
Citation: Leung, J.H.; Ng, B.; Lim,

W.-W. Interleukin-11: A Potential

Biomarker and Molecular

Therapeutic Target in Non-Small Cell

Lung Cancer. Cells 2022, 11, 2257.

https://doi.org/10.3390/

cells11142257

Academic Editors: Nobuhiko Seki

and Shigeru Tanzawa

Received: 22 June 2022

Accepted: 15 July 2022

Published: 21 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

cells

Review

Interleukin-11: A Potential Biomarker and Molecular
Therapeutic Target in Non-Small Cell Lung Cancer
Jason Hongting Leung 1,*,† , Benjamin Ng 2,3,† and Wei-Wen Lim 2,3,†

1 Department of Cardiothoracic Surgery, National Heart Center Singapore, Singapore 169609, Singapore
2 National Heart Research Institute Singapore, National Heart Center Singapore, Singapore 169609, Singapore;

benjamin.ng.w.m@nhcs.com.sg (B.N.); lim.wei.wen@nhcs.com.sg (W.-W.L.)
3 Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School,

Singapore 169609, Singapore
* Correspondence: jason.leung@mohh.com.sg
† These authors contributed equally to the work.

Abstract: Non-small cell lung cancer (NSCLC) accounts for 85% of lung cancer and is a fast progres-
sive disease when left untreated. Identification of potential biomarkers in NSCLC is an ongoing area
of research that aims to detect, diagnose, and prognosticate patients early to optimize treatment. We
review the role of interleukin-11 (IL11), a stromal-cell derived pleiotropic cytokine with profibrotic
and cellular remodeling properties, as a potential biomarker in NSCLC. This review identifies the
need for biomarkers in NSCLC, the potential sources of IL11, and summarizes the available informa-
tion leveraging upon published literature, publicly available datasets, and online tools. We identify
accumulating evidence suggesting IL11 to be a potential biomarker in NSCLC patients. Further
in-depth studies into the pathophysiological effects of IL11 on stromal-tumor interaction in NSCLC
are warranted and current available literature highlights the potential value of IL11 detection as a
diagnostic and prognostic biomarker in NSCLC.

Keywords: interleukin-11; cytokines; non-small cell lung cancer; biomarkers

1. Brief Overview of NSCLC Management and Importance of Biomarkers in
Clinical Context

Lung cancer is the second most commonly diagnosed cancer and is the leading cause
of cancer death in the world [1]. The two main types of lung cancer are small cell and
non-small cell lung cancer (NSCLC), characterized by the morphology of cancer cells under
light microscopy. NSCLC accounts for 85% of lung cancer cases and has an overall 5-year
survival of only 25%. Patients with early-stage NSCLC are anticipated to have a 10 month
prognosis if left untreated [2], demonstrating its aggressive nature as an early progressing
disease. Therefore, early recognition and diagnosis is of utmost importance to maximize
patient survival.

The prognosis of NSCLC correlates largely with the extent of disease. In clinical prac-
tice, this is described by the tumor, node and metastasis descriptors and each combination
corresponds to a prognostic American Joint Committee on Cancer stage grouping. Stage
grouping forms the predominant means for patient stratification and the basis for evidence-
based treatment modalities. Surgical resection is recommended for patients with operable
stage I and stage II disease [3]. Adjuvant chemotherapy can improve patient outcomes for
resected stage IB disease and above [4]. Stage IIIA disease usually involves multimodal-
ity management, whereas stage IIIB and above are generally managed non-surgically by
chemoradiotherapy, targeted therapy and immunotherapy. Predictive biomarkers can
help stratify lung cancer patients who better respond and benefit from specific targeted
therapies and immunotherapies from those who do not. Testing for actionable mutations
and immune biomarkers are now part of guideline-based management. Biomarkers for
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recurrence and resistance to treatment is an ongoing area of research and can potentially
change surveillance and treatment practices.

Early detection of lung cancer has the potential to improve overall outcome by shifting
the disease population to earlier stages corresponding to better prognosis. This goal is
especially important in the context of NSCLC where patients are often first diagnosed
at an advanced stage. Computed tomography (CT) is the current standard method for
identification of lung nodules in lung cancer screening. The National Lung Screening Trial
enrolled high-risk current and former smokers in the United States and demonstrated a
mortality benefit of 20% for participants screened by CT compared to chest radiography.
There was a substantial shift towards early identification of lower stage cancers at diagnosis
and therefore eligibility for curative treatments in the CT screening arm [5]. The NELSON
trial demonstrated a reduced cumulative rate ratio for death from lung cancer at 10 years of
0.76 (95% confidence interval 0.61–0.94) in the CT screening group compared to no screen-
ing [6]. Benefits of CT screening potentially extend to non-smoking populations [7]. This
screening modality is not without limitations, which includes resource requisite, testing
costs, radiation exposure risk with recurrent screening regimens and high rate of false posi-
tives resulting in overdiagnosis. When lung cancer is suspected radiologically, histological
evaluation that relies on invasive percutaneous, bronchoscopic or surgical biopsy remains
the necessary gold standard for definitive diagnosis. A portion of patients with no lung
cancer unavoidably develop unnecessary complications as part of the diagnostic process. A
recent systematic review found that CT guided percutaneous biopsy has a pneumothorax
rate of 25.9%, and 6.9% required chest tube insertion [8]. Identification of suitable diagnostic
biomarkers is therefore critical to supplement the goal of earlier detection and diagnosis
with reduced risk, improved accuracy and efficiency.

Interleukin-11 (IL11) is a pleiotropic cytokine that has recently emerged as a tumor-
promoting biomarker for cancer. In this narrative review, we discuss the mechanisms by
which IL11 may promote NSCLC tumor growth and summarize the evidence regarding
the diagnostic and prognostic utility of IL11 specifically in NSCLC.

2. Interleukin-11: Member of the IL6 Family of Cytokines

Cytokines are small soluble secreted proteins that participate in autocrine, paracrine,
and endocrine signaling to facilitate a diverse range of physiological functions including
regulation of immunity, inflammation, cellular proliferation and cellular growth. They
are often classified based on commonalities in structure, function or receptors. IL11 is
classified in the IL6 family of cytokines that share commonality in the glycoprotein 130
(gp130) signaling receptor subunit, in combination with their cytokine-specific cognate
receptors [9,10]. This family of cytokines and their cognate receptors have been regarded as
important contributors to cancer biology (reviewed elsewhere in [11–14]), and may serve
as potential biomarkers in disease progression. Similarly, other members of the IL6 family
cytokines are known to be implicated in NSCLC as well (Table 1).

Table 1. Other IL6 family cytokines and components of the specific receptors associated with NSCLC.

Cytokine Receptors References

IL6 IL6R, gp130/IL6ST [15–22]
IL-31 IL31Rα, OSMR [23]
LIF LIFR/LIFRα, gp130/IL6ST [24]

OSM OSMR/OSMRβ, gp130/IL6ST, LIFR [25,26]
CLCF1 CNTFR, LIFR, gp130/IL6ST [22,27]

3. Interleukin 11 Drives Pulmonary Fibrosis and Inflammation

IL11 was initially implicated in several inflammatory lung diseases such as asthma
and tuberculosis infection. However, recent evidence has demonstrated that IL11 is an
important determinant of fibrosis and chronic inflammation in the lung (reviewed in [28]).
Pulmonary epithelial cells and fibroblasts express high levels of IL11RA and are prominent
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cellular sources of IL11 in response to respiratory infections. Hence, it is proposed that IL11
acts in an autocrine/paracrine fashion in response to pathogens or after tissue injury. IL11
is upregulated in pulmonary fibroblasts from patients with idiopathic pulmonary fibrosis
(IPF), a form of progressive fibrosing interstitial pneumonia characterized by an excess of
activated myofibroblasts, and its elevated expression in the IPF lung is associated with
fibrosis and disease severity [29]. In vitro studies on non-transformed pulmonary cells
showed that IL11 triggers the proliferation and transformation of quiescent fibroblasts into
collagen-producing invasive myofibroblasts [29], and induces an EMT program in epithelial
cells. Pharmacological inhibition of IL11 or fibroblast-specific blockade of IL11 signaling
reduced fibroblast invasion in vitro and reversed pulmonary fibrosis and inflammation in
a murine model of IPF [29,30]. Interestingly, the prevalence of lung cancers in patients with
IPF is significantly higher than the general population, with NSCLC being the predominant
type of lung cancer in these patients [31]. Furthermore, IPF patients with lung cancer have
increased mortality rates as compared to IPF patients without a lung cancer diagnosis [32].
However, it is as yet unclear whether IL11 plays an active role in lung cancers in IPF.

4. Interleukin 11 Is a Tumor-Promoting Cytokine in NSCLC

IL11 was first isolated in 1990 from a primate bone marrow-derived stromal cell line
and was identified to possess hematopoietic and thrombopoietic properties [33]. Subse-
quently, IL11 was evaluated as a potential therapy for chemotherapy-induced thrombocy-
topenia among cancer patients [34,35]. The need to determine suitability of IL11 treatment
for thrombocytopenia in cancer patients motivated early studies evaluating its effects on
cancer cells.

Early studies involving lung cancer cells concluded that IL11 did not promote tumor
cell growth. Soda et al. harvested tumor cells from a heterogenous group of clinical
specimens and subjected the cells to recombinant human IL11 (rhIL11) [36]. This study
defined tumor growth stimulation as a >150% survival increase in tumor colony-forming
units and found that 97% of the specimens across a variety of cancers tested were not
stimulated by rhIL11. Saitoh et al. utilized a murine model of lung cancer and showed
that rhIL11 inhibited proliferation in vitro while not affecting the anti-tumor effects of
carboplatin, mitomycin and etoposide in mice [37]. Treating Calu-1 cells, a NSCLC epithelial
cell line, with IL11 seemed to reduce DNA synthesis but not significantly [38]. Taken
together, these early studies suggest that IL11 was more likely an inhibitor, rather than a
stimulator, of tumor growth.

Later studies, however, identified IL11 as a tumor-promoting cytokine instead [39–42].
It is now known that rhIL11 does not activate mouse IL11 receptor (IL11RA), but competi-
tively inhibits binding of endogenous murine IL11 instead [43,44]. Hence, the use of rhIL11
on murine lung cancer is not expected to recapitulate the effect of human IL11 on human
lung cancer. It is likely due to the differential effects of cross- and same-species recombinant
IL11 that a later study utilizing same-species rhIL11 concluded IL11 to be tumor promot-
ing [45], while an earlier study that used cross-species rhIL11 concluded otherwise [37].
Zhao et al. provided direct evidence that IL11 promotes tumor growth using lentivirus-
mediated IL11 overexpression and knockout in A549 and H1299 lung cancer cell lines [46].
In subsequent studies, the same group demonstrated that hypoxia downregulated miR-495
and miR-5688 to enhance IL11 expression and promote tumor progression [47], showing
that IL11 is especially important for tumor growth during tumor hypoxic conditions. In
support of the finding that IL11 promotes cancer pathology, multiple clinical studies have
now associated IL11 to poorer prognosis in lung cancer (reviewed below).

The sources of IL11 in lung tumors comprise tumor cells, as well as stromal cell
types such as fibroblasts [48,49], airway smooth muscle [50] and epithelial cells [51]. Fi-
broblasts are important components of the tumor microenvironment and are known to
modulate tumor behavior. Clinical studies in NSCLC patients show that fibroblast activa-
tion correlates with poorer survival [52–54]. In human lung tumor tissue samples, IL11
is found to co-localize with ACTA2-positive cells (a marker of myofibroblasts) [55], and
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single-cell RNAseq analyses showed that IL11 gene was expressed in both tumor cells
and fibroblasts [56]. IL11 secretion by fibroblasts is an important medium for NSCLC
tumor growth and mediates fibroblast-tumor cell crosstalk. Microvesicles from A549 and
HTB177 cell lines upregulate IL11 expression from fibroblasts to synergistically promote
disease progression [57]. In addition to promoting tumorigenesis, secretion of IL11 from
fibroblasts is one mechanism by which NSCLC tumors resist cisplatin treatment [55]. The
findings that cancer-associated fibroblasts secrete IL11 to promote tumor growth and confer
chemoresistance has also been observed in other cancers including gastric cancer [41,42].

IL11 signaling can occur either via classical signaling or trans-signaling. During clas-
sical signaling, IL11 binds to its specific receptor IL11RA, which leads to dimerization of
the signal transducing gp130 subunit and activation of downstream signaling. IL11RA is
differentially expressed in NSCLC and has been targeted in a preclinical study to reduce
tumor growth [58]. In trans-signaling, soluble IL11RA are generated from mRNA splice
variants or from proteolytic cleavage of the membrane-bound receptor complexing with the
cytokine extracellularly [59]. This complex then binds to any gp130, which is ubiquitously
expressed on cell surfaces, without requiring the cytokine-specific receptor potentially
expanding the repertoire of effector cells. IL6 trans-signaling has been reported to be impor-
tant in KRAs-driven NSCLC [60], but it is yet uncertain whether IL11 functions similarly.
Downstream of cytokine-receptor binding, JAK/STAT [39,40,61], PI3K/AKT, and Ras/ERK
pathways can be activated resulting in cell proliferation, inhibition of pro-apoptotic pro-
teins, activation of anti-apoptosis proteins, and angiogenesis [62,63]. Activation of these
pathways has been proposed as a prognostic outcome predictor for NSCLC [64–67].

IL11 signaling in NSCLC has been investigated mostly in the A549 cell line as a model
for lung adenocarcinoma (LUAD), the most common subtype of NSCLC. IL11 has been
consistently reported to activate STAT3 [45,46,55], and upregulates anti-apoptotic pathways
driven by BCL2 and Survivin [55]. Recently, IL11 stimulation has also been found to activate
ERK and p90RSK to inhibit LKB1/AMPK and increase mTOR [68]. LKB1 is an important
tumor suppressor for which inactivating mutations are prognostic for poorer outcome and
predictive for treatment failure in NSCLC (reviewed in [69,70]). Activation of the mTOR
pathway is commonly seen in lung cancer and drives pathology [71]. Potentially, IL11
stimulation can result in suppression of LKB1/AMPK in tumors that express functional
LKB1 protein to lead to worse outcomes.

IL11 can also drive cancer growth by promoting epithelial-mesenchymal transition
(EMT) [45,46,72]. EMT describes the transition of epithelial cells possessing apical-basal
polarity and cell-cell adhesion properties into non-polarized mesenchymal cells with in-
creased migratory and invasive properties. This process allows epithelial tumors to invade
into the extracellular matrix-rich stroma, and is an important process for tumor metastasis.
Increased EMT has been associated with poorer prognosis in NSCLC patients [73].

5. Sources of Biomarkers in NSCLC

Biomarkers are measurable characteristics of normal and pathogenic processes or
exposure to interventions [74]. Sources for molecular biomarkers in NSCLC may include
peripheral blood, bronchoalveolar lavage, breath exudate, lung tissue, pleural fluid, urine,
sputum and saliva. These sources differ in feasibility, reproducibility, and procedural risk
profile. Peripheral blood is readily accessible and is useful for comparisons between healthy,
disease and treated populations and is also suitable in longitudinal studies measuring
response to therapy. However, the sensitivity, specificity and reproducibility of blood
biomarkers is limited by production by sources other than tumor, volume of distribution,
and biomarker metabolism and turnover. Alternatively, molecular biomarkers identified
via lung tumor tissue most directly reflect true tumor biology. However, procurement of
tissue samples requires invasive methods such as diagnostic biopsy samples, post-mortem
collection, or from surgical resection. Specimens from surgical resection provide the greatest
quantity of tumor tissue and allows adjacent histologically normal tissue to be collected
concurrently for comparisons.
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6. IL11 Differential Expression in NSCLC Tumor Tissue

The Cancer Genome Atlas (TCGA) database is a commonly referenced publicly acces-
sible dataset containing RNAseq data for tumor samples from NSCLC patients, including
a proportion of matched adjacent normal samples [75]. The Genotype-Tissue Expression
(GTEx) project is a publicly available resource that provides genotype and expression data
for tissue from different sources, including those from non-cancerous lung [76]. Based on
the UCSC Xena platform [77,78], which utilizes these datasets collectively, IL11 mRNA
expression is elevated in tumor tissues as compared to adjacent normal or tissues from
donors without lung cancer (Figure 1).
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on 26 April 2022. 
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Figure 1. Differential expression of IL11 mRNA in lung adenocarcinoma (LUAD) and squamous cell
carcinoma (SCC) based on the TCGA TARGET GTEx dataset. Solid tissue normal: adjacent normal
tissue from TCGA dataset (n = 109). Normal tissue: tissue from subjects with no lung adenocarcinoma
from GTEx dataset (n = 288). Primary tumor: lung tumor tissue (LUAD or SCC) from TCGA dataset
(n = 1011). Recurrent tumor: lung tumor tissue from recurrence (n = 2). The results shown here are
in whole or part based upon data generated by the TCGA Research Network [75] and GTEx [76]
databases using the UCSC Xena online platform [77,78]. https://xenabrowser.net was accessed on 26
April 2022.

Similar results of elevated IL11 mRNA expression by RT-qPCR in tumor tissues have
also been noted in several small studies. Zhao et al. found increased IL11 mRNA expression
in a small cohort comprising 18 NSCLC against five normal lung tissue samples [46].
Subsequently, they demonstrated elevated IL11 mRNA expression in mixed stage (stage I
to IV) lung tumor tissue compared to adjacent normal tissue in a cohort of 28 patients, with
the majority of patients having a tumor size ≥5 cm (71%) and nodal metastases (79%) [47].
Wang et al. found higher IL11 mRNA in LUAD tumor tissue compared to adjacent normal
tissue in a small cohort of 10 patients [79]. Brooks et al. observed a non-statistical increase
in IL11 gene expression in a cohort of 24 LUAD patients when compared to five LUAD-free
individuals [60].

Compared to mRNA expression, protein expression more directly relates to cytokine
biological function. Unfortunately, IL11 protein expression in lung cancer tissue is rarely
reported. Multiple studies have relied on mass spectrometry to identify protein biomark-
ers in NSCLC tumor tissue but IL11 was not identified as a differentially expressed
protein [80–87]. These negative findings from quantitative proteomics studies contrast
with the findings of IL11 mRNA differential expression that is frequently reported. One
possibility is that IL11 protein expression may be discordant with mRNA expression. Chen
et al. reported that only 22% of proteins had significant positive correlation to their mRNA
in lung adenocarcinoma tissue [82] and discordance between IL11 mRNA and protein

https://xenabrowser.net
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is biologically possible through post-transcriptional regulation [47,88,89]. An alternative
explanation is that the methods used for mass spectrometry are unable to detect IL11, a
secretory cytokine, in low abundance in tissue. This alternative explanation is supported
by a study that demonstrated increased IL11 protein in lung cancer tissue as quantified by
ELISA [55].

7. Detection of IL11 for Diagnosis of NSCLC

To the best of our knowledge, there are two studies that describe the utility of IL11
as a diagnostic biomarker (Table 2). Pastor et al. recruited a prospective cohort of 369
patients for which use of diagnostic biomarkers in bronchoalveolar lavage fluid (BALF)
can potentially facilitate early detection of lung cancer [90]. Among 80 cytokines and
growth factors, inflammation-related protein array analyses identified IL11 expression
to be differentially increased in LUAD BALF samples in an initial discovery cohort, and
subsequently validated in two separate exploratory and diagnostic cohorts. This study
demonstrated that BALF IL11 expression was largely restricted to patients with LUAD, with
or without chronic obstructive pulmonary disease (COPD). Despite the eventual diagnosis
at stage III or IV in the majority of the LUAD cohort, the diagnostic performance of BALF
IL11 remains similar between the subgroups even for the early stages. Interestingly, BALF
IL11 expression was not increased in squamous cell carcinoma (SCC), a type of NSCLC
of epithelial origin, which may suggest cell type-selective IL11 expression in NSCLC.
In another study, Wu et al. measured IL11 protein concentration in serum and exhaled
breath condensate in NSCLC cases compared to healthy donors and found increased
IL11 expression in NSCLC patients even at early-stage disease [91]. Additionally, serum
IL11 concentrations were incrementally elevated with progressive disease stages which
correlated with tumor size, stage, presence of metastases, and degree of differentiation.
Taken together, these studies suggest the potential of IL11 as a diagnostic biomarker in
NSCLC patients; however, its contribution to clinical management is currently unclear.

Blood is one of the more readily accessible sources for biomarker discovery in the
clinic, but several potential challenges exist with utilizing circulating IL11 concentrations
as a diagnostic biomarker for lung cancer. Cytokines and interleukins are often present in
the lowest concentrations in circulation [92,93], which may be difficult to detect specifically
and sensitively. For example, IL11 was detected in half of the patients with a primary
lung disorder (tuberculosis, lung cancers and pneumonia) in pleural effusions but not in
peripheral blood [94]. Furthermore, in patients with a broad spectrum of cancers, those with
detectable serum IL11 had worse survivability compared to those without [95]. Even in
late stage III and IV NSCLC patients, Agulló-Ortuño et al. found considerably low plasma
IL11 levels of 12.24 pg/mL and 10.60 pg/mL in LUAD and SCC respectively [96], which
may require more sensitive assay methods for accurate assessment. Lastly, circulating IL11
concentrations may also be affected by other pathologies unrelated to lung cancer (Table 3).
Taken together, several considerations must be made when utilizing blood-based IL11
levels as a biomarker in NSCLC: (1) Not all lung cancer patients have detectable circulating
IL11 levels possibly reflecting disease severity, (2) site of assessment appears to be most
accurate at the disease source, and (3) concomitant diseases can complicate interpretation
of blood IL11 concentrations.
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Table 2. Studies identifying IL11 as a diagnostic biomarker.

Study Recruited Population Comparison Sample Type Diagnostic
Biomarker

Assay
Receiver Operator Curve and Test Metrics

AUC
(95% CI)

Cutoff
(pg/mL)

Sensitivity
(95% CI)

Specificity
(95% CI)

PPV
(95% CI)

NPV
(95% CI)

Pastor et al. [90]

Age > 40 yrs, current or ex-smokers
of 30 pack-years, evaluated for

hemoptysis or pulmonary nodule
or mass, excluding those with prior

diagnosis of malignancy, active
tuberculosis, history of drug abuse

or other inflammatory disease
apart from COPD

LUAD vs. non-LUAD—First
validation cohort (n = 149) BALF IL11 protein ELISA 0.93 (0.90–0.97) 42.0 90.2

(79–95.7)
88.7

(90.6–93.5)
80.7

(68.7–88.9)
94.5

(87.8–97.6)

LUAD vs. non-LUAD—Second
validation cohort (n = 160) BALF IL11 protein ELISA 0.95 (0.92–0.98) 42.0 90.6

(79.7–95.9)
83.0

(86.8–87.7)
60.8

(49.7–70.8)
96.8

(92.7–98.6)

Wu et al. [91]

NSCLC patients with no history of
radiochemotherapy,

immune-targeted therapy or
surgery (n = 91 for serum, of which

63 have LUAD and 28 have SCC;
64 for EBC)

Healthy volunteers without acute
or chronic infectious diseases, vital

organ diseases, or genetic family
tumor history (n = 72 for serum;

63 for EBC)

Serum IL11 protein ELISA 0.93 (0.88–0.97) 126.1 75.0 100.0 NR NR

EBC IL11 protein ELISA 0.78 (0.69–0.86) 21.5 78.1 79.4 NR NR

BALF: bronchoalveolar lavage fluid; EBC: exhaled breath condensate; LUAD: lung adenocarcinoma; SCC: Squamous cell carcinoma; COPD: chronic obstructive pulmonary disease;
AUC: Area under curve; PPV: positive predictive value; NPV: negative predictive value; NSCLC: non-small cell lung cancer; NR: not reported.
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Table 3. Pathologies where IL11 from peripheral blood has been reported to be increased in hu-
man subjects.

Pathology Comparison Source Findings Reference

Polycythemia vera Healthy Plasma Increased [97]

Rheumatoid arthritis
with or without

interstitial lung disease
Healthy Serum

Increased in rheumatoid arthritis,
more so with concomitant

interstitial lung disease
[98]

Congestive heart failure Healthy Plasma Increased [99]

Severe pancreatitis Mild pancreatitis Serum Increased [100]

Breast cancer metastatic
to bone

Primary breast cancer
and healthy controls Serum

Increased compared to healthy
controlsCorrelated with shorter

disease-free survival
[101]

Pancreatic cancer Healthy Plasma Increased
Correlated with survival. [102]

Gastric cancer
Chronic superficial

gastritis and
chronic atrophic Gastritis

Serum
Increased in gastric cancer >

chronic atrophic gastritis > chronic
superficial gastritis

[103]

Preeclampsia
Normal pregnant

gestation-
matched control

Serum Increased [104]

Thoracic aortic dissection
Non-aortic dissection
patients presenting

with chest pain
Plasma Increased [105]

8. Quantification of IL11 Expression for Prognostication of NSCLC

Accurate prognostication is important for identifying patients who may benefit from
adjuvant or neoadjuvant therapy. Using molecular biomarkers in addition to clinical data
can potentially allow patients to be stratified into risk groups with greater accuracy [106,
107]. Numerous studies have identified IL11 mRNA in NSCLC lung tissue taken at the
time of surgical resection to be prognostic of overall survival, both by itself and among
other genes as part of a prognostic signature (summarized in Table 4).



Cells 2022, 11, 2257 9 of 17

Table 4. Studies identifying IL11 as a prognostic biomarker.

Study Year Training Cohort Validation Cohort (s) Cancer Type Prognostic Signature Findings

Kratz et al. [107] 2012 Non-squamous NSCLC
(n = 361)

Stage I non-squamous
NSCLC (n = 433), and

stage I-III non-squamous
NSCLC (n = 1006)

Non-squamous NSCLC

11 Target genes (BAG1,
BRCA1, CDC6, CDK2AP1,
ERBB3, FUT3, IL11, LCK)

and 3 reference genes
(ESD, TBP, YAP1)

(1) Risk as identified by the
14 gene-expression assay was a
statistically significant predictor
of overall survival.

Watza et al. [108] 2018

NSCLC patients without
history of bronchiectasis

or cystic fibrosis
(n = 280)

TCGA Lung SCC and
TCGA LUAD datasets

(n = 1026)
NSCLC

23 genes involved in the
interleukin signaling

pathway, including IL11

(1) Interleukin signaling pathway
was one of three pathways that
was significantly associated with
survival out of 48 immune-centric
pathways evaluated.

(2) 23 genes were identified as
drivers of the interleukin pathway
enrichment, which included IL11.

(3) Higher expression of IL11
had worse overall survival
in both cohorts

Wang et al. [79] 2020
TCGA LUAD dataset

(497 LUAD tissues,
54 normal lung tissues)

n/a LUAD 6 genes (CRABP1, IGKV4-1,
IL11, INHA, LGR4, VIPR1)

(1) IL11 expression is prognostic
of survival.

(2) Cytokine-cytokine receptor
pathways, JAK-STAT signaling
pathways were among the top 5
most significantly enriched
pathways by differentially
expressed immune-related genes.

(3) IL11 is differentially expressed in
tumor tissue compared to
adjacent normal tissue.
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Table 4. Cont.

Study Year Training Cohort Validation Cohort (s) Cancer Type Prognostic Signature Findings

Fan et al. [109] 2021
TGCA LUAD dataset

(n = 464)(majority
stage I and II)

GSE13213 (n = 117),
GSE30219 (n = 85),

GSE31210 (n = 226),
GSE72094

(n = 420)(majority
stage I and II)

LUAD 5 genes (IL7R, IL5RA,
IL20RB, IL11, IL22RA1)

(1) IL11 is differentially expressed (by
mRNA) in tumor versus normal
tissue, and is prognostic of
survival when used in a 5 gene
signature model.

(2) These 5 genes were selected as
they were differentially expressed
and prognostic and thought to
play the most important role
in LUAD

Chen et al. [110] 2021

TCGA LUAD
(535 LUAD tissues,

59 normal lung
tissues)GSE161116
(9 LUAD tissues,

9 LUAD brain
metastasis tissues)

n/a LUAD
6 genes (TNFRSF11A,
MS4A2, IL11, CAMP,

MS4A1, F2RL1)

(1) IL11 is differentially expressed in
tumor tissue compared to
normal tissue in the TCGA
database and is an independent
factor affecting prognosis.

(2) IL11 expression has diagnostic
value for brain metastasis

Peng et al. [111] 2021

GSE161116 (13 lung
tumor tissues, 15 brain

tissues), GSE747706
(18 lung tumor tissues,

18 normal tissues),
GSE21933 (21 lung

tumor tissues, 21 normal
tissues) datasets

n/a NSCLC andBrain tumor n/a

(1) 20 genes (including IL6 and IL11)
are differentially expressed in
both brain metastasis (compared
to NSCLC lung tumor) and lung
tumor (compared to normal lung).

(2) High IL11 expression is linked to
poorer overall survival.
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In addition to published literature, there are multiple online tools drawing on publicly
accessible datasets to facilitate comparisons of clinical and molecular data [112–115]. A
statistically significant difference in patient survival was observed between high and low
tissue IL11 mRNA expression among LUAD and SCC patients in the TCGA Pan-Cancer
Atlas dataset and high IL11 expression was associated with poorer survival (Figure 2).
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= 478). A cutoff of z > 0 was used for high expression and z ≤ 0 as low expression. Logrank tests
show statistically significant differences between the high and low expression groups. The results
shown here are based upon data generated by the TCGA Research Network [75,116], generated with
cbioportal (https://www.cbioportal.org) [113,117] that was last accessed on 26 April 2022.

9. Conclusions

Earlier studies investigated the effects of IL11 in cancer as a potential treatment for
chemotherapy-induced thrombocytopenia among cancer patients. These studies, which
utilized cancer cell lines and non-species-matched recombinant IL11 in mice, initially
suggested that IL11 was unlikely to promote cancer and perhaps inhibited tumor pro-
gression. Recently, there is accumulating evidence suggesting that IL11 is an important
tumor-promoting cytokine that that has both diagnostic and prognostic value in patients
with NSCLC. Multiple in vitro studies confirm that IL11 activates known tumor-promoting
signaling pathways and clinical studies link increased IL11 expression to poorer prognosis.
Measurement of IL11 RNA or protein in blood, BAL and tissue may aid diagnosis and
prognostication in patients with NSCLC, although feasibility and utility should be consid-
ered. Further research into the molecular and physiological effects of IL11 in NSCLC can
reveal novel therapeutic targets.
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