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Abstract: Coronavirus disease 2019 (COVID-19) patients show lipid metabolic alterations, but the
mechanism remains unknown. In this study, we aimed to investigate whether the Spike protein of
severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) impairs lipid metabolism in host cells.
We generated a Spike cell line in HEK293 using the pcDNA vector carrying the Spike gene expression
cassette. A control cell line was generated using the empty pcDNA vector. Gene expression profiles
related to lipid metabolic, autophagic, and ferroptotic pathways were investigated. Palmitic acid
(PA)-overload was used to assess lipotoxicity-induced necrosis. As compared with controls, the Spike
cells showed a significant increase in lipid depositions in cell membranes as well as dysregulation of
expression of a panel of molecules involving lipid metabolism, autophagy, and ferroptosis. The Spike
cells showed an upregulation of nuclear factor erythroid 2-related factor 2 (Nrf2), a multifunctional
transcriptional factor, in response to PA. Furthermore, the Spike cells exhibited increased necrosis in
response to PA-induced lipotoxicity compared to control cells in a time- and dose-dependent manner
via ferroptosis, which could be attenuated by the Nrf2 inhibitor trigonelline. We conclude that the
Spike protein impairs lipid metabolic and autophagic pathways in host cells, leading to increased
susceptibility to lipotoxicity via ferroptosis which can be suppressed by a Nrf2 inhibitor. This data
also suggests a central role of Nrf2 in Spike-induced lipid metabolic impairments.

Keywords: spike protein; SARS-CoV-2; lipid metabolism; lipotoxicity; autophagy; ferroptosis

1. Introduction

Coronavirus disease 19 (COVID-19) is a pandemic viral infection that threatens global
public health since the initial outbreak in December 2019 at the epicenter of Wuhan City,
Hubei Province, China [1]. COVID-19 is caused by the severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2) with high pathogenicity and contagiousness [2]. SARS-CoV-2
is a positive-sense single-stranded RNA virus that is capable of infecting human beings,
together with six other coronaviruses [2]. SARS-CoV-2 is assumed to be zoonotic and shares
96.3% sequence identity with the bat coronavirus RaTG13 [3]. The angiotensin converting
enzyme 2 (ACE2) is the receptor mediated virus entry into host cells via the SARS-CoV-2
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Spike protein. Cleavage of Spike protein by Furin and Transmembrane Serine Protease 2
(TMPRSS2) facilitates SARS-CoV-2 entry into host cells [4]. ACE2 and TMPRSS2 are the
host determinants during initial infection [5]. Neuropillin (NRP) 1 has been identified as
an additional host factor to facilitate SARS-CoV-2 entry upon cleavage by Furin [6–8]. In
addition, several intracellular pathological effects of the Spike have been reported. For
example, The Spike upregulates expression of the hemeoxygenase-1 (HO-1) in kidney cell
lines [9]. The Spike protein can cause downregulation of ACE2 and impair endothelial
mitochondria functions [10]. Expression of the Spike protein subunit 1 in lung epithelial
cells can result in natural killer cell-reduced degranulation [11].

COVID-19 patients can be asymptomatic or symptomatic. The mortality rate of
COVID-19 varies in different geographic locations and patient populations [1]. More
severe symptoms have been experienced by the patients with metabolic-associated pre-
conditions such as hypertension, cardiovascular disorders (CVD), obesity, and diabetes
mellitus (DM) [12]. One common pathogenic co-factor related to hypertension, obesity,
DM, and CVD is hypercholesterolemia. Accumulated evidence shows that COVID-19
directly interplays with dire cardiovascular complications including myocardial injury and
heart failure, resulting in elevated risk and adverse outcomes among infected patients [13].
COVID-19-associated cardiac complications may become even worse in the setting of car-
diometabolic pathologies associated with obesity, although obesity per se is a strong risk
factor for severe COVID-19 [14]. Our recent studies have shown decreased levels of total
cholesterol (TC), low density lipoprotein cholesterol (LDL-c) and high-density lipoprotein
cholesterol (HDL-c) in COVID-19 patients, which are associated with disease severity and
mortality [15–17]. Mechanistically, lipids have been shown to be a critical contributor to
transmission, replication, and transportation for some types of viruses. For example, lipid
rafts have been reported to be necessary for SARS virus replication [18]. Although it has
been firmly established that obesity and obesity-related complications are major risk factors
for COVID-19 severity, the underlying mechanisms have yet to be determined.

Ferroptosis is an iron-dependent lipid peroxidation-driven cell death. During fer-
roptosis, acyl-CoA synthetase long-chain family 4 (Ascl4)-dependent lipid biosynthesis
regulates the function of the lipoxygenase for lipid peroxidation [19]. Ferritin heavy chain
1 (Fth1) functions as iron storage and has ferroxidase activity [20,21]. Ferroptosis can
directly promote cellular inflammation via upregulation of prostaglandin E synthase 2
(PTGS2) [22]. Emerging evidence has shown that multi-organelles involve in ferroptosis
including lysosome, mitochondria, endoplasmic reticulum, peroxisomes, and Golgi ap-
paratus where the oxidative stress, lipid synthesis and peroxidation, and oxidated cargo
sorting and processing occur [19]. In particular, autophagy, which is regulated by lipid
metabolism, interplays with and promotes ferroptosis [20]. Formation of autophagosomes
with engulfed cargo for degradation requires autophagy-related genes (ATGs)-related
ubiquitin-like reaction and subsequent microtubule-associated protein 1 light chain 3 beta
(LC3)-involved ubiquitin-like reaction [23]. A lipidated LC3, e.g., LC3 II, resulting from the
proteolytic cleavage of LC3, is associated with autophagosomes, which have been widely
used for monitoring autophagic flux process [20,21].

In this study, we attempted to explore the direct interplays among the Spike protein,
lipid metabolism, autophagy, and ferroptosis in host cells. We found that the Spike protein
impairs lipid metabolic and autophagic pathways in host cells, leading to increased suscep-
tibility to lipotoxicity most likely via switching on nuclear factor erythroid 2-related factor
2 (Nrf2)-mediated ferroptosis.

2. Methods
2.1. Materials

Human embryonic kidney 293 cells (HEK293) and DMEM medium were purchased
from ATCC (ATCC, Manassas, VA, USA). The SARS-CoV-2 S gene (GenBank: QHU36824.1)
in fusion with a His tag at c-terminal was synthesized and cloned into a pcDNA3.1 vector
(Genscript, Piscataway, NJ, USA). The coding sequence was optimized for expression in
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human cells [24]. The vector was referred as pcDNA-Spike with a detailed description in
our previous report [24].

Anti-His tag and LC3 antibodies were purchased from Millipore Sigma (Millipore
Sigma, Burlington, MA, USA). Anti-Adipose Differentiation-Related Protein (ADRP, or
Perilipin-2, PLIN2), Nrf2, PTGS2, and phosphoinositide-3-Kinase (PI3K)-beta antibodies
were obtained from ProteinTech (ProteinTech, Rosemont, IL, USA). Anti-ATG7 antibody
was purchased from Abcam (Abcam, Waltham, MA, USA). Anti-scavenger receptor class
B type 1 (SRB1) antibody was obtained from Novus (Novus, Centennial, CO, USA). Anti-
Fth1, HRP-anti-rabbit or mouse secondary antibodies, and radioimmunoprecipitation assay
(RIPA) lysis buffer were obtained from Santa Cruz Biotech (Santa Cruz Biotech., Inc., Dallas,
TX, USA). Primers for real time RT-PCR were synthesized by IDT (IDT, Coralville, IA,
USA) (Supplementary Table S1). RNA extraction kit, RT kit, and SYBR green master mix
was obtained from Zymo Research (Zymo, Irvine, CA, USA), Takara Bio USA (Takara Bio,
Mountain view, CA, USA), and Bio-Rad (Bio-Rad, Hercules, CA, USA), respectively.

2.2. Generation of the Spike-Protein Stable Expression Cell Line

The HEK293 cells were grown in Dulbecco’s Modified Eagle’s medium (DMEM) con-
taining 10% fetal bovine serum (FBS). The pcDNA-Spike or pcDNA vector was transfected
into the cells using lipofectamine 300 reagent (ThermoFisher, Waltham, MA, USA). Two
days after transfection, the cells were treated by G418 starting from the concentration of
100 µg/mL with a gradual increase to 800 µg/mL during the following 2 weeks. The
individual colonies with stable integration of the pcDNA-Spike (HEK_Spike) or pcDNA
vector (HEK_pcDNA) were selected and expanded. The HEK_Spike stable colonies were
confirmed to express the Spike protein using immunoblot. The cells were maintained in
DMEM with 10% FBS regularly for further experiments.

2.3. Lipid (Oil Red O) Staining

The Lipid (Oil Red O) kit was obtained from Millipore Sigma. The HEK293, HEK_pcDNA,
and HEK_Spike cells were fixed by 10% formalin and followed by 60% isopropanol treat-
ment, followed by an incubation of the Oil Red O working solution for 15 min. The cell
nucleus was counterstained using hematoxylin. The images were acquired using an ImagX-
press Pico Automated system (Molecular Device, San Jose, CA, USA). Oil Red O stain
was extracted in isopropanol followed by a measurement of absorbance at 492 nm using a
Thermo Scientific Multiskan Spectrophotometer system.

2.4. Real Time-RT PCR and Western Blot

RT was performed in a 20-µL reaction containing 1.0~5 µg of total RNA, 0.5 mM
dNTPs, 0.5 µg of oligo (dT) 15-mer primer, 20 units of RNasin, and 5 units of SMART
Moloney murine leukemia virus reverse transcriptase) in 1x RT buffer (Clontech, Mountain
View, CA, USA) at 42 ◦C for 2 h. A converted index for three reference genes were used to
normalize the amplification data: GAPDH, Nono, and β-actin. Expression levels of a panel
of 83 genes related to lipid metabolic, autophagic, and ferroptotic pathways (Supplementary
Table S1) were determined using real time RT-PCR. Briefly, the real time PCRs reactions
were carried out in a 25-µL total volume containing 10 ng of each cDNA template and
10 pmol of each specific primer in 1 × SYBR Green qPCR Master Mix (Bio-Rad) with a
duplication of each reaction. The PCR parameters include one cycle of 95 ◦C for 2 min and
45 cycles of 95 ◦C for 15 s at and 60 ◦C for 60 s. The cycle number at which fluorescence
crossed the cycle threshold (Ct) for the target and reference genes was used to evaluate the
amplification efficiency for the relative quantification of the real time PCR.

For Western Blot assay, cellular proteins were extracted from HEK, HEK_pcDNA, or
HEK_Spike cells using RIPA lysis buffer (Santa Cruz Biotech., Inc.), separated by SDS-
PAGE, followed by a transfer onto PVDF membranes. Primary antibodies were added and
followed by HRP-labeled secondary antibodies. Images were acquired using a Bio-Rad Gel
Imaging System.
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2.5. Palmitic Acid (PA)-Induced Lipotoxicity Assay

The HEK293, HEK_pcDNA, and HEK_Spike cells were cultured in a 96-well plate
and reached to 80% confluence on the next day before treatment. The cells were kept
in DMEM medium with 5% FBS during the entire treatment procedure. The cells were
treated with PA (free BSA) in various concentrations from 250 to 1000 µM for 24, 48, or 72 h.
For treatment control groups, the cells were treated by the same concentrations of BSA in
parallel. For the inhibitory assay, the cells were pre-incubated by autophagic inhibitors
(125 µM trigonelline (TRG), or 10 µM Wortmannin), or a ferropotosis inhibitor (ferrostatin,
2 µM), or an apoptosis inhibitor (necrostatin-1, 10 µM) in DMEM medium with 5% FBS
for 2 h, followed by 750 µM PA treatment for 24 h. The cells were then co-stained by
Propidium Iodide (PI) and Hoechst 33342 NucBlue Live Cell Stain dye (ThermoFisher) to
show the dead and live cells. The dyes were excited at 535 nm and 405 nm, respectively.
Images were acquired and cell viability analyses were performed using an ImagXpress Pico
Automated system.

2.6. Viral Production and H9C2 Cell Culture

The Spike gene was cleaved from pcDNA-Spike plasmid and cloned into lentiviral
vector pLV-mCherry (Addgene, Watertown, MA, USA) with removal of mCherry gene
to generate pLV-Spike plasmid. The lentiviral production followed our previous report
with slight modifications [24]. We generated a Spike-pseudotyped (Spp) lentivirus with
the Spike protein as the viral surface tropism as well as expression of the Spike protein,
which was referred to as Cov-Spp-S virus. Briefly, Phoenix cells (ATCC) were cultured in
DMEM containing 10% FBS and transfected by pLV-Spike using a calcium phosphate kit
(ThermoFisher). The control virus with VSV-G as the tropism and expression of mCherry
was generated by co-transfection of pLV-mCherry and pMD2.G vector (Addgene) into the
Phoenix cells, which was referred to as VSV-G virus. Seventy-two hours post transfec-
tion, the supernatant containing released virus was collected, clarified by centrifuging at
5000× g for 15 min, passed through a 0.45 µm filter disk, followed by ultracentrifugation at
24,000 rpm for 2 h using Beckman SW41 rotor. The precipitated virus was resuspended in
cold PBS buffer, aliquoted, and stored at −80 ◦C before use. The viral titer was to quantify
the RNA copies of the Spike or mCherry using a real time RT-PCR assay.

H9C2 cells (ATCC) were cultured in DMEM (10% FBS) medium in a 96 well-plate
with 80% confluence. The cells were infected twice at the first and second days using
Cov-Spp-S or VSV-G lentivirus (4.8 × 107 particles per well) with addition of polybrene
(1 µg/mL); the cells were then incubated for an additional 5 days, followed by treatment
with PA (675 µM) for 24 h in DMEM medium containing 5% FBS. The same concentration
of BSA was used for treatment control groups in parallel. For the inhibitory assay, the cells
were pre-incubated with 125 µM TRG in DMEM medium with 5% FBS for 2 h, followed by
675 µM PA treatment for 24 h. The cells were then co-stained with PI and Hoechst 33342
NucBlue Live Cell Stain dye to show the dead and live cells, respectively.

2.7. Statistical Analyses

Origin 2019 was used for statistical analysis. The Student’s t test or one-way ANOVA was
used for two groups or multiple comparisons test. The data was presented as “mean ± s.d.”
and p < 0.05 was considered as significant.

3. Results

The stable cell line with expression of the Spike protein was obtained upon neomycin
selection after transfection of pcDNA_Spike into HEK293 cells. The control stable cell
line with integration of the empty pcDNA was generated simultaneously. The expression
of the Spike protein was verified using an anti-His tag antibody (Figure 1A). The same
pcDNA_Spike vector was used for production of the Spike protein–pseudotyped (Spp)
lentivirus in HEK Phoenix cells in our previous study where the expression of the Spike
protein was verified using both anti-Spike S1 and S2 subunit antibodies [24]. We did not
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observe a significant difference in growth rate between pcDNA and Spike stable cell lines
(data not shown). To explore whether the Spike protein had a role in lipid metabolisms in
host cells, we performed Oil Red O staining among these cell lines. We found there was
a significant accumulation of lipid deposition in the Spike cells compared to pcDNA and
mock control cells (Figure 1B). The histological staining showed that the lipid depositions
were mainly located on the cell membrane in the Spike cell line (Figure 1C–E), indicating
an impairment of lipid metabolism in host cells.
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Figure 1. Spike protein caused lipid deposition in host cells. (A) Generation of Spike protein stable
cell line. The expression of Spike protein was verified using an anti-His tag antibody in the Spike cells.
(B) The quantification of Oil Red O staining in the mock, pcDNA, and Spike cells with measurement of
an absorbance at 492 nm. (C–E) Histological images showing Oil Red O staining of lipid droplets in the
mock (C), pcDNA (D), and Spike (E) cells. Nuclear components were counterstained by hematoxylin.

We next examined transcriptional levels of a panel of 83 genes that are representative
markers of lipid metabolism, autophagy, and ferroptosis (Supplementary Table S1). We
found the mRNA levels of many lipid metabolic markers were upregulated such as propro-
tein convertase subtilisin/kexin type 9 (Psck9), SREBF chaperone (Scap), Plin2, low density
lipoprotein receptor-related protein 10 (Irp10), lecithin-cholesterol acyltransferase (lcat), low
density lipoprotein receptor-related protein associated protein 1 (Irpap1), oxysterol binding
protein-like 5 (Osbpl5), oxysterol binding protein-like 1A (Osbpl1a), protein kinase, AMP-
activated, gamma 2 non-catalytic subunit (Prkag2), and mevalonate kinase (Mvk); while
Serpinb2 was downregulated in the Spike cells (Figure 2A). For the examined autophagic
and ferroptotic markers, Atg3, Atg7, Atg12, Nrf2, Phosphatidylinositol-4,5-Bisphosphate
3-Kinase Catalytic Subunit Alpha (Pik3ca), Pik3cd, Phosphoinositide-3-Kinase Regulatory
Subunit 3 (Pik3r3), Acsl4, Fth1, glutaminase 2 (Gls2), and Ptgs2 showed an increase in
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mRNA levels in the Spike cells; while Pik3c3, Atg5, and Hamp showed a decrease in
mRNA levels in the Spike cells (Figure 2B,C). These results reveal a negative impact of
Spike proteins per se on lipid metabolism, autophagy, and probably ferroptosis in the cell.
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Figure 2. Transcriptional profiles of representative biomarkers for lipid metabolism, autophagy, and
ferroptosis. Relative mRNA levels of biomarkers involving lipid metabolism (A), autophagy (B),
and ferroptosis (C) in the mock, pcDNA, and Spike cells. The normalization was performed using a
converted index of β-actin, nono, and GAPDH as the reference genes.

We further examined the biological significance of Spike protein expression with a
focus on lipotoxicity in vitro. PA overload induced cell death in cultured HNK293 and
pcDNA cells (Figures 3 and S1), demonstrating a PA-induced lipotoxicity as described
elsewhere [25]. However, the PA-induced cell death was significantly augmented in Spike
cells (Figures 3 and S1). The PA-induced cell death also showed a dose- and time- dependent
response (Figures 3 and S1). The BSA control did not cause any significant cell death among
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these cell lines (Supplementary Figure S2). We next examined the expression patterns of
some crucial factors in response to PA-induced lipotoxicity. SRB1, ATG7, PTGS2, showed
a significantly higher level in the Spike cells than the mock and pcDNA control cells
(Figure 4), which were consistent with the changes in mRNA levels (Figure 2). In response
to PA treatment, the levels of SRB1, ATG7, PTGS2, LC3 I/II ratio, and Fth1 in Spike cells
increased significantly as compared with the pcDNA control cells (Figure 4).
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Figure 3. The Spike protein-exaggerated PA-induced lipotoxicity in host cells. (A) Fluorescent images
showing the cell viability in the mock, pcDNA, and Spike cells treated by 750 µM PA for 48 h in
DMEM containing 5% FBS. The cells were co-stained by Propidium Iodide (PI) and Hoechst 33342
NucBlue Live Cell Stain dye to show the dead and live cells, respectively. Scale bar, 25 µm. (B) Cell
viability curves of mock, pcDNA, and Spike cells in response to PA (750 or 1000 µM) treatments for
24 to 72 h. & indicates p < 0.05 in the Spike cells as compared with the mock and pcDNA control cells
in response to the same dosages of PA at 48 or 72 h. n = 5~6 wells in each dose and time point.

We have previously shown that Nrf2 is the crucial transcriptional factor mediating PA-
induced ferroptosis in autophagy-impaired in cardiomyocytes under obese conditions [26].
PI3K has been shown to play a critical role in autophagy [27–29]. We then asked whether
inhibitors for Nrf2, PI3K, and ferroptosis could attenuate PA-induced lipotoxicity in the
Spike cells. Indeed, the Nrf2 inhibitor TRG, PI3K pan inhibitor Wortmannin, and ferroptosis
inhibitor ferrostatin, but not a necroptosis inhibitor necrostatin 1, significantly mitigated
the PA-induced Spike protein-exaggerated lipotoxicity (Figure 5).

Finally, we attempted to test whether a similar mechanism could be recapitulated in
H9C2 cells, a cardiomyocyte-like cell line. We infected the H9C2 cells using CoV-Spp-S
lentivirus expressing the Spike protein or VSV-G control virus expressing mCherry. The
cells infected by the CoV-Spp-S showed a significantly higher cell death than the cells
infected by the VSV-G control virus (Figure 6); the PA-induced Spike protein-exaggerated
lipotoxicity could be reversed using the Nrf2 inhibitor TRG (Figure 6).
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Figure 4. Immunoblot showing the relative changes in levels of some representative biomarkers of
impaired lipid metabolism, autophagy, and ferroptosis in response to PA overload. The mock, pcDNA,
and Spike cells were treated by 750 µM PA for 24 h in DMEM containing 5% FBS. (A) Representative
immunoblot showing the protein levels of ADRP, LCI/II, Fth1, Nrf2, PTGS2, PI3K-b, SRB1, and
beta-actin in the mock, pcDNA, and Spike cells with or without PA treatment. (B) The relative
quantification of each biomarker in cells. The protein level for each biomarker was first normalized
to the corresponding beta-actin level. The relative ratio of each biomarker within group was then
obtained using its’ level in the mock group with PA treatment as 1 (indicated by the dashed line). &
indicates p < 0.05 in the Spike cells as compared with the pcDNA control cells with the PA treatment.
n = 3 independent experiments.
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Figure 5. Autophagic/ferroptotic inhibitors attenuated the Spike protein-exaggerated PA-induced
necrosis. (A) Fluorescent images showing the cell viability in the mock, pcDNA, and Spike cells treated
by 750 µM PA treatment for 24 h in DMEM containing 5% FBS with or without a Nrf2 inhibitor TRG,
pan-PI3K inhibitor Wortmannin, ferroptosis inhibitor Ferrostain, and apoptotic inhibitor Necrostatin
1. The cells were co-stained by Propidium Iodide (PI) and Hoechst 33342 NucBlue Live Cell Stain dye
to show the dead and live cells, respectively. (B) Quantitative data showing the cell viability in each
treatment group. $ indicates p < 0.05 in the Spike cells treated by PA as compared with the Spike cells
without PA treatment. # indicates p < 0.05 in each group treated with PA and various inhibitors as
compared with the Spike cells treated with PA only.
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Figure 6. TRG attenuated the Spike protein exaggerated PA-induced necrosis in H9C2 cells. (A) Quan-
titative data showing the cell viability of H9C2 cells after being infected by VSV-G or Cov-Spp-S
lentivirus followed by PA treatment with or without TRG. BSA was used as a treatment control. &,
indicates p < 0.05 in the Cov-Spp-S-infected cells as compared with the VSV-G-infected cells upon PA
treatment. #, indicates p < 0.05 in the cells treated with PA plus TRG as compared with the cells treated
with PA only. (B) Fluorescent images showing the cell viability in the VSV-G- or Cov-Spp-S-infected
H9C2 cells after PA treatment with or without TRG in DMEM containing 5% FBS. The cells were
co-stained by Propidium Iodide (PI) and Hoechst 33342 NucBlue Live Cell Stain dye to show the
dead and live cells.

4. Discussion

The data in this study have demonstrated that the Spike protein alone can directly im-
pair lipid metabolic and autophagic pathways in host cells, leading to increased lipotoxicity
through ferroptosis. This result has shown a direct and evident role of the Spike protein in
exaggeration of pre-existing lipotoxicity, revealing a mechanistic insight into the clinical
manifestations of high susceptibility and mortality rate of obese patients with COVID-19.
Furthermore, we have shown that the Spike protein-induced necrosis can be suppressed
by PI3K pan inhibitor Wortmannin, ferroptosis inhibitor ferrostatin 1, and Nrf2 inhibitor
TRG. TRG, an alkaloid enriched in coffee, is among those effective inhibitors, providing a
potential and feasible preventive strategy to mitigate COVID-19-associated cardiometabolic
pathologies associated with obesity.

Numerous studies have reported lipidomic dysregulation in COVID-19 patients. For
example, Shen et al. showed a strong downregulation of over 100 lipids including sph-
ingolipids, glycerophospholipids, fatty acids, and various apolipoproteins in COVID-19
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patients [30]. Increased levels of sphingomyelins (SMs), non-esterified fatty acids (NEFAs),
and free poly-unsaturated fatty acids (PUFAs) have been shown in COVID-19 patients
as well [31–33]. Increases in PLA2 activation, which results in long-chain PUFAs, may
be associated with the COVID-19 deterioration [34,35]. Our previous studies together
with other reports have shown the downregulation of serum LDL-c and HDL-c levels
in COVID-19 patients [15–17,36]. These lines of accumulated evidence have revealed a
central role of lipids and lipid metabolism in the development of COVID-19. In this study,
we demonstrate that the Spike protein executes a direct function in altering lipidome via
upregulation of a panel of genes involving lipid metabolism and resulting in enhanced
lipid deposition on the cell membrane. This data provides direct evidence showing that the
Spike protein modulates lipid metabolism in host cells and is an important independent
factor contributing to the altered lipidome in COVID-19 patients.

PI3Ks play important roles in autophagy formation during early stages of viral in-
fection for both canonical and non-canonical endocytic pathways [27–29]. They are also
critical downstream components of growth factor receptor (GFR) signaling cascades, which
drive phosphorylation of viral proteins upon SARS-CoV-2 infection [37]. Therefore, this
class of enzymes has been proposed as a druggable target for prevention and treatment
of SARS-CoV-2 infection. Indeed, inhibition of class I or class III PI3K prevents viral
replication [37,38], probably through distinct mechanistic actions on different stages of
SARS-CoV-2 viral life cycle. In a distinct mechanism, our data shows that the Spike protein
alone can dysregulate expression of various PI3Ks in host cells including upregulation
of class I PIK3CA, PIK3CD, and PIK3R3, but downregulation of class 3 PIK3C3, which is
required for autophagosome and lysosome fusion [39]. In addition, pan-PI3K inhibitor wort-
mannin shows a potent inhibition of the Spike-protein exaggerated PA-induced lipotoxicity,
suggesting that increasing autophagosome formation while decreasing autophagosome
fusion with lysosomes thereby leading to accumulation of autophagosomes may be a cause
of Spike protein-exaggerated lipotoxicity. Therefore, targeting of PI3K can be potentially
beneficial for those COVID-19 patients with a metabolic precondition of hyperlipidemia.

The transcription factor Nrf2 controls the basal and induced expression of more
than 1000 genes in cells that can be clustered into several groups with distinct functions,
such as antioxidative defense, detoxification, protein degradation, and iron and lipid
metabolism [26]. Thus, the functions of Nrf2 spread rather broadly from antioxidative
defense to protein quality control and metabolism regulation. Studies have demonstrated
that Nrf2 is required for cardiac adaptation when cardiac autophagy is intact; however,
it operates a pathological programme to exacerbate maladaptive cardiac remodeling and
dysfunction when myocardial autophagy is inhibited in the settings of sustained pressure
overload [40] and chronic type 1 diabetes [21]. Notably, chronic obesity, a pre-type 2 di-
abetic setting, results in inhibition of myocardial autophagy, thereby leading to cardiac
pathological remodeling and dysfunction [41,42]. In this study, the protein level of Nrf2
is upregulated in the Spike cells in response to PA treatment. Furthermore, TRG, a Nrf2
inhibitor, can attenuate Spike-protein-exaggerated PA-induced necrosis in the cell with im-
paired autophagy. Collectively, it is reasonable to posit a central role of Nrf2 in PA-induced
Spike protein-exaggerated lipotoxicity in host cells. However, the detailed pathological
mechanism and molecular interactions mediated by impaired Nrf2 pathways need further
validation, which will be the goal of our future studies.

There are several limitations for this study, which will be the focus of our future studies.
First, the concentrations of PA we used are supraphysiological. The serum average levels of
PA range 160 µM in normal subjects and 220 µM in obese, or 160 µM in nondiabetic subjects
to 280 µM in diabetic subjects after fast [43–45]. We did observe a modest or mild effect at
500 µM and 250 µM after 72 h treatment of PA on the Spike cells (Supplementary Figure S1),
indicating that the Spike cells may be sensitive to a physiologically relevant PA concentra-
tion after a long-term treatment (>72 h). This possible phenotype shall be investigated in
our future studies. Second, the potential effects of other types of fatty acids or lipid species
on the Spike cells are not evaluated. In addition, the types of altered lipids or lipid metabo-



Cells 2022, 11, 1916 12 of 14

lites caused by the Spike protein have not been identified. Third, additional pan-caspase
inhibitors are needed to exclude the Caspase-dependent mediated apoptosis in the Spike
cells after PA treatment. Fourth, the functional domain(s) of the Spike protein-mediated
lipotoxicity and the subcellular locations of expressed Spike are not defined, which can be
assessed using a series of constructs to express various truncated Spike mutations. The HEK
has very low levels of endogenous ACE2 and TMPRSS2 (www.proteinatlas.org, accessed on
20 May 2020). Therefore, it is unlikely a mechanistic involvement of the signaling pathway
associated with a secretion of Spike and binding to the surface ACE2 receptor in our study.
Instead, our data demonstrates that the Spike-induced intracellular pathology is largely re-
lated to lipotoxicity and impaired autophagy. Fifth, disposition of lipid droplets in the Spike
cells shows a predominant cell membrane distribution, indicating that the Spike-mediated
lipotoxicity is associated with cell membranes. However, the detailed mechanisms and
precise subcellular locations of lipid droplets are yet to be determined and need further
investigations. Sixth, this study is the initial step to reveal the pathological role of the Spike-
mediated lipotoxicity that is related to autophagy/necroptosis/ferroptosis, indicating a
central role of Nrf2. However, the detailed molecular mechanism underlying the Spike
protein-induced lipidomic dysregulation is unknown. Our data indicate that Nrf2 may play
a central role in the transcriptional level for this pathological process. However, this needs
further elucidation and validation using loss-of-function and gain-of-function approaches.
Seventh, the current emerging variants, omicron strains, present multiple mutations in the
Spike protein; whether these omicron versions of Spike protein variants can enhance or
attenuate their functions in lipid metabolic alteration as compared with the alpha version
of the Spike protein is unknown. Lastly, the Spike protein-induced impairments in both
autophagic and lipid metabolic pathways in host cells are evident. However, whether
autophagic impairment is a consequence of or in parallel to lipid metabolic impairments is
unknown. Most likely, autophagic impairment is intertangled with lipidomic alterations
not only as a result of but also an independent factor for the deterioration in response
to lipotoxicity.

In conclusion, this study has demonstrated that the Spike protein can cause lipid depo-
sition and impair lipid metabolic and autophagic pathways in host cells, ultimately leading
to increased susceptibility to lipotoxicity via ferroptosis. The Spike protein-enhanced lipo-
toxicity can be suppressed by the Nrf2 inhibitor TRG, indicating a central role of Nrf2 in
COVID-19-associated cardiac complications involving obesity.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/cells11121916/s1, Figure S1: PA-induced Spike protein-exaggerated
lipotoxicity showed a dose- and time-dependent manner; Figure S2: The BSA with various con-
centrations doesn’t cause significant cell death among the mock, pcDNA, and Spike cells; Table S1:
primer list.
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