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Abstract: Calcium ions (Ca?*) operate as important messengers in the cell, indispensable for signaling
the underlying numerous cellular processes in all of the cell types in the human body. In neurons, CaZt
signaling is crucial for regulating synaptic transmission and for the processes of learning and memory
formation. Hence, the dysregulation of intracellular Ca>* homeostasis results in a broad range of
disorders, including cancer and neurodegeneration. A major source for intracellular Ca?* is the
endoplasmic reticulum (ER), which has close contacts with other organelles, including mitochondria.
In this review, we focus on the emerging role of Ca%t signaling at the ER—mitochondrial interface in
two different neurodegenerative diseases, namely Alzheimer’s disease and Wolfram syndrome. Both
of these diseases share some common hallmarks in the early stages, including alterations in the ER
and mitochondrial Ca?* handling, mitochondrial dysfunction and increased Reactive oxygen species
(ROS) production. This indicates that similar mechanisms may underly these two disease pathologies
and suggests that both research topics might benefit from complementary research.

Keywords: calcium; mitochondria; mitochondria-associated ER membranes (MAMs); Alzheimer’s
disease; Wolfram syndrome; neurodegeneration

1. Introduction

Neurodegenerative diseases are characterized by the progressive degeneration or
loss of neurons, a process that is causative of a wide array of symptoms. In this review,
we discuss the important role of Ca?* homeostasis in two neurodegenerative diseases:
Alzheimer’s disease and Wolfram syndrome. The main focus lies on the ER and mito-
chondrial Ca?* handling, as well as the close interaction between these organelles. By
investigating the Ca®* impairments, we show that these two very different diseases have
more in common than first meets the eye.

2. Ca* Signaling
2.1. Ca?* Signaling: A Brief Overview

Calcium ions (Ca?*) are omnipresent in living cells and function as a versatile form of
cellular communication, vital for the regulation of numerous cellular processes, including
muscle contraction, fertilization, differentiation and metabolism [1,2]. For instance, several
metabolic enzymes function with Ca?* as a co-factor, including pyruvate-, isocitrate- and
o-ketoglutarate dehydrogenase. In this way, a Ca?* transfer from the endoplasmic reticu-
lum (ER) to mitochondria can stimulate mitochondrial ATP production and survival [3]. A
few examples of the involvement of Ca*-dependent processes in specific tissue/cell types
are shown in Figure 1B-D. The living cells maintain a relatively low cytosolic Ca®* con-
centration ([Ca?*]) (100 nM), compared to the [Ca®*] inside the intracellular Ca?*-storing
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organelles (250-500 uM) and the extracellular space (>1 mM). The rapid changes in the
cytosolic [Ca?*] can relay signals from either extracellular or intracellular stimuli to cellular
effectors [4]. A critically controlled balance of the intracellular Ca?* homeostasis is facil-
itated by the extensive ‘Ca®* toolkit’ (Figure 1A). This toolkit comprises of several Ca?*
transporters and Ca?*-binding proteins, thereby enabling the intracellular compartmen-
talization of Ca?* and spatiotemporal organization of Ca?* dynamics [2]. In the neurons,
Ca?* signaling plays a key role in synaptic transmission and plasticity, and the processes of
learning and memory formation [5].
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Figure 1. (A) Schematic representation of the Ca?*-signaling toolkit. Ca?* can enter the cell via
store-operated, STIM-gated Orai channels, but also through voltage-gated Ca®* channels (VOC),
arachidonic acid-regulated Ca?* channels (ARC), transient receptor potential channels (TRP) and
ligand-gated ion channels (LGIC). The plasma membrane Ca?>* ATPase (PMCA) and the plasmalem-
mal Na*/Ca?* exchanger (NCX) are responsible for Ca?* extrusion into the extracellular space. Ca>*
is mainly stored in intracellular Ca?* stores, such as the endoplasmic reticulum, where it is buffered
by calreticulin (CRT) and calnexin (CNX). Mobilization of Ca?* from the ER into the cytosol occurs
via two main channels, namely the inositol 1,4,5-trisphosphate receptor (IP3R) and the ryanodine
receptor (RyR). Multiple ER-Ca?* leak channels exist including presenilin (PSEN), Bak inhibitor-1
(BI-1), TRP melastin 8 (TRPMS) and Sec61 translocon. ER Ca2* depletion is detected by luminal ER
Ca”* sensors STIM1/STIM2, which subsequently activate plasmalemmal Orai to cause a Ca>* influx
across the plasma membrane. (Re)filling of the ER is mediated by the sarco-endoplasmic reticulum
ATPase (SERCA). In the mitochondria, Ca?* uptake is mediated by the voltage-gated anion channel
(VDAC) on the outer mitochondrial membrane and the mitochondrial calcium uniporter (MCU)
complex on the inner mitochondrial membrane. The main mitochondrial Ca®* efflux transporter is
the Na*/Ca®* exchanger (NCLX). Lysosomal Ca®* release is mediated by transient receptor potential
mucolipin (TRPML) and two-pore channel 2 (TPC2). This latter is regulated by nicotinic acid ade-
nine dinucleotide phosphate (NAADP). Cytosolic Ca?* is buffered by several Ca*-binding proteins
including calmodulin (CaM), calbindin D-28 (CB-D28K), calretinin (CR) and parvalbumin (PV);
(B-D): Schematic overview of relevant examples of functional correlates of Ca®* signaling in specific
tissue/cell types. CICR, Ca?*-induced Ca®* release; SR, sarcoplasmic reticulum; ER, endoplasmic
reticulum; AMPA, x-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid; NMDA, N-methyl-D-
aspartate; LTP, long term potentiation; TRPMS5, transient receptor potential cation channel subfamily
M member 5.

The major intracellular Ca?*-storage organelle is the ER, although the Golgi apparatus,
the nuclear envelope and the lysosomes also serve as Ca®* stores and contribute to the
localized Ca®* signaling. Moreover, the mitochondria can function as additional Ca?*
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buffers upon sequestering elevations in the cytosolic Ca?* [2]. The Ca?* is mobilized from
the ER into the cytosol, but also to the mitochondria, mainly via two different release
channels: the inositol 1,4,5-trisphosphate (IP3) receptor (IP3R), which is the most ubiqui-
tously expressed ER-resident Ca?* release channel, and the ryanodine receptor (RyR) [6-8].
Both of the receptors consist of three different isoforms displaying distinct tissue-specific
distribution patterns [7]. The IP3Rs are opened upon binding of IP3, a second messen-
ger produced from phosphatidyl inositol 4,5-bisphosphate (PIP2), through the action of
phospholipase C isoform, in response to the activation of G-protein-coupled receptors
and tyrosine-kinase receptors by hormones, neurotransmitters, growth factors and/or
antibodies [1]. In addition to this, the release of CaZ* from the ER is enhanced by Ca?*
itself, in a process called Ca%*-induced Ca?* release (CICR), which allows for the ampli-
fication of the cytosolic Ca?* signals. Importantly, high cytosolic [Ca?*] can also inhibit
ER Ca?* release, illustrating the bell-curve shaped Ca?* dependence of ER Ca?* release [7].
Besides these intracellular Ca?*-release channels, a plethora of ER-resident proteins, in-
cluding presenilins (PSENS), have been implicated in functioning as Ca®*-leak channels
thereby mediating a constitutive passive Ca?* leak from the ER Ca?* stores [9-11]. For an
extensive review of the ER-Ca2* leak channels, we refer to [10]. In addition to this, the
channels controlled by ER Ca?* levels, such as TMCO1, have been identified [12]. The
Ca®*-permeable TMCO1 channels are activated by high ER Ca®* levels, thereby preventing
ER Ca?* overload. Conversely, the sarco-endoplasmic reticulum ATPase (SERCA) pump is
responsible for the active maintenance or refilling of the internal Ca?* stores [13]. Decreases
in [Ca2*] in the ER cause a dissociation of Ca?* from the Ca%* sensors’ stromal interaction
molecule (STIM1/STIM?2) [14]. This results in the dimerization and redistribution of STIM
proteins and the unfolding of their STIM1 Orai-activating region (SOAR) domains. The
latter interact with the hexameric Orail/2/3 channels, which are Ca2*-selective channels
located on the plasma membrane enabling store-operated Ca®* entry (SOCE) [14]. Recently,
the helical M4x peptide of Orai was put forward as the target of interaction with the STIM
SOAR domains, in which certain leucine residues in the M4x peptide were deemed to be
critical for the interaction with SOAR [15]. The interaction of STIM with the Orai channels
is aided by the STIM polybasic C terminus that binds acidic phospholipids at the plasma
membrane, maintaining close contact between the ER and the plasma membrane. Conse-
quently, the Orai channels are opened, thereby mediating store-operated Ca®* influx from
the extracellular environment into the cytosol and driving the SERCA-mediated refilling
of the ER. Of note, the IP3Rs functionally interact with the STIM/Orai complexes in such
a way that the Ca?* release is coupled to appropriate Ca* entry. The N-terminal STIM
EF-hand motifs in the ER lumen are thought to inhibit IP3R-mediated Ca?* release [16].
Vice versa, the IP;R-mediated decreases in the lumenal [Ca%*] drive the clustering of STIM2
proteins and consequently augment the SOCE [16,17].

Besides the store-operated Ca?* channels, other channels in the plasma membrane
are responsible for Ca®* entry, including the voltage-gated Ca?* channels (VOC), receptor-
operated CaZ* channels (ROC), transient receptor potential (TRP) channels and arachidonic
acid-regulated Ca?* (ARC) channels [4]. On the other hand, the Ca?* extrusion to the
extracellular environment is mediated by the plasma membrane Ca?* ATPase (PMCA)
and the plasma membrane Na*/Ca?* exchanger (NCX). The PMCA displays a higher
Ca?* affinity but lower capacity for Ca?* transport, while the NCX shows the opposite
properties [5,18].

The final aspect of the ‘Ca" toolkit’ consists of the Ca?*-binding proteins that are
crucial for the regulation of Ca* concentration in the cytosol and in the intracellular stores.
The fine regulation of Ca?* dynamics by the Ca?*-binding proteins is not only exerted by
Ca?* buffering, but also through direct interaction with the target proteins (such as the
IP3R [19,20]) [21]. Examples of such Ca2+—binding proteins are calmodulin (CaM), which
is able to bind four different Ca?* ions, calbindin D-28 (CB-D28K), calretinin (CR) and
parvalbumin (PV) [5,22]. Inside the ER, Ca?* is buffered by calreticulin (CRT) and calnexin
(CNX). More specifically for neurons, fourteen neuronal Ca?* sensor proteins have been
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identified, such as hippocalcin, recoverin, neurocalcin-5 and GCAP1-3 [23]. These are
important for the regulation of neuronal function and for the maintenance of neuronal
health [22]. In addition, neuronal Ca?*-binding proteins have been described that also
directly interact with the IP3R [24].

2.2. Mitochondrial Ca** Handling

Besides the ER, mitochondria also provide additional Ca?*-buffering capacity and
intervene in multiple Ca?*-mediated signaling processes [25]. The Ca?* uptake in the
mitochondria is driven by the negative mitochondrial membrane potential (—180 mV) and
is facilitated by the voltage-dependent anion channel (VDAC) on the outer mitochondrial
membrane and the mitochondrial calcium uniporter (MCU) on the inner mitochondrial
membrane. The Ca2* is removed from the mitochondrial matrix via the Na*/Ca2* ex-
changer (NCLX), located on the inner mitochondrial membrane. The NCLX transports
3Na* per Ca®*, but also displays Li*-dependent Ca®* transport [26]. The NCLX is regulated
by kinase activity, mitochondrial membrane potential and proteases [26,27].

The ER is in close contact with the mitochondria, focalized at the mitochondria-
associated ER membranes (MAMs) [28]. The MAMs are dynamic structures that allow
‘quasi-synaptic’ Ca®* transfer from the ER to the mitochondria. The distance between the
ER and the mitochondria at these MAMs varies from 10 nm to 30 nm [29,30].

In the MAMs, the IP3Rs associate in a macromolecular complex with VDAC1 and
GRP75 [31]. As such, the local elevations of [CaZ*] in the microdomains, which can
reach more than 10 uM Ca?*, can overcome the inherently low Ca?* affinity of MCU,
ensuring an adequate transfer of Ca®* into the mitochondrial matrix, even under basal
conditions [32]. Additionally, the translocase of the outer membrane 70 (TOM70) has been
shown to bind to the IP3R and to facilitate the IP3R-mediated Ca?* transfer from the ER to
the mitochondria [33]. Besides TOM70, other accessory proteins aid in MAM formation and
stabilization, including the FUN14 domain-containing protein 1 (FUNDC1) and inositol-
requiring enzyme 1 « (Irelo) [34,35]. Although all of the IP3R isoforms are found in the
MAMs, IP3R type 2 appears to be the most efficient at transferring Ca?* from the ER to the
mitochondria [36]. Importantly, the intracellular [Ca?*] plays a dual role in regulating cell
death [37]. Pro-survival Ca?* oscillations promote the mitochondrial bio-energetics and
the production of ATP by enhancing the activity of Ca?*-dependent enzymes (pyruvate
dehydrogenase, isocitrate dehydrogenase and «-ketoglutarate dehydrogenase) [3]. Instead,
sustained Ca?* elevations trigger cell death [28,38] involving a Ca>*-dependent dissociation
of cardiolipin from complex II, leading to excessive ROS production and the opening of the
mitochondrial permeability transition pore (mPTP) [39,40].

The neurons have limited glycolytic capacity and therefore rely on proper mitochon-
drial ATP production for the maintenance of ionic gradients and for overall synaptic
function [41]. The importance of MAM integrity in neurons is underpinned by the presence
of the ER chaperone sigma-1 receptor (S1R) in the MAMs, where it stabilizes IP3R and
enhances the ER-mitochondrial Ca®* transfer [42]. The SIR is implicated in neuroprotection
and neuroplasticity and is bound to the lumenal ER chaperone binding immunoglobulin
protein (BiP). Under the conditions of [Ca?*] ER depletion, SIR dissociates from BiP and
loses its specific MAM localization [42].

Another example of a MAM protein regulating the ER-mitochondrial Ca?* transfer is
ER oxidoreductase 1-& (Erole), for which tightly regulated expression levels are necessary
to ensure proper mitochondrial Ca?* signaling. On the one hand, the knockdown of Erola
inhibits ER-mitochondrial Ca?* transfer by impacting both the IP3R-mediated Ca®* release
and mitochondrial Ca?* uptake. On the other hand, the overexpression of Erola leads
to elevated Ca2* basal efflux through the IP3R, lowering the steady state ER [Ca?*] and
reducing agonist-induced ER-mitochondrial Ca?* transfer [43].

Besides regulating Ca?*, the MAMs are also involved in redox regulation by function-
ing as hosts for the sources and targets of reactive oxygen species (ROS) [44]. Interestingly,
the Hajnoczky lab developed a novel strategy for measuring ROS at the MAMs by using
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drug-inducible synthetic linkers to target fluorescent H,O, sensors and ROS producers [44].
In doing so, they discovered dynamic HyO; nanodomains present at the MAMs that are
regulated by Ca?* signaling. Moreover, it was shown that mitochondria generate oxidative
bursts that are sensed by IP3;R, which in turn respond by generating Ca?* signals [45,46].

2.3. Lysosomal Ca** Handling

Besides the plasma membrane and mitochondria, the ER is also in close contact with
other cellular organelles, such as lysosomes. In fact, the lysosomes specifically buffer
the cytosolic [Ca2*] elevations established by IP3R-mediated CaZ* release, but not the
[Ca®*] elevations caused by other processes, such as SOCE [47]. Additionally, several
Ca?*-release channels are embedded in the lysosomal membrane, i.e., transient receptor
potential mucolipin (TRPML), two-pore channel 2 (TPC2) and P2X4 receptors [48]. At the
ER-lysosomal contact sites, these lysosomal Ca?* release channels may activate the ER
Ca?* release channels by CICR [49]. In the case of TPC2-mediated Ca?* release, nicotinic
acid adenine dinucleotide phosphate (NAADP) seems to be involved as a second messen-
ger, by binding the Jupiter microtubule-associated homolog 2 (JPT2) and like-Sm protein
12 (LSM12), which were identified as interactors with TPC2 [50-52]. While TPC2 receptors
function as Ca?* permeable channels activated indirectly by NAADP, TPC2 receptors are
directly activated by phosphatidylinositol 3,5 bisphosphate (PI(3,5)P2), activating TPC2
to selectively flux Na+ ions [53]. Additionally, the NAADP-producing enzymes, NADPH
oxidase (NOX) 1 (NOX1)/NOX2 and dual NADPH oxidase (DUOX) 1 (DUOX1)/DUOX2,
have been identified [54].

3. Alzheimer’s Disease

Over 55 million people worldwide live with dementia; a number that is rising on a
daily basis due to aging of the global population [55]. Alzheimer’s disease (AD) accounts
for around 60-70% of these cases and is therefore the most frequently occurring form of
dementia. Patients with AD clinically present with behavioral changes, memory impair-
ment, difficulties with communication and troubled reasoning and judgement [56]. The
major neuropathological hallmarks of the disease include the irreversible loss of neurons,
the formation of intracellular neurofibrillary tangles consisting of hyperphosphorylated tau
protein and the accumulation of extracellular amyloid beta (A3) aggregates [57]. These A3
peptides are formed by the subsequent proteolytic cleavage of the amyloid precursor pro-
tein (APP) by «-, 3- and y-secretases. The latter are mainly responsible for the generation
of the A peptides with a length of 42 amino acids (A(42), which are more prone to form
aggregates and to accumulate in the brain than the more frequently observed A{340 [58,59].
An additional hallmark of AD is the chronic activation of microglial cells, resulting in
increased neurotoxicity [60].

The more rare, familial form of AD (FAD) is characterized by an early-onset of the
disease and is caused by autosomal dominant mutations in APP or in presenilins, the
catalytic subunits of the y-secretase complex. Though familial AD occurs less frequently
than the sporadic, late-onset form of the disease, the pathological features of both forms
are similar [61]. The major risk factors for the development of sporadic AD are age,
gender—given that two-thirds of people with AD are female [55]—and carrying at least
one apolipoprotein E (APOE) ¢4 allele [62,63].

There is currently no disease-modifying therapy available for AD, as the only available
treatment focusses on symptom relief. The current therapy consists of administration of
three different acetylcholinesterase inhibitors (donepezil, rivastigmine and galantamine)
and the NMDA receptor antagonist, memantine. Previous anti-amyloid strategies de-
veloped in the past few decades were limited in their success [64]. The more recently
FDA-approved aducanumab bears more promise but awaits further confirmation of clinical
benefit [65]. In addition, the neuroprotective properties of SIR have prompted several
researchers to assess the potential of pharmacological S1R agonists (such as choline and
PRE-084) in AD models. Choline ameliorated the amyloidogenic processing of APP and
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reduced the AD-related microglial activation in an AD mouse model [66]. PRE-084 reduced
the A levels in the brain and ameliorated the learning and memory deficits of mice injected
with A [67].

3.1. From Amyloid Hypothesis to Calcium Hypothesis

In 1992, Hardy and Higgins hypothesized that amyloid beta proteins were the causative
agent in the pathology of AD [68]. To date, the A3 hypothesis is the most widely accepted
hypothesis and has served as the main guide for the development of therapeutic strate-
gies. Although much evidence to support this hypothesis has been gathered over the past
years [69], the hypothesis remains somewhat controversial [70]. One of the reasons to cast
doubt upon the Ap hypothesis is that the formation of Af plaques is also observed in
cognitively well-functioning individuals and that the overall correlation between plaque
deposition and cognitive function is rather weak [71-74]. Additionally, the failure of many
anti-Af3 therapies suggest that amyloid plaque formation is not the only pathogenic factor
involved in AD [64].

Only a few years later, Zaven S. Khachaturian proposed the Ca?* hypothesis of AD [75].
This hypothesis is based on the similar pathological processes observed in AD and aging,
such as increased oxidative and metabolic stress, decreased ATP production and overall
Ca?* dysregulation. In the following years, more and more evidence to support the Ca®*
hypothesis emerged and emphasized the important role of altered Ca?* signaling in the
pathophysiology of AD [76,77]. Moreover, targeting the dysregulation in Ca?* homeostasis
has been suggested as a potential approach for the treatment of AD [77,78]. The various
downstream effects of dysregulated Ca?* homeostasis include several molecular alterations
underlying the AD pathogenesis, such as loss of synapses, mitochondrial dysfunction,
oxidative stress and dysfunctional synaptic transmission and plasticity [79-81]. Of note,
the alterations in Ca?* handling are not exclusive for AD pathology, but have also been
linked to other neurodegenerative diseases including Parkinson’s disease and Huntington’s
disease [82].

Dreses-Werringloer et al. discovered a Ca?*-permeable channel named calcium home-
ostasis modulator 1 (CALHM]1), directly linking Ca?* homeostasis to AD and to the produc-
tion of A3 [83,84]. The CALHM1 is a transmembrane glycoprotein that generates a large
Ca?* conductance across the plasma membrane. The CALHM1 plays a role in neuronal
excitability and shares similar properties with connexins, pannexins and innexins [85,86].
It was shown that a single nucleotide polymorphism in the CALHM]I, resulting in proline
substitution to leucin at codon 86, was associated with different AD cases. Moreover, this
mutation was reported to cause an impairment of the plasma membrane Ca?* permeability,
a reduction in the cytosolic Ca?" rise after removing extracellular Ca?* and to affect APP
processing [83].

Multiple studies indicate an increase in the resting cytosolic [Ca?*] in AD. Kuchibhotla
et al. reported a Ca?* overload in individual neurites and spines in mice, which was
dependent on the proximity to Ap deposits [87]. Moreover, A} plaque deposition was
required to induce Ca®* overload. The magnitude of the Ca?* overload was similar to levels
that are associated with long-term depression, an important neuronal process characterized
by decreased synaptic strength that is also affected in AD. Similarly, resting cytosolic [Ca?*]
was significantly increased in the cultured, cortical neurons from a triple transgenic AD
mouse model (3xTg-AD). However, in the absence of extracellular Ca?*, the intracellular
Ca?* levels almost completely returned to normal, suggesting that an influx of extracellular
Ca?* plays a role in the observed intracellular Ca?* overload. It was further demonstrated
that increases in Ca?* influx via L-type Ca?* channels and increased IP3R-mediated Ca®*
release are responsible for the elevated cytosolic Ca®* levels. The observed disturbances in
the Ca?* signaling occur prior to the onset of plaque formation and neurofibrillary tangles,
indicating the crucial role of Ca?* signaling in the early pathophysiology of AD [88].



Cells 2022, 11, 1963

7 of 23

3.2. Changes in ER Ca?* Handling in AD

The Ca®* hypothesis was further supported by the discovery of various FAD-linked
mutations in PSEN causing alterations in intracellular Ca?* release (Figure 2) [11,89,90].
Two possible mechanisms for this have been proposed. On the one hand, it is suggested that
PSENSs act as ER Ca?* leak channels, independent of their function as a catalytic subunit of
the y-secretase complex, and that this leak function is abolished due to PSEN mutations [11].
Additionally, the ER Ca?* overload observed in the cells expressing PSEN mutants, leads
to increased Ca®* release after IP3R activation. Interestingly, the PSENs undergo endopro-
teolytic cleaving in order to be stable and functional in the y-secretase complex, but the
authors suggest that the holoprotein of PSENS is responsible for the ER Ca?* leak func-
tion. Indeed, the PSEN1 AE9 mutant, a mutant that is unable to undergo endoproteolytic
cleavage, showed higher ER Ca?*-leak channel activity than WT PSENT1 [11]. Additionally,
the phosphorylation of PSEN1 appeared critical for its ER Ca?*-leak function [10,91]. On
the other hand, single channel analyses showed that different PSEN1 mutations directly
sensitize IP3R activity, thereby resulting in hyperactive Ca?* signaling in four different
cell systems [90]. This gain-of-function effect of FAD-linked PSEN mutations was also
independent of the y-secretase activity of PSEN. More specifically, the PSEN mutations
drive the IP3R into the H mode, the gating mode with high open probability and bursting
channel behavior [92], causing a sufficiently large Ca?* flux to enable signal amplification
by CICR [90]. In agreement, Stutzmann et al. showed increased IP3-evoked Ca2* responses
in neurons expressing PSEN1 mutants by using whole-cell patch-clamp recording, flash
photolysis of the caged IP3 and two-photon imaging in brain slices [93]. In addition, ad-
ministration of oligomeric AB42 was observed to raise cytosolic [Ca?*] through an ER Ca?*
release, in part via an IP3R-mediated Ca®* release, but also through an IP3R-independent
Ca?* leak from the ER [94].

Besides the IP3R, changes in the RyR activity have also been linked to AD (Figure 2).
Chan et al. demonstrated an increased expression of the RyR3 in cultured neurons harboring
PSEN1 mutations. Consequently, Ca?* release following pharmacological stimulation of
RyR was enhanced in comparison to WT PSEN1 [95]. Similar results were obtained in the
3xTg mouse model of AD [96]. From co-immunoprecipitation studies, a direct interaction
between PSEN1 and RyR was suggested. However, it has not yet been determined how
the PSEN mutants would affect interaction with RyR [95]. With the use of radiolabeled
ryanodine, an increase in the RyR expression in the subiculum and in the CA1 and CA2
regions of the hippocampus was demonstrated in the very early stages of pathology. In
contrast, a reduced binding of radiolabeled ryanodine, and thus RyR loss, was observed
in the later stages of the disease in all of the hippocampal regions that are affected by
neurofibrillary pathology in AD [97]. Additionally, it was demonstrated that the IP3-
evoked Ca®* release occurs in the greater majority of the AD mice mediated through the
RyR, which is not the case in the WT mice. This is probably due to CICR initiated by large
Ca?* releases through upregulated RyRs [98]. Importantly, the ER Ca?* signaling, and,
more specifically, the RyR-mediated Ca* release, plays a role in synaptic transmission. The
enhanced RyR-mediated Ca?* signals that are observed in the 3xTg-AD mice can therefore
have a modulatory effect on the synaptic activity that are not present in the control mice.
Moreover, the RyR-mediated Ca®* release impacts both presynaptic and postsynaptic
events in the 3xTg-AD mice, but plays a much smaller role in the control mice [99].



Cells 2022, 11, 1963

8 of 23

Healthy

Alzheimer's disease

Amylold

.
’I. o

{— PSEN
" sTiv

Plasma membrane
Plasma membrane

Cytosol

Mutations Cytosol

‘e N "

o ¥ / RYR®
.

, ’ R o PSEN

/ . Mutations

PSEN Leak
hannel

Endoplasmic reticulum

Endoplasmic reticulum

Figure 2. Schematic overview of changes in ER Ca?* handling occurring in Alzheimer’s disease.
Mutations in presenilin (PSEN) were shown to increase the expression of the RyR and to cause
an enhancement of IP3R-mediated Ca?* release. Additionally, the RyR is responsible for some of
the IP3R-mediated Ca?* release through CICR. PSENs were also reported to form ER Ca?* leak
channels, a function that is abolished by PSEN mutations and which causes ER Ca?* overload. PSEN
mutations also display an inhibitory effect on store-operated Ca?* entry, which may be involved in
the generation of toxic Af deposits. Finally, PSENSs interact with SERCA which also impacts the

AP formation.

The neurons derived from transgenic mice expressing mutant PSEN1 also displayed
a decrease in SOCE, which is independent of the expression of APP and independent of
the y-secretase activity of PSEN1 [100]. Additionally, Yoo et al. indicated that treating cells
with a SOCE inhibitor selectively increased the generation of Ap42 peptides, suggesting
that impairments in SOCE may be an early event in AD pathology [101]. On the other hand,
an enhancement in the ER [CaZ*] was observed which did require APP expression [100].
Similar elevated ER Ca?* levels were found in the fibroblasts carrying a FAD-linked PSEN1
mutation. It is suggested that this elevation in the ER Ca?* levels is responsible for the
attenuation of SOCE, since reaching low Ca?* levels below the threshold to activate SOCE is
prevented [102]. The exact mechanism by which the PSEN1 mutations cause this increase in
intracellular Ca*-store filling is not yet elucidated. However, previous research indicated
an increased expression of acylphosphatase, an enzyme enhancing the activity of SERCA
and thus supporting ER-store filling, in the fibroblasts of patients with AD [102,103].

Green et al. further demonstrated that the PSENs play a role in ER store filling via
SERCA, as it was reported that the PSENs are necessary for properly maintaining SERCA
activity [104]. Moreover, the PSENs were shown to colocalize and physically interact
with SERCA. The knockdown of SERCA gave rise to a phenotype resembling presenilin-
null cells, characterized by increased basal cytosolic Ca?* levels, which could be rescued
by overexpressing PSEN. Additionally, SERCA was demonstrated to impact on the A3
production with the inhibition of SERCA activity rapidly reducing the production of A[340
and A P42 proteins [104].

To conclude, an important role of Ca?* signaling in early AD is emerging. A vicious
feed forward cycle appears to exist between Ca?*-signaling dysregulation and APP pro-
cessing [105] (Figure 3). On the one hand, aberrant Ca* signals have an effect on APP
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processing [106] although studies researching this topic are rather sparse. On the other
hand, administration of oligomeric A3 was shown to increase cytosolic [CaZ*] [94], thereby
further driving the formation of Af.

Formation of AB
\PSEN

Dysregulated Ca’* homeostasis

PSEN mutations —*

RYR

Figure 3. Schematic overview of the feed forward interplay between Ca®* signaling and AB. Mu-
tations in presenilin (PSEN) cause dysregulations in Ca?* homeostasis, which then causes altered
processing of APP and the formation of AB. In turn, this further impacts Ca* homeostasis.

3.3. Mitochondrial Ca** Dysregulation in AD

It has become more and more clear that mitochondria play a fundamental role in
the pathophysiology of AD (Figure 4) [107]. More specifically, mitochondrial dysfunction
has been reported as an early event in AD, as it precedes the onset of plaque formation
in the 3xTg-AD mouse model [108]. Yao et al. demonstrated decreased mitochondrial
bioenergetics, increased oxidative stress and increased mitochondrial amyloid load in the
3xTg-AD mouse model [108]. Other studies confirm the impairment in mitochondrial
function in the brains of AD mouse models or AD patients [109-111].

The mitochondrial dysfunction observed in AD is clearly linked to the occurrence
of AR deposits as AP has been detected in the mitochondria of AD mouse models and
postmortem brains of AD patients [112]. It is suggested to be imported in the mitochondrial
matrix via the translocase of the outer mitochondrial membrane (TOM) machinery [113],
and the accumulated AP directly impairs the mitochondrial Ca?* homeostasis. Mitochon-
drial Ca?* overload was detected in an AD mouse model, but only after the appearance of
A in the brains of the mice, suggesting the importance of Af3 deposits as the initial trigger
for this mitochondrial Ca®* overload. Moreover, Calvo-Rodriguez et al. demonstrated that
the application of soluble A3 oligomers to the brain of naive mice caused an increased
mitochondrial Ca?* uptake and elicited subsequent mitochondrial Ca?* overload [114].
Mitochondrial Ca?* overload consequently results in severe oxidative damage, loss of
mitochondrial membrane integrity, deprivation of ATP production and eventually cell
death [115].

The exact mechanism by which AB deposits provoke mitochondrial Ca?* uptake has
not been established. It has been suggested that AR forms Ca?*-permeable channels in
bilayer membranes [116], or that it causes the formation of non-specific ion channels in
the plasma membrane and the membranes of intracellular organelles [117]. Alternatively,
increased Ca?* uptake via the MCU complex is thought to play a role [118]. The selec-
tive blocking of the MCU complex abolished the mitochondrial Ca?* overload caused
by soluble A application, indicating the potential of the MCU complex as a therapeutic
target [114,119]. Another proposed mechanism for the mitochondrial Ca?* overload is via
the impaired Ca* efflux through the Na* /Ca?* exchanger (NCLX), the main mitochondrial
Ca?* efflux transporter. The brain samples from AD patients showed a reduced expression
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and functionality of the NCLX, causing an increase in the mitochondrial Ca?" concen-
tration [120,121]. The genetic rescue of NCLX expression in 3xTg-AD mice abolished the
cognitive decline and reduced neuronal pathology. Moreover, the mitochondrial Ca?* efflux
via the NCLX is also inhibited by tau, thereby linking the other major pathophysiological
hallmark of AD to impaired mitochondrial Ca?* handling [122].

Mitochondrial dysfunction
~ Tau

/

/

/
/ Amyloid B
- .

LN

.

v /
Ca?®* overload

4 | ToM

&

Figure 4. Representation of the mitochondrial changes reported in Alzheimer’s disease. A3 has been
shown to induce mitochondrial Ca%* overload via different mechanisms. For instance, A inhibits
Ca?* extrusion by blocking the Na*/Ca?* exchanger (NCLX). On the other hand, AB promotes Ca®*
uptake via interaction with mitochondrial Ca?* uniporter (MCU). AB deposits are also detected
inside the mitochondria where they further contribute to dysregulated Ca?* homeostasis. The uptake
of A in the mitochondria is reportedly regulated by translocase of the outer membrane (TOM)
machinery. The mitochondrial Ca?* overload causes increased production of ROS and further leads
to mitochondrial dysfunction.

A direct molecular link between A3 and mitochondrial dysfunction is established by
Ap-binding alcohol dehydrogenase (ABAD), a member of the short-chain dehydrogenase-
reductase family that is enriched in the mitochondria of neurons. The ABAD-protein levels
were reported to be elevated in the affected regions of the AD brain [123]. Moreover, ABAD
and AP form a highly specific complex that is detected in the brains of AD patients and in
the mitochondria of a transgenic AD mouse model [124]. Similarly, Yao et al. described
a correlation between the increase in mitochondrial Af and the rise in ABAD levels in
the brains of 3xTg AD mice [108]. The ABAD-Af3 complexes elicit cellular dysfunction by
causing ROS leakage, mitochondrial dysfunction, increased opening of the mitochondrial
membrane permeability transition pore (MPT) and eventually cell death [123].

3.4. MAMs and AD

MAM homeostasis is key for cellular health [28] and is well-established to be affected
in neurodegenerative diseases, including AD. Moreover, altered MAM function is even
suggested as a main pathogenic cause in AD [125]. The evidence to support the role of
MAMs in AD pathophysiology comes from the observation that APP, PSENS and the
complete y-secretase complex predominantly reside in the MAMs [126]. Additionally, the
ER-mitochondrial communication and MAM function is increased in AD patient fibroblasts
and in AD animal models [127]. Fernandes et al. reported that cells overexpressing the
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Swedish mutation in APP cause an accumulation of APP in MAMs and mitochondria
and affect the ER-mitochondria contacts, ER-mitochondria Ca2* transfer and mitochon-
drial function and dynamics [125]. Moreover, the exposure of hippocampal neurons to
Ap deposits triggered an increase in the number of the ER-mitochondrial contact sites
and enhanced the expression of different MAM-associated proteins, including IP3R3 and
VDACI. Similarly, an upregulation of MAM-associated proteins was also detected in
the APPSwe/Lon mouse model, which overexpresses the Swedish (K670N/M671L) and
London (V717I) mutations in APP [128].

Alternatively, C99, a product derived from APP cleavage by (3-secretase, accumu-
lates at the MAMs and causes disturbances in the sphingolipid homeostasis and overall
alterations in the lipid composition of the MAMs. Therefore, this MAM-localized C99
accumulation has been reported as a driver of the mitochondrial dysfunction in AD [129].
Moreover, C99 accumulation triggers mitochondrial dysfunction independent of Af in
both in vitro and in vivo models of AD [130]. In agreement, Lauritzen et al. found that
C99 accumulated at early stages in the 3xTg AD mice, months before the A3 deposits are
detected. This accumulation is particularly present in AD-sensitive brain regions, such as
the hippocampus [131].

4. Wolfram Syndrome
4.1. Introducing Wolfram Syndrome

Wolfram syndrome (WS) is a rare, genetic neurodegenerative disease first described by
Wolfram and Wagner in 1938 [132]. The main pathological hallmarks of WS include optic
nerve atrophy, diabetes insipidus, diabetes mellitus and hearing loss [133]. Additionally,
WS patients often present with different neurological conditions, such as ataxia, brain
stem atrophy, autonomic and peripheral neuropathy, headaches and seizures [134]. The
treatment is mainly limited to ameliorating the emerging symptoms and patients usually
die around the age of 30, often due to respiratory failure caused by brain stem atrophy [135].

Two different types of WS exist, namely WS type 1 (WS1), accounting for over 90% of
the cases, and WS type 2 (WS2). The pathophysiology of WS1 and WS2 slightly differs, as
diabetes insipidus is solely observed in the WS1 patients, while upper intestinal ulcers and
defective platelet aggregation are mainly present in patients with WS2 [136,137]. Patients
with WS1 carry a loss-of-function mutation in the WFS1 gene encoding for wolframin
(Wfsl), a transmembrane protein located at the ER. The Wfs1 is highly expressed in brain
tissue, pancreatic (3-cells and in the heart [138-140]. Mutations in WFS1 cause elevations
in ER stress, alterations in pancreatic (3-cells and cause stress-induced apoptosis [141].
Moreover, wolframin has been shown to play a role in maintaining ER homeostasis and in
the unfolded protein response (UPR) [142-144].

CISD2 is the second causative gene for WS, encoding a 15 kDa redox active protein
named Cisd2, though known under various aliases, such as Miner1, Naf-1, ERIS, WS2
and CDGSH2 [145]. Cisd2 is an ER-localized protein, but is enriched in the MAMs [146].
The physiological roles of Cisd2 are not completely elucidated, but Cisd2 is thought to
be involved in mitochondrial iron transport [147]. Through the CDGSH domain, Cisd2
can bind to iron-sulfur clusters, which can be donated by Cisd1, a close family member
of Cisd2 [148]. In this way, Cisd1-Cisd2 might partake in a relay system responsible for
shuttling iron outside of the mitochondria [147]. Moreover, Cisd2 is generally viewed as
a prolongevity factor and therefore plays a role in aging and various cancers. Most cell
types ubiquitously express Cisd2, underscoring its vital role in maintaining cellular home-
ostasis [149]. For instance, the overexpression of Cisd2 in an APP/PS1 transgenic mouse
model for AD resulted in a neuroprotective effect, probably by preventing mitochondrial
damage [150]. Conversely, a lack of Cisd2 can lead to chronic injury, such as that seen
in the cornea of patients with epithelial disease [151]. A vicious cycle of aberrant wound
healing, hindered by Ca?* dyshomeostasis and mitochondrial dysfunction, leads to the
hyperproliferation and exhaustion of the corneal epithelial stem cells [151,152].
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4.2. The Role of Ca®* in WS

A unifying principle for the two distinct WS-associated proteins, Wfsl and Cisd?2, is
their involvement in Ca>* homeostasis (Figure 5) [145]. An early electrophysiological study
of Xenopus oocytes already pointed towards an interplay between the Wfs1 and IP3Rs. The
channel activity recordings in the lipid bilayers uncovered an elevated IP3-induced current
when Wfsl is reconstituted into the bilayers [153]. Of note, the authors hypothesized that
Wifsl1 can function as a Ca2+—permeable channel [153], though no further studies validated
this. Conversely, the Wfsl-deficient neurons displayed decreased IP3R-mediated Ca®*
release and perturbed mitochondrial dynamics, leading to delayed development [154].
Further evidence for a stimulatory role for Wfs1 on IP;R-mediated Ca?" release stems
from a study of WS1 patient fibroblasts, which showed that Wfsl is important for the
Neuronal Ca?* Sensor 1 (NCS1) stability and binding to IP3R in the MAMs. Since NCS1
can sensitize IP3R to IP3, the Wfs1 stimulates the ER-mitochondrial Ca®* transfer [155].
A second member of the Ca?* toolkit interacting with Wfs1 is the SERCA pump. The
Wfs1 was reported to bind and regulate SERCA abundance by mediating its proteasomal
degradation [156].

Mitochondrion
DAC

Endoplasmic reticulum

Figure 5. Overview of the role of two Wolfram syndrome proteins on ER Ca?* handling. Wolframin
(Wfs1) stimulates IP3R-mediated Ca®* release both directly and via Neuronal Ca?* Sensor 1 (NCS1).
On the other hand, Cisd?2 also interacts with the IP3R in a direct and indirect manner. Cisd2 modulates
B-cell lymphoma 2 (Bcl-2), which is a known inhibitor of the IP3R. Both Wfs1 and Cisd2 were shown
to interact with sarco-endoplasmic reticulum ATPase (SERCA).

The exact impact of Wfs1 on cellular Ca?* homeostasis is still not entirely clear, but
most studies seem to point towards a higher resting cytosolic [Ca?"] upon Wfs1 defi-
ciency, possibly through an increased Ca?* leak from the ER through the Ca?*-release
channels [154,157,158]. Additionally, the reduced ER Ca?t uptake could explain the el-
evated cytosolic Ca?* levels, since in the Wfsl-deficient cells, the ER Ca?* store content
and store refilling is decreased [159]. These elevated cytosolic Ca?* levels are thought to
hyperactivate calpain 2, a Ca?*-dependent pro-apoptotic protease. In vitro therapeutic
interventions with dantrolene, an RyR inhibitor, normalized the resting cytosolic [Ca?*]
and prevented excessive calpain 2-mediated cell death in the Wfs1-deficient cells [157].
Similarly, the calpain inhibitor XI and ibudilast, a known interactor with NCS1, amelio-
rated the resting cytosolic [Ca?*] and excessive cell death in the Wfs1-deficient cells [158].
Currently, the administration of dantrolene to WS patients is being investigated in a clinical
trial. Generally, dantrolene seems to be well-tolerated by WS patients; however, the efficacy
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of dantrolene as a disease-delaying or -reverting compound is still unknown and awaits
confirmation in a trial with a larger sample size. In pediatric patients, a modest increase in
B3 cell function could be observed, which might indicate a certain level of remaining f3 cells
is necessary for dantrolene efficacy [160].

Similar to Wfs1, a deficiency in Cisd2 leads to elevated cytosolic Ca2* levels [146,161-164].
Cisd2 also interacts with IP3R as well as B-cell lymphoma 2 (Bcl-2), a known modulator of
IP3R [165,166]. This raises the possibility that Cisd2 can indirectly regulate IP3R activity
through Bcl-2 [145]. In fact, biophysical studies have established that the Cisd2-Bcl-2
complex relies on the interaction between the catalytic domain of Cisd2 with the BH4
domain of Bcl-2 [167], the very same domain that is responsible for IP3R inhibition [168,169].
Alternatively, CISD2 might directly modulate IP3R activity, irrespective of Bcl-2 [145]. The
IP3R activity is strongly impacted by oxidation [46,170] including at the ER-mitochondrial
contact sites, where the ROS boost the IP;R-mediated Ca?* fluxes [45]. As Cisd2 seems
to function as a cellular antioxidant, cells lacking Cisd2 might be prone to increased IP3R
oxidation [149,171].

An additional mode of action of Cisd2 in the regulation of cytosolic [Ca?*] could
occur via modulating SERCA activity. Indeed, findings from murine Cisd2 KO fibrob-
lasts [172], hepatocytes from heterozygous Cisd2 KO mice [173] and cardiomyocytes from
Cisd2 KO mice [162] suggest that ER [Ca?*] is decreased when lacking Cisd2. Addition-
ally, Cisd2 interacted with SERCA2b [173] and SERCA2a [162]. On the contrary, in WS2
patients’” lymphoblastoids [174] and Cisd2 KO murine myoblasts [164], the ER [Ca%*] was
increased, while the findings in other cell types reported unchanged ER [Ca?*] upon loss
of Cisd2 [164,165]. Although it is clear that Cisd2 impacts on the Ca?* homeostasis, much
remains to be discovered on how Cisd? interacts with the different actors in the Ca* toolkit.

4.3. Mitochondrial Dysfunction in WS

Although WS was initially considered to be a mitochondriopathy, the research focus
has shifted towards ER dysfunction and ER-mitochondrial crosstalk, due to the presence of
both the Wfs1 and Cisd2 in the MAMs [133]. For instance, the Wfs1 was shown to partake
in a macromolecular complex in the MAMs involving IP3R and NCS1. The Wfsl-deficient
cells exhibited reduced ER—mitochondrial contact and ER-mitochondrial Ca?* transfer,
ultimately resulting in impaired mitochondrial function [155,158]. At the MAMs, Wfs1
interacts with SIR, which similarly to NCS1 can also positively modulate ER-mitochondrial
CaZ* transfer. Stimulation of S1R with PRE-084, a SIR agonist, could overcome the Wfs1-
deficiency-mediated decrease in IP3R-mediated Ca?* release and ER-mitochondrial Ca?*
transfer [175]. The PRE-084, could also alleviate mitochondrial abnormalities associated
with reduced MAM functionality, such as increased mitophagy [175]. Additionally, WS1
is linked with impaired mitochondrial dynamics, as knocking down the Wfs1 in neu-
rons decreased the mitochondrial mass, mobility and fusion, while increasing the rate of
mitophagy [154].

Similarly, Cisd2 was established to be a MAM-resident protein. In the MAMSs, Cisd2
can interact with the protein GTPase IMAP family member 5, which is vital for the differ-
entiation process of adipocytes [146]. Moreover, a study of the WS2 patients’ fibroblasts
found an increase in the ER-mitochondrial Ca?* transfer and closer ER-mitochondrial
contact, leading to mitochondrial hyperfusion [146]. Furthermore, the absence of Cisd2
leads to impaired biogenesis [146], aberrant mitochondrial metabolism [176], increases in
mitochondrial ROS [177] and iron levels [178,179] and mitochondrial swelling [164].

Of note, the deficiencies in both Wfs1 or Cisd2 are associated with ER stress [139,142,
172,180,181], a process which by itself is known to lead to mitochondrial dysfunction [182].

5. Similarities between AD and WS

AD and WS are both neurodegenerative disorders that display very different clinical
manifestations. However, some similarities can be found between these two distinct
diseases. A first resemblance between AD and WS is that no disease-modifying treatment
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is available, and the only available therapy is focused on ameliorating the symptoms. This
points out the difficulties of generating therapeutic strategies in neurodegeneration and
already shows that much more research is needed in the field.

Mechanistically, some other similarities can be observed, mainly in the early pathology
of the diseases. A first link between the two diseases involves tau. The hyperphospho-
rylated tau forming neurofibrillary tangles is a major hallmark of AD and is serving as
a potential therapeutic target [183]. Recently, Chen et al. described a novel function for
Wifs1 in the development and progression of tau pathology [184]. The Wfs1 can interact
with tau protein and affect its aggregation and propagation. Moreover, increased Wfsl
reduced tau pathology and neurodegeneration in PS19 mice, a widely used tauopathy
model which resembles AD-like pathology. On the other hand, Wfs1 deficiency increased
the pathological tau and apoptosis, and impaired the spatial learning and memory in PS19
mice [184].

Most of the similarities between AD and WS are related to Ca?>* homeostasis and
mitochondrial function, indicating the pivotal role of (mitochondrial) Ca%* signaling in the
early stages of neurodegenerative disorders. The Ca?* homeostasis plays a key role in AD,
as indicated by the Ca®* hypothesis of AD pathology [75,79], as well as in WS, where it is
the unifying factor between Wfs1 and Cisd2 [145]. A common observation in both of the
diseases is an increase in cytosolic [Ca%*][87,90,93,154,157,158]. Different mechanisms for
this have been proposed, but in both AD and WS, there is a link with the ER store filling
via SERCA. The PSENs in AD and Wfs1 and Cisd2 in WS have been shown to interact with
SERCA [102-104,156,162]. The Ca2* overfilling of the ER can lead to exaggerated IP3R-
mediated CaZ* releases and thus contributes to elevated cytosolic [CaZ*]. Moreover, a direct
link with the IP3R is established in both of the disorders. The mutations in PSEN have been
shown to augment the activity of the IP3R [90], and both Wfs1 and Cisd2 display a direct
and indirect interaction with the IP3R [145,149,154,155,171]. Additionally, hyperactive
RyR-mediated Ca?* release is linked with both WS and AD [157,185,186]. In the case of
WS, the administration of dantrolene, an RyR inhibitor, can rescue this defect in vitro and
its efficacy in vivo is currently being investigated in clinical trials [157,160]. Therefore,
the use of dantrolene, either alone or in combination with immunotherapy, might also be
considered for the treatment of AD. Additionally, post-translation modification of the RyR2
or RyR2 mutations have been linked to AD [186,187]. More specifically, Yao et al. reported
that mice carrying the RyR2-R4496C mutation, which increases the open probability of the
channel, displayed neuronal hyperactivity and impaired learning and memory formation.
Similarly, increasing the open probability of RyR2 in 5xFAD mice exacerbated the onset
of these symptoms [187]. Hence, it would be interesting to assess whether patients with
RyR2 mutations or other channelopathies are at risk of not only developing AD but also
exhibiting features that resemble WS. However, such RyR2 mutations have not yet been
reported in WS patients.

The resemblances between AD and WS are not limited to the ER, but are also ob-
served at mitochondrial level. The mitochondrial Ca%* overload has been reported, as
well as an increased ER-mitochondrial Ca%* transfer in WS2 patients’ fibroblasts [146].
Similarly, the ER-mitochondrial Ca?* transfer is affected in cells carrying mutations in
APP [125]. In both AD and WS, this leads to mitochondrial dysfunction and increases in
ROS production [108-111,155-158,177].

Another very interesting link between AD and WS is through S1R. S1IR resides at
MAMs where it acts on IP;Rs and regulates the Ca?* signaling and survival [42]. The
WES1 was reported to interact with the SIR and therefore to positively modulate the ER—
mitochondrial Ca%* transfer [175]. Stimulation with a SIR agonist could counteract the
impaired CaZ* homeostasis and mitochondrial deficits observed in WS [175]. However,
also in AD, S1R is emerging as a novel target. The S1R is downregulated in AD and other
neurodegenerative diseases, although the exact mechanism for this downregulation is
not understood [188-190]. The treatment of primary hippocampal cultures obtained from
WT mice with an S1R agonist protected against the A4, oligomer toxicity in mushroom
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spines [191]. Moreover, the S1R agonist also prevented mushroom spine loss in AD-causing
mutations in hippocampal neuronal cultures [191]. Therefore, S1R stimulation might be an
exciting strategy in both AD and WS, and in neurodegeneration in general, to target early
defects found in the disease pathology.

Alternatively, the antiapoptotic protein Bcl-2 can also be linked to both diseases.
Multiple members of the Bcl-2 family have been associated with AD, but mainly a down-
regulation of Bcl-2 itself has been linked to AD [192]. Moreover, Bcl-2 is suggested as
a potential therapeutic target for AD since the overexpression of Bcl-2 in a transgenic
AD mouse model suppressed the formation of plaques and neurofibrillary tangles and
improved memory retention [193]. On the other hand, Cisd2 has been shown to directly
interact with Bcl-2, and is important for Bcl-2's function in inhibiting Beclin-1-mediated
autophagy [165,166].

Finally, Liangping et al. reviewed the role of Wfsl and Cisd2 in AD, providing a direct
link between WS and AD [194]. For instance, Cisd2 overexpression was shown to promote
survival and protect against neuronal loss in an AD mouse model, while Cisd2 deficiency
accelerates AD pathology [150]. Therefore, Cisd2-based therapies could be exploited as
potential therapeutic strategy in AD. Remarkably, Cisd2 also protects against mitochondrial
damage and thus the protective effect to neuronal loss could also be mediated though the
regulation of mitochondrial function [150].

In summary, WS and AD entail common hallmarks in early disease pathology that
can be exploited as potential treatment strategies to target both diseases. The possibilities
for such therapeutic targets include S1R, SERCA, RyR and the IP3R to normalize increased
cytosolic [Ca?*], or Wfs1- and Cisd2-based therapies (Figure 6). It would be very beneficial
to further investigate these similar targets so that potential drugs for AD can also be
effective for WS, and vice versa.

Mitochondrial Ca?* overload

* VDAC /
SIR (Bel2 )
e ,\‘\ .* ’ Cytosolic Ca?* overload
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\

Promotes cell
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Figure 6. Schematic overview indicating potential therapeutic strategies to target both Alzheimer’s
disease and Wolfram syndrome. Possible therapeutic targets are indicated by a red asterisk. SIR,
sigma 1 receptor; Bcl-2, B-cell lymphoma 2; IP3R, inositol trisphosphate receptor; RyR, ryanodine
receptor; SERCA, sarco/endoplasmic reticulum ATPase; VDAC, voltage-dependent anion channel;
Wfs1, wolframin.

6. Conclusions

AD and WS are both neurodegenerative diseases that display distinct hallmarks and
a wide array of symptoms. However, both of the diseases in the early stages share some
common hallmarks, including alterations in the ER and mitochondrial CaZ* handling,
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mitochondrial dysfunction and increased ROS production. Disturbances in Ca?* signaling
are central in the early pathophysiology of AD, as well as in WS. This indicates that similar
mechanisms may underly these two diseases’ pathologies and suggests that both research
topics might benefit from complementary research.
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