29]. Upon exposure to infec-
tious agents or endogenous danger signals, including bacteria, viruses, endotoxin (LPS),
and extracellular adenosine triphosphate (ATP), immune cells can translocate HMGB1
nuclei into the cytoplasm or even extracellularly [8,30]. HMGB1 with different subcellular
localization possesses diverse biological functions [31]. In the present study, we demon-
strated that HMGB1 level in HD-11 cells after MG infection was downregulated as MG
infection progressed (Figure 1A,B). MG affected the subcellular localization of HMGB1 and
promoted the release of HMGB1 (Figure 1D). More importantly, we found that exosomes
derived from MG-infected cells were not enriched for HMGB1. These results predicted that
MG-induced release of HMGB1 was not dependent on the exosome pathway (Figure 1C). It
has been shown that apart from exosomal pathway release, HMGB1 can be dependent on
the release of the gasdermins family [32], live cells can release HMGB1 via the lysosomal
pathway [4,33], and another study showed that the rupture of the cell membrane causes
HMGB1 release [4]. However, the mechanism of MG-induced HMGB1 translocation to the
extracellular space is unclear and further investigation is required.

Numerous studies have shown that HMGB1 participates in the replication and infec-
tion process of pathogens [34]. Intracellular HMGB1 functions as a proviral factor that
promotes hepatitis C virus (HCV) replication in hepatocytes by interacting with the HCV
genome [35,36]. HMGB1 protein binds to influenza virus nucleoprotein (NP) in nucleus
and affects viral replication by maintaining viral polymerase activity [37]. It also inhibits
the activity and function of immune cells and exacerbates LPS-induced acute lung injury
(ALI) [38]. These results suggest that HMGB1, whether in cytoplasm or in the nucleus,
can directly or indirectly regulate the progression of infection by pathogens. However,
the intracellular presence of HMGB1 does not always facilitate pathogen replication. In
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this study, we determined that intracellular HMGB1 was not affected by MG replication
through overexpression or inhibition of endogenous HMGB1 levels. The extracellular
HMGB1, however, was positively correlated with the load of MG (Figure 2). Our results
were in line with other studies in showing that extracellular, but not intracellular, HMGB1
affects Newcastle disease virus (NDV) or porcine reproductive and respiratory syndrome
virus (PRRSV) levels [39,40].

In addition, it has been reported that the serum HMGB1 level in HCV-infected pa-
tients with liver cancer is significantly higher than that in healthy individuals [41]. The
concentration of HMGB1 in serum is positively correlated with tumourigenesis and metas-
tasis [42,43]. It is, therefore, considered to be a pathological parameter for determining
cancer progression after surgery. Similar to cancer patients, greater amounts of HMGB1 are
released into the serum of patients with influenza A virus infection, which is associated
with severe pneumonia [44,45]. Furthermore, a dramatic upregulation of HMGB1 was
observed in the sera of mice exposed to LPS-induced ALI [46]. These studies support the
fact that HMGB1 released in the serum following pathogen infection is pathogenic. In the
current study, we found MG-infected chickens contained high levels of HMGB1, which
reaffirmed the pathogenicity of secretory HMGB1 (Figures 1C and 7A).

It is possible that blocking the release of HMGB1 may be a viable broad-spectrum
anti-disease strategy as HMGB1 protein is released during infection by most pathogens [47].
Inhibition of dengue virus infection by the chemical resveratrol through blocking the
nuclear to cytoplasmic transport of HMGB1, leading to the accumulation of HMGB1 in
the nucleus [48]. Intravenous administration of HMGB1-neutralising monoclonal antibody
significantly improves survival in H1N1/H5N1-infected mice [49,50]. HCV infection in
Huh7 cells is reduced by treatment with HMGB1 inhibitor GA, and the nucleus-cytoplasmic
translocation of HMGB1 induced by viral infection is blocked [51,52]. It has also been shown
that paeonol can treat LPS-induced ALI in rats by inhibiting the expression, translocation,
and secretion of HMGB1 [53]. These results demonstrate that either the blockade of HMGB1
release or the antibody neutralization response can mitigate the progression of pathogenic
infections. In this study, we explored the role of HMGB1 in the model of MG-induced CRD.
It was demonstrated that MG infection triggered the release of HMGB1 and accelerated
its infection progression. Consistent with previous studies of different pathogens, both
inhibition of HMGB1 release or repression of HMGB1 downstream receptors were able to
suppress MG replication (Figure 2).

Toll-like receptors (TLRs) recognize exogenous pathogen-associated molecular pat-
terns (PAMPs) and endogenous danger-associated molecular patterns (DAMPs) and ini-
tiate the immune response [2]. Extracellular HMGB1 stimulates immune cells such as
macrophages/monocytes, dendritic cells, and eosinophils through the activation of a series
of signaling cascades including MAPK and NF-κB, which is essential for the induction
of the release of cytokines such as IL-8, IL-6, and TNF-α [54,55]. TLR2/TLR4 partici-
pate in a variety of immune regulation as typical HMGB1 receptors [56]. The immune
system eliminates pathogens by secreting massive amounts of cytokines [57]. However,
secretory HMGB1 exerts excessive activation of immune cells, induces overexpression
of pro-inflammatory cytokines, and triggers immune disorders [58]. For example, LPS
induces the release of HMGB1 to activate TLR2/TLR4 to cause inflammatory storm [59].
A study on the pathogenesis of ALI reveals that HMGB1 activates protein kinase R (PKR) in
macrophages through TLR2- and TLR4-mediated NF-κB signaling pathways, inducing M1
polarization [60]. The release of HMGB1 triggered by PRRSV infection increases the effi-
ciency of virus-induced inflammatory damage through the overproduction of inflammatory
cytokines by RAGE, TLR2, and TLR4 [40,61]. In addition, a study on the MG-Rlow strain
showed that MG-Rlow infection upregulated HMGB1 expression and activated the TLR4
signaling pathway, causing severe lung injury and intestinal flora imbalance in chickens.
These results implicate the possibility that HMGB1 activates the TLRs cascade response
in the MG-HS infection process. In this study, we, therefore, first verified the relation-
ship between HMGB1 and TLR2/4. We identified that after MG infection HMGB1 first
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activated TLR2, but not TLR4, triggering an immune response (Figure 3A). In contrast,
upon TLR2 deficiency, TLR4 appeared to exhibit a compensatory effect in response to MG
infection (Figure 3B,C). This phenomenon corresponded to TLR2-deficient mice treated
with transverse aortic constriction (TAC) [62]. In addition, our results showed that TLR2/4
activated by HMGB1 further activates the NF-κB pathway to produce immune disorders
(Figures 3D, 4A,B, and 7B,C). An excessive release of inflammatory factors, including IL-6,
IL-12, IL-1β, and TNF-α, from immune disorders caused severe apoptotic damage to im-
mune organs (Figures 4C and 7D), which was consistent with MG-Rlow infection-induced
damage to the spleen, thymus, and bursa of fasciola [63,64]. More importantly, knockout
of the TLR2/4 receptor of HMGB1 or inhibition of its binding to the receptor were able
to significantly interrupt the immune disruption cascade stimulated by HMGB1. These
approaches all attenuated excessive inflammation-caused macrophage apoptosis and im-
mune organ (spleen) damage (Figures 5 and 6). It indicates that apart from interrupting
the release of HMGB1, measures to block its binding to the receptor are also a potentially
viable anti-disease strategy.

5. Conclusions

In conclusion, our study demonstrates that MG infection induces the release of HMGB1
in a non-exosomal approach to activate TLR2/4 and participate in immune regulation.
HMGB1-induced immune disorder provokes inflammatory storms causing cell and organ
damage via the TLR2/4-NF-κB signaling pathway (Figure 8). Removal of MG-induced
extracellular HMGB1 or inhibition of HMGB1 downstream may be a promising novel strat-
egy for the treatment of CRD. Furthermore, our results provide a novel theoretical reference
for comprehension of HMGB1 aggravating pathogenic infections and pathogenesis.
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Figure 8. Schematic diagram. MG invasion of immune cells (such as chicken macrophages, HD-11)
increases the level of inflammatory mediators (such as HMGB1) in the extracellular environment
and, thus, worsens the progression of infection. In vivo, enrichment of inflammatory mediators in
immune organs (e.g., spleen) aggravates their inflammatory damage.
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