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Abstract: Long-term use of Glucocorticoids produces skeletal muscle atrophy and microvascular
rarefaction. Hydrogen sulfide (H2S) has a potential role in skeletal muscle regeneration. However,
the mechanisms still need to be elucidated. This is the first study to explore the effect of Sodium
hydrosulfide (NaHS) H2S donor, against Dexamethasone (Dex)-induced soleus muscle atrophy and
microvascular rarefaction and on muscle endothelial progenitors and M2 macrophages. Rats received
either; saline, Dex (0.6 mg/Kg/day), Dex + NaHS (5 mg/Kg/day), or Dex + Aminooxyacetic acid
(AOAA), a blocker of H2S (10 mg/Kg/day) for two weeks. The soleus muscle was examined for
contractile properties. mRNA expression for Myostatin, Mechano-growth factor (MGF) and NADPH
oxidase (NOX4), HE staining, and immunohistochemical staining for caspase-3, CD34 (Endothelial
progenitor marker), vascular endothelial growth factor (VEGF), CD31 (endothelial marker), and
CD163 (M2 macrophage marker) was performed. NaHS could improve the contractile properties
and decrease oxidative stress, muscle atrophy, and the expression of NOX4, caspase-3, Myostatin,
VEGF, and CD31 and could increase the capillary density and expression of MGF with a significant
increase in expression of CD34 and CD163 as compared to Dex group. However, AOAA worsened
the studied parameters. Therefore, H2S can be a promising target to attenuate muscle atrophy and
microvascular rarefaction.

Keywords: muscle atrophy; H2S; NaHS; MGF; NOX-4; Myostatin

1. Introduction

The long-term use of Glucocorticoids, widely-used anti-inflammatory agents, causes
many adverse effects. One of the most common adverse effects of Dexamethasone, a
type of Glucocorticoid, is that it can promote proteolysis and hence muscle atrophy [1],
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through induction of NADPH (nicotinamide adenine dinucleotide phosphate, reduced
form) oxidase NOX4, with a predominant role in mediating oxidative stress in skeletal
tissue [2], through inhibition of insulin-like growth factor 1 (IGF-1), a major factor for
skeletal muscle growth [3], and through activation of Myostatin which arrests skeletal
muscle cell growth [4].

Fast-twitch glycolytic fibers are more susceptible to atrophy than slow-twitch oxidative
fibers [5]. However, Dexamethasone (DEX) has been found to cause microvascular rarefac-
tion and micro-vessel loss in slow-twitch muscles as soleus muscle and to significantly
reduce the capillary-to-fiber ratio, capillary density, angiogenic factors, vascular endothelial
growth factor (VEGF), and its receptor 2 (VEGFR-2) with increased apoptosis as marked by
a decreased Bcl2/Bax ratio and increased caspase-3 level [6].

A question was raised concerning whether the muscle atrophy induced by DEX is
a direct effect or indirect effect, through the inhibition of skeletal muscle angiogenesis.
Langendorf et al. [7] found that DEX inhibited the expression of angiogenic markers and
suppressed the VEGF-provoked angiogenic effect of myoblasts; however, interestingly,
DEX enhanced the expression of myogenic transcription factors. Moreover, DEX was found
to enhance the anti-inflammatory M2 macrophages involved in myogenesis and muscle
repair, while repressing the proinflammatory M1 involved in myofiber lysis [8].

Hydrogen sulfide (H2S) is a gasotransmitter that can be endogenously produced by
a large number of cells and tissues. H2S influences a wide range of cellular functions,
such as cell proliferation and differentiation, oxidative stress, cellular bioenergetics, and
metabolism [9]. H2S has been found to have a potential role in skeletal muscle regeneration
in health and disease. In broiler chick, a supplement of H2S was able to stimulate breast
muscle development by regulating protein synthesis [5]. H2S was found to protect the
diaphragm muscle fibrosis and strengthen diaphragmatic biomechanical properties in
streptozotocin-induced diabetic rats in another study [10]. H2S was also found to increase
muscle mass in db/db diabetic mice [11].

H2S was found to have a potential role in skeletal muscle regeneration in health
and disease. However, the mechanisms still need to be elucidated. In this study, we
investigated the in vivo role of exogenous H2S donor, NAHS or its inhibitor, in the ma-
nipulation of NOX4, apoptosis, Mechano-growth factor (a spliced variant of insulin-like
growth factor 1), endothelial progenitors, and M2 macrophage, after muscle injury and
microvascular rarefaction, induced by DEX in rats.

2. Materials and Methods
2.1. Sample Size Estimation

The G*Power tool (Version 3.1.9.2, by Franz Faul, Kiel, Germany) was used to compute
the sample size using the procedures given by Faul et al. [12], to limit the number of
animals involved. In light of past research articles, we assumed that means, standard
deviations, effect sizes (f), and thus the sample sizes for the four groups would be as shown
in Table 1, and reach a power of 95% to identify these effect sizes at 5% alpha level, taking
into consideration the least effect size (1.0308) and one-way ANOVA plan with the four
groups, suggesting a sample size of four/group. Utilizing an F-test, the total number of
24 for the sample achieves a power of 95% to achieve a significance level of 0.05.

Table 1. Sample size calculation.

Studied Parameter Reference Means Standard Deviations Effect Sizes Sample Sizes

CD31 [2] 35, 60, 70 and 80 4 4.1810 8

NOX4 [6] 1, 1.15, 1.3 and 1.65 1.15 1.6073 12

CD163 [13] 2, 3, 25 and 37 3 4.9575 8

Myostatin [14] 1, 1.2, 1.2 and 4 0.3 4.1466 8

VEGF [15] 90, 80, 100 and 100 4 1.0308 24
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2.2. Ethical Statement

The research design used in our study complies with the Animals in Research: Re-
porting in Vivo Experiments (ARRIVE) criteria and was also approved by the Faculty of
Medicine’s Research Ethics Committee (Institutional Research Board), Mansoura University,
Egypt (proposal code: R.21.01.1167. R1-2021/02/03).

2.3. Research Design

Twenty male adult Sprague–Dawley (SD) rats of wild type (200 ± 40 g in weight,
7–8 weeks in age) were bought from Mansoura University Research Center (MERC), Faculty
of Medicine, Mansoura University, Egypt. SD rats were used because they are good quality
models for muscle sarcopenia research [16] and males were chosen to avoid the protective
effect of estrogens on skeletal muscle [17]. In MERC, the rats were kept in stainless-
steel mesh-bottomed cages (three rats per cage) with accurate 12/12 light/dark cycles,
temperature, humidity, and aseptic pathogen-free conditions, with free ad libitum access
to food and drink. The rats were allowed to acclimatize through the housing for two
weeks before the beginning of the study. To avoid bias, the rats were placed in a random
manner into four groups: Group 1: negative control group (n = 6), in which the rats
received saline (Sal. group); Group 2: DEX group (n = 6), in which the rats received
a subcutaneous injection of with Dexamethasone (DEX) (Amriya, for pharmaceutical
industries, Egypt) (0.6 mg/Kg/day) for six days per week for two weeks [18]; Group 3: DEX
+ NaHS group (n = 6), in which the rats received DEX as mentioned in Group 2, in addition
to an intraperitoneal injection of NaHS (the donor of H2S) (Acros organics © Belgium),
dissolved in saline (5 mg/Kg/day) for two weeks [19]; and Group 4: DEX + AOAA (n = 6),
in which the rats received DEX as mentioned in Group 2. In addition, they received
intraperitoneal injection of Aminooxyacetic acid (AOAA), a blocker of H2S (Acros organics
© Belgium) (10 mg/Kg/day) for two weeks. AOAA was used as it can inhibit the two
major sources for endogenous enzymatic production of H2S, which are cystathionine β

synthase (CBS) and cystathionine γ lyase (CSE), rather than the other inhibitors [20]. At 11
a.m., all interventions were completed. The rats were anesthetized with ether inhalation
and subsequently slaughtered by cervical dislocation after 14 days of testing.

2.4. Sample Preparation

The soleus (SOL) muscle of the left leg was dissected from the rats and rapidly excised,
washed with saline, and then dried on a filter paper. NOX4, Myostatin, and Mechano-
growth factor (MGF) gene expression levels were measured in a portion of each muscle
that was promptly frozen in liquid nitrogen at −80 ◦C. Meanwhile, the rest of the soleus
muscle was processed for histopathological investigation.

2.5. Muscle Functional Study
2.5.1. Muscle Force Measurements

A femur transection was performed to remove the right leg. The leg was then immedi-
ately placed in a Krebs buffer in a polycarbonate chamber at pH 7.4, constant 95 percent O2
and 5 percent CO2, and kept at 35 degrees Celsius. To reduce excessive muscular damage,
the origin of the SOL muscle was preserved. The leg is horizontally positioned and fastened
to the chamber bottom with metal hooks. Biopac Student Lab (Biopac Systems Inc., Goleta,
CA, USA) was used to carry out direct electrical stimulations with a stimulator (the Biopac
student isolation stimulator module; includes AC 100A power), force transducer assembly
(SS121LA; includes a S hook), and tension adjuster (HDW 100A). The muscle was placed
at a 90◦ angle to the leg when the force transducer arm was placed. The muscles were
positioned at the ideal length for maximum isometric twitch force measurement in all
studies. Field stimulations through two platinum plate electrodes applied supra-maximal
currents of 0.2 ms duration was used to record muscle contractions. Micro-manipulations of
muscle length and a series of twitch contractions (1 Hz square wave pulse) were performed
to obtain the best muscle length and voltage of supra-maximal stimulation. The muscle was
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then rested for at least 30 s between twitch responses until twitch tension reached maximal.
The optimal muscle length (Lo) is measured using a digital caliper and is defined as the
length required to deliver the maximum twitch force. Supra-maximal stimulation is the
smallest amount of current required to make sure that all muscle fibers are recruited with
a single action potential. At the end of the muscular stimulations, the isometric muscle
contraction was recorded in g tension. The time it took to attain peak twitch tension and the
time it took to reach 50% relaxation were used to determine the contractile characteristics’
speed [21].

2.5.2. Establish Frequency–Force Relationship

After achieving Lo, the frequency–force relationship may be determined by stimulating
the muscle with grading frequencies of 10, 30, 50, 80, 100, 120, 150, 180, 200 and 250 Hz.
Between stimuli, the muscle was rested for 3–5 min, and stimulation was administered for
500–900 milliseconds. The greatest absolute isometric tetanic force was calculated using the
frequency–force relationship’s plateau (Po). A total of 100 Hz was used to obtain Po for
the soleus muscle. The muscle was then held in an organ bath for five minutes to recover
from fatigue after tetanic stimulation before being stimulated with a single supra-maximal
stimulus to record the strength of muscular contraction after recovery [21].

2.5.3. Maximum Isometric Tetanic Force

Muscles were typically stimulated 2–3 times with 3–5-min rest periods to identify the
optimum force generation using the supra-maximal voltage at Lo and a plateau stimulation
frequency [21].

2.5.4. Specific Force Calculations

Because absolute Po is dependent on muscle size, Po measurements were normalized
for the cross-sectional area. Specific force (sPo) in gm/m2 was obtained by dividing Po by
the calculated total muscle cross-sectional area [21].

2.6. Measurement of Muscle Weight and Cross-Sectional Area

The muscles were separated and the tendons of both the proximal and distal ends were
severed after the muscle contraction was recorded. The muscles were then dried twice using wipes
before being weighed. The following equation was used to compute the muscle cross-sectional
area: cross-sectional area = (Muscle mass, in gram)/[1.06 g/cm3 × (optimal fiber length, in cm)].
The muscle density is 1.06 g/cm3, and the muscle density is 1.06 g/cm3. Also, 0.6 or
0.71 × Lo was calculated as the ideal fiber length. The ratio of fiber length to the Lo of the
soleus muscle is 0.71 [22].

2.7. Serum K+ and Creatine Kinase-MM (CK-MM) Assay

Blood samples were obtained from the heart in EDTA-free tubes at the end of the
study. Blood was allowed to coagulate at room temperature before being centrifuged for 15
min at 3000 rpm (Hettich universal 32A, Germany) to extract serum. The serum samples
were kept in aliquots at −20 ◦C until they were analyzed. K+ and CK-MM levels in the
samples were determined using commercially available kits.; potassium kit (Bio-diagnostic,
Egypt, cat.No.PT 1820), CK-MM sensitive ELISA kit purchased from (Abnova, Taiwan, cat.
No. KA2072) All assays were performed in accordance with manufacturer’s guidelines [23].

2.8. Total Antioxidant Capacity (TAC)

The Trolox equivalent antioxidant capacity (TAC) assay was used to determine total
antioxidant capacity. Trichloroacetic acid was used to deproteinize the samples. The radical
solution had an absorbance of 0.70.02. Then, using a UV spectrophotometer (T80 + UV/VIS
Spectrometer PG Instruments Ltd., Lutterworth, UK), the decrease in absorbance caused
by antioxidant capacity in the sample was determined at 734 nm and compared to that of
Trolox standards [24].
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2.9. Assay of Lipid Peroxidation Marker Malondialdehyde (MDA) and Antioxidant Reduced
Glutathione (GSH) Activity in Muscle Tissues

Applying a mortar and pestle, approximately 50–100 mg of muscle tissues were
homogenized in 1–2 mL cold buffer (50 mM potassium phosphate, PH 7.5, 1 mM EDTA),
then centrifuged at 4000 rpm for 15 min at 4 ◦C. The supernatant was stored at −20 ◦C
until oxidants and antioxidants were measured. Then we determined the concentrations of
MDA and GSH in the supernatant by a colorimetric technique, as recommended by the
manufacturer (Bio-Diagnostics, Dokki, Giza, Egypt).

2.10. RNA Isolation and RT-PCR

The QIAzol reagent (Qiagen, Germany) was used to extract total cellular RNA accord-
ing to manufacturer guidelines. The NanoDrop 2000 from ThermoScientific (USA) was
used to determine RNA concentration. 1 µg of RNA was reverse transcribed using the
Bioline cDNA synthesis kit (Bioline, Taunton, MA, USA).

Real-time PCR equipment (Pikoreal 96, ThermoScientific) was used to replicate cDNA
templates. The amplification process consisted of a 20 µL total volume mixture [10] µL
of HERA SYBR green PCR Master Mix (Willowfort, West Midlands, UK), 2 µL of cDNA
template, 2 µL (10 pmol/µL) of each gene primer, and 6 µL of nuclease-free water], and
was carried out using the following program: 95 ◦C for 2 min, followed by 40 cycles of
95 ◦C for 10 s, and 60 ◦C for 30 s. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH)
was employed as a control gene [25], and the sequences of the used primer pairs are listed
in Table 2. Vivantis provided the primer sets (Vivantis Technologies, Malaysia). Relative
gene expression levels were represented as ∆Ct = Ct target gene − Ct control gene; fold
change of gene expression was calculated according to the 2−∆∆CT method [26].

Table 2. The sequence of rat primers used in RT-PCR analysis.

Gene Sequence

Myostatin Forward primer: TGCTGTAACCTTCCCAGGACCA
Reverse primer: GTGAGGGGGTAGCGACAGCAC

NOX-4 Forward primer: TGTTGGGCCTAGGATTGTGT
Reverse primer: CTTCTGTGATCCGCGAAGGT

MGF Forward primer: GGAGGCTGGAGATGTACTGTGCT
Reverse primer: TCCTTTGCAGCTTCCTTTTCTTG

Glyceraldehyde-3-phosphate
dehydrogenase (GAPDH)

Forward primer: AGGTCGGTGTGAACGGATTTG
Reverse primer: TGTAGACCATGTAGTTGAGGTCA

2.11. Histopathological Examination of Muscle Tissue

Parts of the soleus muscles in the left leg were immersed in 10% neutral formalin and
then embedded in paraffin blocks. A total of 5 µm thick sections of paraffin blocks were
cut and processed for routine hematoxylin and eosin staining [27]. To determine capillary
density, capillaries were counted under a light microscope to determine the capillary
density/high power field (×400).

2.12. Immunohistochemical Study

Sections of 3 µm thickness were used following the immunoperoxidase technique
mentioned in Elsayed et al. [28]. In brief, the slides were deparaffinized and endogenous
peroxidase was blocked. We added hydrogen peroxide and 0.3% methanol to the liver
sections at room temperature for 10 min. Then the soleus muscle sections were heated for
10 min at 95 ◦C in 10 mM citrate buffer to induce antigen retrieval, then the sections were
left to cool for one hour. The sections were then incubated with the primary antibodies
for caspase-3 (apoptosis marker), CD34 (a marker of vascular endothelial progenitor cells),
VEGF, CD31 (Endothelial marker), and CD163 (M2 anti-inflammatory macrophage marker)
overnight at 4c. Table 3 introduces the details of the antibodies and their dilutions. The
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slides were then incubated with a secondary anti-mouse antibody (sc-516102, Santa Cruz)
for 30 min. After, DAB was added for 4 min, the sections were then counterstained with
hematoxylin. PBS was added to substitute for the primary antibody as a reagent (no pri-
mary antibody) control. Lastly, washing, dehydration, and examination of the slides by
light microscope were carried out. Dark brown areas, on a blue background, demonstrate
positive staining. Antigen localization was cytoplasmic and nuclear for caspase-3, cytoplas-
mic for the expression of CD34 and VEGF, and cytoplasmic and membranous for CD31
and CD163.

Table 3. The primary antibodies applied for immunohistochemistry.

Name Cat. Number Source and Clonality Dilution

Caspase-3 Servicebio GB11532 Rabbit polyclonal 1/500

CD34 Servicebio GB111693 Rabbit polyclonal 1/500

VEGF Servicebio GB14165 Mouse monoclonal 1/200

CD31 Dako M0823 Mouse monoclonal 1/200

CD163 Servicebio GB11340-1 Rabbit polyclonal 1/500

2.13. Morphometric Analysis

Morphometric analysis of the immunohistochemical study was performed using
ImageJ software [29] and Fiji ImageJ software [30] (ImageJ 1.52p, by Wayne Rashband, Na-
tional Institute of Health, Bethesda, MD, USA). We counted the number of immunopositive
cells in simple random non-overlapping fields (×400) per group.

2.14. Statistical Analysis

Data were entered and analyzed using SPSS (IBM Corp. Released 2017. IBM SPSS
Statistics for Windows, Version 25.0. Armonk, NY, USA: IBM Corp.). The Shapiro–Wilk
test was used to verify normality in quantitative data, with p > 0.050 indicating that the
data were normally distributed. Boxplots were used to detect the existence of noticeable
outliers. Normally distributed quantitative data were expressed as mean ± standard
deviation (SD). One-way ANOVA was used to compare quantitative data between the
study groups. To make a proper comparison among the data, Tukey post-hoc adjustment
was employed when the assumption of equal variances was assumed. The results were
considered significant when the p value was ≤0.050.

3. Results
3.1. Changes in Soleus Muscle Mass, Length and Cross-Sectional Area

A significant difference in muscle mass, length, and cross-sectional area of soleus
muscle was observed among the studied groups (p < 0.0005). When compared to the
negative control, the Dex and Dex + AOAA groups had significantly lower muscular
mass, length, and cross-sectional area of the soleus muscle. Moreover, no significant
difference in these parameters was observed between the Dex + AOAA group and Dex
group. Furthermore, the administration of NaHS improved these parameters as compared
to the Dex group and demonstrated no significant difference from the negative control
group (Table 4).
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Table 4. General properties of soleus muscle in all experimental groups.

Saline Control Dex Dex + H2S
Donor (NaHS)

Dex + H2S
Blocker (AOAA) F Value p Value

Muscle mass (mg) 127.8 ± 13.02 98.35 ± 7.027 * 122.4 ± 14.40 # 93.58 ± 10.24 * 13.161 <0.0005

Optimal muscle
length (mm) 12.56 ± 0.615 10.27 ± 0.603 * 11.72 ± 1.345 # 8.983 ± 0.693 * 19.784 <0.0005

Cross-sectional
area (µm2) 3497 ± 418.5 2470 ± 438.4 * 3229 ± 520.3 # 2060 ± 205.2 * 15.578 <0.0005

Test used: ANOVA followed by post-hoc Tukey test for multiple comparisons. Values are expressed as
means ± S.D (n = 6). Dex: Dexamethasone, NaHS: Sodium hydrosulfide and AOAA: Aminooxyacetic acid.
*: (p < 0.05) significant vs. control group, #: (p < 0.05) significant vs. Dex group.

3.2. Changes in Isometric Contractile Properties of Soleus Muscle

A significant difference in muscle contractile parameters among the studied groups
was observed (p < 0.0005). When compared to the negative control, a dramatic decrease in
maximum isometric twitch force, tetanic force, specific force, and force following tetanic
contraction, as well as a significant elongation in time to maximum twitch and half re-
laxation time were observed in the Dex group and Dex + AOAA group. Moreover, no
significant difference in these parameters was observed between the Dex + AOAA group
and Dex group. Supplementation of NaHS improved these parameters as compared to the
Dex group. Dex + NaHS showed no significant difference from the negative control group
except for a significantly higher time to peak twitch (Table 5 and Figure 1).

Table 5. Isometric contractile properties of the soleus muscle.

Control Sal. Dex Dex + H2S
Donor (NaHS)

Dex + H2S
Blocker (AOAA) F Value p Value

Time to peak
twitch (ms) 45.19 ± 07.223 25.54 ± 3.252 * 35.62 ± 4.909 #* 23.64 ± 4.656 * 21.941 <0.0005

Half relaxation
time (ms) 53.84 ± 10.61 38.20 ± 4.218 * 51.88 ± 2.940 # 35.41 ± 4.335 * 13.368 <0.0005

Max. isometric
twitch force (g) 23.77 ± 4.464 5.28 ± 0.992 * 20.56 ± 3.862 # 3.26 ± 0.611 * 72.376 <0.0005

Specific force
(gm/m2) 63.96 ± 12.01 34.00 ± 6.385 * 57.45 ± 10.79 # 22.42 ± 0.421 * 28.673 <0.0005

Force after tetanic
contraction (g) 5.437 ± 0.819 3.863 ± 0.569 * 5.23 ± 0.78 # 3.00 ± 0.56 * 16.710 <0.0005

Test used: ANOVA followed by post-hoc Tukey test for multiple comparisons. Values are expressed as
means ± S.D. (n = 6). Dex: Dexamethasone, NaHS: Sodium hydrosulfide and AOAA: Aminooxyacetic acid.
*: (p < 0.05) significant vs. control group. #: (p < 0.05) significant vs. Dex group.
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Figure 1. Isometric contractile properties of the soleus muscle in different experimental groups.
(A) Control. (B) Dex. (C) Dex + H2S donor (NaHS). (D) Dex + H2S blocker (AOAA). Contractility
recording was achieved by using Biopac Systems Inc. (BSL 3.7.5 software), (MP36) data analysis
unit, Biopac force transducer assembly (SS12LA), Biopac BSLSTM stimulator, and needle electrodes
(ELSTM2).
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3.3. Oxidative Stress Markers, Serum K+ Level, and Creatine Kinase-MM (CK-MM)

A significant difference in the studied parameters was observed among the studied
groups (p < 0.0005). A significant elevation in MDA, NOX-4, and CK-MM together with
a reduction in K, GSH, and TAC were observed in Dex group and Dex + AOAA group
as compared to the negative control group. Moreover, no significant difference in these
parameters was observed between the Dex + AOAA group and the Dex group except for K
and CK-MM. These markers showed significant improvement by NaHS administration
as compared to the Dex group with no significant difference from the negative control
group except in GSH which was still significantly different from the negative control group
(Table 6).

Table 6. Oxidative stress markers, serum K+ level, and serum creatine kinase-MM (CK-MM) in
different experimental groups.

Negative Control Dex Dex + NaHS Dex + AOAA F Value p Value

MDA (nmol/mg) 194.8 ± 32.31 345.2 ± 38.36 * 239.6 ± 36.39 # 410.6 ± 93.59 * 18.386 <0.0005

GSH (nmol/mg) 4.931 ± 0.158 3.908 ± 0.299 * 4.619 ± 0.318 #* 3.611 ± 0.098 * 39.864 <0.0005

TAC (nmol Trolox
Eq/mL) 1.192 ± 0.189 0.745 ± 0.116 * 1.051 ± 0.232 # 0.544 ± 0.074 * 19.016 <0.0005

Serum K+ level
(mg/dL) 4.513 ± 0.172 4.071 ± 0.125 * 4.353 ± 0.142 # 3.789 ± 0.157 #* 27.146 <0.0005

Creatine kinase-MM
(CK-MM) (ng/mL) 17.09 ± 1.485 27.47 ± 4.392 * 19.67 ± 2.299 # 41.21 ± 7.159 *# 36.120 <0.0005

Test used: ANOVA followed by post-hoc Tukey test for multiple comparisons. Values are expressed as
means ± S.D. (n = 6). Dex: Dexamethasone, NaHS: Sodium hydrosulfide and AOAA: Aminooxyacetic acid.
*: (p < 0.05) significant vs. control group. #: (p < 0.05) significant vs. Dex group.

3.4. mRNA Expression of Myostatin, MGF, and NOX-4 in Soleus Muscle Tissues

A statistically significant difference in Myostatin mRNA expression was observed
among the studied groups (p value: <0.0001, F value: 47.482). A significant increase in
Myostatin expression was observed in the Dex group and DEX + AOAA group as compared
to the negative control group. DEX + AOAA showed no significant difference as compared
to the DEX group. Muscles from Dex + NaHS rats showed a significant decrease in
Myostatin expression as compared to the DEX group and showed no significant difference
as compared to the negative control (Figure 2A). A statistically significant difference was
observed in MGF mRNA expression among the studied groups (p value: <0.0001, F value:
91.987). A significant decrease in MGF expression was observed in the Dex group and DEX
+ AOAA group as compared to the negative control. DEX + AOAA showed no significant
difference as compared to the DEX group, while muscles from Dex + NaHS rats show
a significant increase in MGF expression as compared to the Dex group, and negative
control (Figure 2B). A statistically significant difference in NOX-4 mRNA expression was
observed among the studied groups (p value: <0.0001, F value: 111.148). NOX-4 mRNA
expression increased significantly in the Dex group and DEX + AOAA group as compared
to the control group. DEX + AOAA showed no significant difference as compared to the
DEX group. NaHS treatment attenuated the increase in mRNA expression of NOX-4 as
compared to the Dex group but was still significantly higher than the negative control
group (Figure 2C).
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Figure 2. Expression levels of Myostatin (A), MGF (B), and NOX-4 (C) in all studied groups. Data
are expressed as mean ± SD, the test used: one-way ANOVA, followed by post-hoc Tukey test
(normalized by GAPDH, products of RT-PCR). Dex: Dexamethasone, NaHS: Sodium hydrosulfide
and AOAA: Aminooxyacetic acid. p: significance (<0.05). *: significance as compared to the control
(C) group. #: significance as compared to (Dex) group.

3.5. Results of Haematoxylin and Eosin (HE)- Stained Sections

The HE stained transverse sections (TS) of soleus muscle from the negative control
group, showed a normal appearance of skeletal muscle fibers and closely-packed bundles
with polygonal acidophilic muscle fibers, peripheral oval nuclei, and no atrophic changes
(Figure 3A). While TS of soleus muscle from Dex group showed bundle and fiber atrophy,
angling, and/or degeneration, with fragmented cytoplasm and displacement of some nuclei
away from the periphery (Figure 3B). Moreover, TS of the Dex + NaHS group showed
remarkable preservation of the normal structure with multiple muscle fibers with polygonal
acidophilic muscle fibers with peripheral oval nuclei and no remarkable atrophic changes
(Figure 3C). Furthermore, TS of soleus muscles from Dex + AOAA group showed loss
of normal architecture and fragmented muscle fibers and fiber atrophy, angling, and/or
degeneration, with fragmented cytoplasm and displacement of some nuclei away from
the periphery (Figure 3D). The capillary density showed a significant decrease in Dex and
Dex + AOAA groups as compared to the negative control group and showed a significant
increase in the Dex + NaHS group as compared to the Dex group and negative control
group (Figure 3E).
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rows) and displacement of some nuclei away from the periphery (arrows heads), as well as bundle 
and fiber atrophy, angling and/or degeneration with a few number of capillaries (green arrows); (C) 
Group III (Dex + NaHS) shows remarkable preservation of the normal structure with closely-packed 
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changes (black arrows) with peripheral oval nuclei (arrowheads). with a big number of capillaries 
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Figure 3. (A–D) Photomicrographs of transverse sections for the soleus muscle of different groups:
(A) Group I (negative control) showed normal appearance of skeletal muscle fibers and closely-
packed bundles with polygonal acidophilic muscle fibers (black arrows) with peripheral oval nuclei
(arrow heads) and no atrophic changes with a big number of capillaries (green arrows); (B) Group
II (Dex) shows loosely-packed muscle bundles, many fibers with fragmented cytoplasm (black ar-
rows) and displacement of some nuclei away from the periphery (arrows heads), as well as bundle
and fiber atrophy, angling and/or degeneration with a few number of capillaries (green arrows);
(C) Group III (Dex + NaHS) shows remarkable preservation of the normal structure with closely-
packed muscle bundles, muscle fibers with polygonal acidophilic muscle fibers no remarkable
atrophic changes (black arrows) with peripheral oval nuclei (arrowheads). with a big number of
capillaries (green arrows); (D) group IV (Dex + AOAA) showing loss of normal architecture, loosely-
packed muscle bundles and fragmented muscle fibers (black arrows) and fiber atrophy, angling,
and/or degeneration, with fragmented cytoplasm and displacement of some nuclei away from the
periphery (arrowheads) with a few number of capillaries (green arrows). Scale bar: 25 µm (HE
stain × 400). The histogram shows the capillary density/High power field. Dex: Dexamethasone,
NaHS: Sodium hydrosulfide and AOAA: Aminooxyacetic acid. HPF: High power field. p: signif-
icance (<0.05). *: significance as compared to the control (C) group. #: significance as compared
to (Dex) group.
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3.6. Immunohistochemical Results

The soleus muscle of the negative control group showed a weak immunoreactiv-
ity to caspase-3, CD34, VEGF, CD31, and CD163. Noticeably, muscles from DEX and
DEX + AOAA showed an intense expression for caspase-3 with moderate expression of
CD34 and CD163, with weak expression of VEGF and CD31. In contrast, DEX + NaHS
showed a weak expression for caspase-3 and an intense expression for CD34, CD31, VEGF,
and CD163 (Figures 4–8).
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Figure 4. (A–D): Light-microscopic image of caspase-3 immunostaining (×400) in soleus mus-
cle tissues of all studies groups; Negative control, Dex, Dex + NaHS, and Dex + AOAA groups
(A–D; respectively). Scale bar = 25 µm. Arrows: Caspase-3 immunopositive cells. (E) The mean
of the number of caspase-3 immunopositive cells/HPF in the studied groups. Results are men-
tioned as mean ± standard deviation. The test used: one-way ANOVA, followed by post-hoc
Tukey test. p: significance (<0.05). *: significance as compared to the negative control group. #:
significance as compared to (Dex) group. Dex: Dexamethasone, NaHS: Sodium hydrosulfide, and
AOAA: Aminooxyacetic acid.
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tissues of all experimental groups; Negative control, Dex, Dex + NaHS, and Dex + AOAA groups 
(A–D; respectively). Scale bar = 25 μm. Arrows: CD34 immunopositive cells. (E) Morphometric anal-
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Figure 5. (A–D): Light-microscopic image of CD34 immunopositive staining (×400) in soleus muscle
tissues of all experimental groups; Negative control, Dex, Dex + NaHS, and Dex + AOAA groups
(A–D; respectively). Scale bar = 25 µm. Arrows: CD34 immunopositive cells. (E) Morphometric
analysis of the mean of the number of CD34 immunopositive cells/HPF in the studied groups.
Results are mentioned as mean ± standard deviation. The test used: one-way ANOVA, followed by
post-hoc Tukey test. p: significance (<0.05). *: significance as compared to the negative control group.
#: significance as compared to (Dex) group. Dex: Dexamethasone, NaHS: Sodium hydrosulfide, and
AOAA: Aminooxyacetic acid.
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of all studied groups; Negative control, Dex, Dex + NaHS, and Dex + AOAA groups (A–D; respec-
tively). Scale bar = 25 μm. Arrows: VEGF immunopositive cells. (E) The mean of the number of 
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Figure 6. (A–D): Light-microscopic image of VEGF immunostaining (×400) in soleus muscle tissues of
all studied groups; Negative control, Dex, Dex + NaHS, and Dex + AOAA groups (A–D; respectively).
Scale bar = 25 µm. Arrows: VEGF immunopositive cells. (E) The mean of the number of VEGF
immunopositive cells/HPF in the studied groups. Results are mentioned as mean ± standard
deviation. The test used: one-way ANOVA, followed by post-hoc Tukey test. p: significance (<0.05).
*: significance as compared to the negative control group. #: significance as compared to (Dex) group.
Dex: Dexamethasone, NaHS: Sodium hydrosulfide, and AOAA: Aminooxyacetic acid.
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of all studied groups; Negative control, Dex, Dex + NaHS, and Dex + AOAA groups (A−D; respec-
tively). Scale bar = 25 μm. Arrows: CD31 immunopositive cells. (E) The mean of the number of CD31 
immunopositive cells/HPF in the studied groups. Results are mentioned as mean ± standard devia-
tion. The test used: one-way ANOVA, followed by post-hoc Tukey test. p: significance (<0.05). *: 
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Figure 7. (A−D): Light-microscopic image of CD31 immunostaining (×400) in soleus muscle tissues
of all studied groups; Negative control, Dex, Dex + NaHS, and Dex + AOAA groups (A−D; respec-
tively). Scale bar = 25 µm. Arrows: CD31 immunopositive cells. (E) The mean of the number of
CD31 immunopositive cells/HPF in the studied groups. Results are mentioned as mean ± standard
deviation. The test used: one-way ANOVA, followed by post-hoc Tukey test. p: significance (<0.05).
*: significance as compared to the negative control group. #: significance as compared to (Dex) group.
Dex: Dexamethasone, NaHS: Sodium hydrosulfide, and AOAA: Aminooxyacetic acid.
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Figure 8. (A–D): Light-microscopic image of CD163 immunostaining (×400) in soleus muscle
tissues of all studied groups; Negative control, Dex, Dex + NaHS, and Dex + AOAA groups
(A–D; respectively). Scale bar = 25 µm. Arrows: CD163 immunopositive cells. (E) The mean of the
number of CD163 immunopositive cells/HPF in the studied groups. Results are mentioned as mean ±
standard deviation. The test used: one-way ANOVA, followed by post-hoc Tukey test. p: significance
(<0.05). *: significance as compared to the negative control group. #: significance as compared to
(Dex) group. Dex: Dexamethasone, NaHS: Sodium hydrosulfide, and AOAA: Aminooxyacetic acid.

3.7. Results of Morphometric Analysis of Immunohistochemical Studies

The mean for the number of caspase-3, CD34, VEGF, CD31, and CD163 positive
cells/high power field (HPF) revealed a statistically significant difference (p < 0.0005) among
the studied groups. Post-hoc tests showed that DEX and DEX + AOAA groups showed a
significant increase in caspase-3, CD34, and CD163 as well as a significant decrease in VEGF
and CD31 expressions as compared to the negative control group. DEX + AOAA group
showed a significant elevation in caspase-3 and a significant decrease in CD163, CD31, and
VEGF with no significant difference in CD34 expressions as compared to the DEX group.
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In contrast, the DEX + NaHS group showed a significant increase in CD34, VEGF, CD31
and CD163 expressions as compared to the DEX and the negative control group with a
significant decrease in caspase-3 as compared to the Dex group and a significant increase
as compared to the negative control group (Figures 4–8).

4. Discussion

Muscle atrophy is one of the major side effects of DEX [1], with the induction of
NOX4 and apoptosis after muscle injury and microvascular rarefaction. Hydrogen sulfide
(H2S) a gasotransmitter that can be endogenously produced by different tissues, including
skeletal muscles, was found to have a potential role in skeletal muscle regeneration in
health and disease [5,10,11]. However, the mechanisms still need to be elucidated. In this
study, we investigated the in vivo role of exogenous H2S donor, NAHS, or its inhibitor
Aminooxyacetic acid (AOAA), in the manipulation of angiogenesis and M2 macrophage,
NOX4, and apoptosis after muscle injury and microvascular rarefaction, induced by DEX
in rats.

Fast-twitch glycolytic fibers are more susceptible to atrophy than slow-twitch oxidative
fibers [5]. However, in the present study, DEX was found to cause atrophy in the slow-
twitch soleus muscle. We found that the cross-sectional area decreased significantly, in
agreement with previous data [31–34]. However, Baehr et al. [35] reported different results.
They found no atrophy in Sol after 14 days of DEX treatment in female mice. However,
in the latter study, DEX was provided in the drinking water. The different routes of
administration of DEX (subcutaneous injection in this study) could explain the somewhat
different extent of atrophy. Moreover, we found that DEX could activate Myostatin which
arrests skeletal muscle cell growth similar to the findings of Canepari et al. [34]. We also
found that DEX suppressed contractile force, similar to the finding of Yamada et al. [36]
and Dunlap et al. [37].

In the present study, DEX induced oxidative stress, increased MDA, and decreased
GSH with the induction of NADPH (nicotinamide adenine dinucleotide phosphate, reduced
form) oxidase NOX4, which has a predominant role in inducing oxidative stress in skeletal
tissue, similar to the findings of Bai et al. [2]. NOX4 activity showed higher values in
the slow-twitch oxidative fibers as SOL muscle compared to other muscles [38,39]. DEX
inhibited Mechano-growth factor (MGF), a unique, spliced variant of insulin-like growth
factor 1 (IGF-1), responsible for muscle regeneration and repair after a stretch or mechanical
damage. This is consistent with the finding of Canepari et al. [34], who reported a decreased
activity of IGF-1; a major factor for skeletal muscle growth, and according to Mostafa
and Samir [40] who reported a decreased activity of mechano-growth factor (MGF) with
DEX administration.

In the present study, DEX caused microvascular rarefaction and micro-vessel loss
with suppression of expression of angiogenic factors; VEGF and endothelial marker; CD31
with increased apoptosis as marked by increased caspase-3 level, similar to the finding
of Jesus et al. [6]. A question was raised concerning whether the muscle atrophy induced
by DEX is a direct effect or indirect, through inhibition of skeletal muscle angiogenesis.
Langendorf et al. [7] found that DEX inhibited the expression of angiogenic markers and
inhibited the VEGF provoked-angiogenic effect of myoblasts; however, interestingly, DEX
enhanced the expression of myogenic transcription factors. This is similar to our finding of
decreased endothelial marker; CD31 expression in the DEX group coincided with increased
M2 macrophage number as seen through increased expression of CD163. This is consistent
with Chazaud [8], who reported the finding that the anti-inflammatory M2 macrophages
are involved in myogenesis and muscle repair and that the proinflammatory M1 is involved
in myofiber lysis.

Regarding the H2S donor, NaHS was found to increase the H2S concentration and
to abrogate the inhibitory effects of DEX on protein synthesis but in fast-twitch muscle
fibers [5]. On the other hand, we report for the first time that the NaHS could rescue soleus
slow-twitch muscles, too, while the H2S inhibitor, AOAA, potentiated the atrophy and
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NaHS suppressed the Myostatin muscle and apoptosis as seen through caspase-3 expression
while AOAA increased them. This is similar to the finding of Bitar et al. [41] who reported
that NaHS could decrease the expression of Myostatin in diabetes-induced muscle atrophy
and that treatment with a potent H2S donor at an early stage of diabetes is likely to mitigate
the development of sarcopenia/frailty and predictably reduces its devastating sequelae of
amputation. We also found that NaHS restored the muscle contractile force while AOAA
worsened it, similar to previous results reporting that Hydrogen sulfide donors protected
against mechanical ventilation-induced atrophy and contractile dysfunction in the rat
diaphragm [42].

In the present study, we report for the first time that the administration of NaHS
to the rats with DEX-induced muscle damage decreased the expression of NOX4, while
AOAA increased it, and this may be one of the underlying mechanisms for the muscle
rescuing effect of NaHS. This is consistent with previous findings in other organs and
models; endogenous H2S was found to inhibit NOX4-provoked oxidative stress in LPS-
induced macrophages [43]. H2S alleviated uranium-induced rat hepatocyte cytotoxicity via
inhibiting the Nox4/ROS/p38 MAPK pathway [44]. H2S reduced ischemia and reperfusion
injury in neuronal cells of the retina through the modulation of transcription factor NF-
kappa B and the reduction in retinal inflammation [45].

In the present study, we report for the first time that the administration of NaHS
to the rats with DEX-induced muscle damage increased the activity of Mechano-growth
factor (MGF), while AOAA decreased it. MGF is an insulin-like growth factor 1 (IGF-1)
spliced variant, responsible for muscle regeneration and repair after a stretch or mechanical
damage. It had been reported to be markedly more effective than IGF-I [46].

In addition, we found for the first time that the administration of NaHS to the rats with
DEX-induced muscle damage, increased the expression of CD34, while AOAA decreased
it. CD34 is a transmembrane glycoprotein expressed on stem cells, progenitor cells, and
endothelial cells. This is consistent with the finding that MGF has been shown to stimulate
muscle stem cells (satellite cells) to re-enter the cell cycle and proliferate, resulting in
new muscle cells to replace injured fibers. A similar role of MGF has been explored in
chondrogenesis and the differentiation of mesenchymal stromal cells [46,47]. This is also
consistent with the finding by Abdelmonem et al. [48], who reported the potential of H2S
in the stimulation of cardiac stem cells and preventing cardiomyocyte loss.

In the present study, the administration of the H2S donor, NaHS, to the rats with
DEX-induced muscle damage, increased the number of endothelial cells associated with
induced angiogenesis, while the administration of the H2S inhibitor, AOAA, decreased
their number, as seen through the expression of CD31 and VEGF. This is consistent with
the finding that MGF could accelerate angiogenesis after anterior cruciate ligament (ACL)
injury probably owing to its recruitment of proangiogenesis cells by stromal cell-derived
factor 1alpha/CXCR4 axis and stimulation of vascular endothelial growth factor alpha
expression level [49]. This is also in accordance with the finding by Cheng and Kishore [50],
who reported the important role of H2S in maintaining endothelial function/biology and
angiogenic property but in diabetes-induced critical ischemic limb.

The macrophage system has a dual role in skeletal muscle injury and repair; proin-
flammatory M1 macrophages are involved in myofiber lysis while anti-inflammatory M2
macrophages are involved in myogenesis and muscle repair [8]. In the present study, the
administration of the H2S donor, NaHS, to the rats with DEX-induced muscle damage,
increased the number of M2 macrophages, while the administration of the H2S inhibitor,
AOAA, decreased their number as seen through increased CD163 positive cells. This is sim-
ilar to the finding by Zhao et al. [51], who studied the effect of NaHS but on another muscle
injury model, Gastrocnemius (fast-twitch muscle) contusion. H2S treatment reduced the
inflammatory M1 macrophage marker (CD68) and increased the anti-inflammatory M2
macrophage marker CD206.

In accordance with our work on skeletal muscles, a similar study on vascular beds
was carried out by di Villa Bianca et al. [52]. They reported an obvious decrease in the
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expression of CBS and CSE as well as H2S production in mesenteric and carotid arteries
from the rats receiving Dexamethasone. Moreover, plasma H2S was strongly decreased in
DEX-treated rats. Briefly, the early stage of Dex-induced hypertension is associated with a
disturbance in H2S system, so antagonizing this disruption may be effective in managing
DEX-induced hypertension.

Moreover, a recent published study by Micheli et al. [53] showed in vitro results that
are in accordance with the in vivo results we report. They established a Dex-induced
sarcopenia in an in vitro model in C2C12-derived myotubes; they studied the role of exoge-
nous and endogenous H2S sources. The H2S donors, Glucoraphanin, 3-mercaptopyruvate,
and L-cysteine avoided the alteration in myotube appearance induced by DEX. Gluco-
raphanin and 3-mercaptopyruvate but not L-cysteine stopped the Dex-induced apoptosis
and oxidative stress. These previous results reinforce the in vivo presented results

5. Conclusions

This study found that NaHS could improve the muscle contractile properties and
decrease the oxidative stress and expression of NOX4, caspase-3, Myostatin, VEGF, and
CD31 as well as increase the expression of MGF and cause a significant increase in the
expression of CD34 and CD163 as compared to the Dex group. However, AOAA worsened
the studied parameters. Therefore, NaHS is a promising target to attenuate Dex-induced
skeletal muscle oxidative stress, atrophy, apoptosis, and microvascular rarefaction and
increase angiogenesis.

6. Study Limitations

Sprague–Dawley rats were selected because they are good models for muscular sar-
copenia research [16] and males were chosen to avoid the protective effect of estrogens on
skeletal muscle [17]. So, the controversial results of Dex and H2S on soleus muscle may
be due to the difference in species or sex. Moreover, it may be due to the different types
of skeletal muscles whether they are slow-twitch or fast-twitch muscles. Additionally, the
effect of long-term Dex and NaHS use differs from the effect of short-term use. To achieve
a better validation of the results, the experiment should be repeated with several doses
of NaHS, various animals and species, different sex, different regimens, different types of
skeletal muscles, and even more muscle atrophy models.
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