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Abstract: After its discovery in 1825 by the physiologist J.E. Purkinje, the human germinal vesicle
(GV) attracted the interest of scientists. Discarded after laparotomy or laparoscopic ovum pick up
from the pool of retrieved mature oocytes, the leftover GV was mainly used for research purposes.
After the discovery of Assisted Reproductive Technologies (ARTs) such as in vitro maturation (IVM),
in vitro fertilization and embryo transfer (IVF-ET) and intracytoplasmic sperm injection (ICSI), its
developing potential was explored, and recognized as an important source of germ cells, especially in
the case of scarce availability of mature oocytes for pathological/clinical conditions or in the case of
previous recurrent implantation failure. We here review the ultrastructural data available on GV-stage
human oocytes and their application to ARTs.
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1. Introduction
1.1. From the Ovum to the Cicatricula

Questions about the beginning of life have been raised by philosophers and scientists
since the fourth century BC with Aristotle, who described embryonic development inside a
chicken egg [1]. However, the discovery of the oocytes started in the 19th century: in 1651,
the physician William Harvey employed the Latin word “ovum” to refer to the beginning
of animal life [2], and with his study he introduced the theory “omnia ab ovo”, i.e., all
animals are produced from ova. However, when he dissected a red deer during the rut,
he could not find any visible evidence in the female “testes”, so-called at that time for the
production of semen [3]. For three centuries (17th–19th), other researchers observed the
reproductive organs in mammals following the “egg theory”, trying to identify the ovum
and the place of its generation [4]. Among them, the Dutch physician and anatomist Regner
de Graaf (1672) mistakenly believed that the egg consisted of the ovarian follicle itself [5],
but correctly discovered that a “seminal vapour” was responsible for fertilization after
having reached the eggs. The Italian priest, biologist and physiologist Lazzaro Spallanzani
further contrasted the theory of spontaneous generation (1765) [6] by demonstrating the
importance of the contact between the sperm and the egg. However, he believed in the
theory of preformed organs. The egg description was provided in 1824 by the Swiss
physiologist Jean-Luis Prevost and the French chemist Jean-Baptiste Dumas, who wrote
that, as long as the egg is in the ovary, it contains a brown zone within which a circular
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yellow spot can be seen [7]. This again surrounds a smaller circular outline, to which
Prévost and Dumas gave the name, which it still bears, of “cicatricula”. By putting a frog
fertilized egg into the water they could follow the first phases of segmentation, describing
a “granulation” ending in the formation of a structure similar to a “raspberry”, including
the presence of “black spots”, probably the cell nuclei [8].

1.2. The Identification of the Germinal Vesicle

The germinal vesicle was identified in 1825 by the Bohemian physiologist Jan Evan-
gelista Purkinje, who, a few years later, published at the University of Breslaw a treaty
where he described the presence and consistency of a vesicular structure found in the hen’s
egg [9]. Within each oocyte or “germ”, Purkinje saw a transparent, liquid-filled sphere,
which he named the “vesicula germinativa” (germinal vesicle), being considered the germ
cell. Two years later, the Prussian-Estonian embryologist Ernst Karl von Baer in Leipzig
identified the egg cells in mammals [10]. Moreover, he described the process of ovulation
and the initial stages of embryo development in the dog. Baer closely examined follicles
under a microscope and saw that each one had a small “yellowish-white point” inside. Mi-
croscopic examination of the structure observed enabled him to discover that the ovum was
hidden within the “discus proligerus”, now known as the cumulus oophorus. He removed
one of the yellowish structures with the point of a knife and looked at it again under the
microscope, revealing the oocyte. The idea that tissues were made up of cells was not yet
known, and he called it the “ovulum” or “little egg” [11]. The cellular theory by Matthias
Jacob Schleiden and Theodor Schwann in 1839 complemented von Baer’s discovery of the
mammalian ovum and endorsed the idea that all reproductive processes pass through a
cell or comparable, fundamental organic unit [12]. Theodor Schwann argued that the ovum
described by von Bear was probably a cell, and the structure named “vesicula germinativa”
by Purkinje was the cell nucleus, as also confirmed by Vladislav Kruta (1956) [13]. In 1834,
Adolph Bernhardt, a student and pupil of Purkinje and later one of the founding fathers
of modern histology, observed in the mammalian ovum an analogous structure to the
germinal vesicle, finally identifying the cell nucleus [14,15].

In 1835, Rudolph Wagner, while studying the Graafian follicle of the sheep, discovered
the presence of a “spot” within the germinal vesicle, which he called “macula germinativa”
(germinal spot). Wagner assumed that this “spot” was the origin or first stage in the
development of the germinal vesicle. In 1839, Gabriel Gustav Valentin, Purkinje’s close
collaborator, was the one who confirmed and introduced the term nucleolus for the macula
germinativa, according to Purkinje. Later, Valentin, based on Purkinje’s and Wagner’s
descriptions, conducted his observations and referred to the nucleolus as a “rounded,
transparent secondary nucleus” [14].

The long and conflictual history, as described in the 19th century, of the fully grown
GV-stage oocyte, discovered a unique cell owning to its size (nearly 0.1 mm or 100 µm
diameter), enclosed by a clear “glass-like shell” or zona pellucida provided with a large
nucleus—or germinal vesicle—and containing a prominent spherical nucleolus [16].

1.3. GV-Stage Oocytes as a Potential Resource in ARTs

ARTs are now routinely applied for female fertility, also connected to delayed child-
bearing in western countries, and oncofertility problems. The use of GV-stage oocytes gains
an option when the availability of mature oocytes is reduced. However, contrasting data
about the right approach for using controlled ovarian stimulation (COS) protocols, IVM
conditions and cryopreservation strategies limit the potentiality of this approach.

Data from morphological studies may be helpful to untangle the knot. A morpho-
functional approach by confocal microscopy detected the presence of double-strand DNA
breaks and the diverse activation of a DNA repair response in human GV-stage oocytes
from COS or IVM cycles [17]. However, when immature oocytes collected from stimulated
ovaries were subjected to vitrification, morpho-functional data evidenced that they sur-
vived the vitrification process and retained their potential to mature to the MII stage [18].



Cells 2022, 11, 1636 3 of 16

It should be noted that alterations to mitochondria redistribution, CG migration, global
DNA methylation expression and, especially, spindle and chromosome organization were
reported [18]. By contrast, a recent study of the metaphase plate by confocal microscopy
revealed that immature human oocytes subjected first to vitrification and then to in vitro
maturation up to the MII-stage showed a higher percentage of normal metaphase spindle
configuration if compared to those matured in vitro first and then vitrified [19]. These
discrepancies may be solved with the aid of electron microscopy (EM), the gold standard
in revealing the ultrastructural characteristics of immature oocytes.

In this review, we aimed to revise available literature on immature oocytes, putting
a particular emphasis on (1) the application of electron microscopy (EM) as an essential
tool in ultrastructural studies to optimize and validate ARTs in humans and (2) the use of
GV-stage oocytes as a useful source of germ cells in ARTs.

2. Materials and Methods
Inclusion and Exclusion Criteria for the Research in MEDLINE–PubMed, Scopus and ISI Web of
Science Databases

All original articles were searched from international databases, including PubMed,
Scopus and Web of Science. We searched these engines without language or time limita-
tions. The search was performed using eight keywords in English, including “Immature
oocytes, Germinal vesicle (GV), morphology, ultrastructure, electron microscopy, Assisted
Reproductive Technology (ART), human”. For the ultrastructural description of subcellular
structures, the search was enriched by the following terms: nucleus, nuclear membrane,
nucleolus, heterochromatin and euchromatin, cortical granules, endoplasmic reticulum,
Golgi apparatus, mitochondria, vacuoles, ooplasm, microvilli, perivitelline space, zona
pellucida. In this study, the inclusion criteria were: (1) morphological study; (2) the status
of oocyte immaturity; (3) the use of immature oocytes for ARTs.

3. Ultrastructure of GV-Stage Oocytes

EM observations on human GV-stage oocytes are important for characterizing their
ultrastructure, making an essential contribution in highlighting effects connected to patients’
pathologies, or the detrimental action connected to ARTs as COS or cryopreservation. EM
is, therefore, useful in the optimization and validation of ART protocols. Focusing on the
application of EM on immature human oocytes from different ARTs we here review data
available in the literature:

3.1. Nucleus

In immature oocytes aspirated from stimulated ovaries, the germinal vesicle, which
was usually spherical and with a diameter of about 20 µm, was located centrally or, in a
few oocytes, close to the cell membrane [20]. Similarly, in oocytes collected from patients
enrolled in ICSI treatment cycles after COS, the nucleus normally occupied 1.2% of cell
volume with a central position in the inner cytoplasm [21]. The nuclear position was,
differently, found to be eccentrical in several studies, probably due to an early onset of
meiosis resumption after harvesting or COS protocol timing. An eccentrical position of
the nucleus in GV-stage human oocytes was described by LM and TEM in both fresh and
vitrified/warmed oocytes collected from our group, after a long protocol [22] or by others in
IVM cycles from stimulated patients [23–26]. In all cases, the nuclear membrane was contin-
uous, well visible, two-layered and characterized by the presence of several nuclear pores.
The nuclear envelope shape was roundish or folded and enclosed a nucleoplasm with a
uniform and pale aspect of finely dispersed euchromatin fibrils, except for the presence of
one or more large and electron-dense nucleoli and clusters of heterochromatin. The latter
was connected to the nucleoli or organized in patches, sometimes located under the nuclear
membrane [20,22,27,28]. Round and highly electron-dense nucleoli were composed almost
entirely of fibrillar material; smaller nucleoli were evident in addition to the most evident
nucleolus [25]. Dense spherical bodies could be present within their matrices [25]. An un-
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published micrograph of the nuclear ultrastructure from a representative fully stimulated
human leftover GV-stage oocytes is shown in Figure 1A.

Figure 1. Representative unpublished archived TEM micrographs of GV-stage human oocytes from
stimulated ovaries [22,29,30] showing in (A) the nucleus (N) delimited by a continuous nuclear
envelope (NE) made by a double layer interrupted by electron pale nuclear pores. The nucleoplasm is
characterized by a round and electron-dense nucleolus (Nu), dark fibrous clusters of heterochromatin
and dispersed euchromatin. TEM, bar: 1 µm; (B) the ooplasm rich in electron-lucent vacuoles and
small vesicles, delimited by a continuous membrane and sometimes presenting visible inclusions
or debris. Numerous round-to-ovoid mitochondria (m) with slightly electron-dense cristae and big
secondary lysosome (Ly) with numerous vesicles of different electron-density. TEM, bar: 1 µm.

3.2. Ooplasm
3.2.1. Mitochondria

GV-stage human oocytes recovered from ovaries from unstimulated patients for fur-
ther IVM showed that most of the mitochondria were spherical and had sparse cristae [23].
Following ovarian stimulation, they were evenly distributed, although clusters were oc-
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casionally seen peripherally [20]. When GV-stage oocytes were collected from PCOS
(polycystic ovarian syndrome) patients (no data available about the COS protocol, if any),
mitochondria—fewer than at metaphase I—appeared small in size, mostly round but
sometimes tubular [31]. In immature oocytes from COS cycles with GnRH (Gonadotropin-
Releasing Hormones) agonists and antagonists, most mitochondria localized centrally in
the cytoplasm of oocytes with a cluster-like structure; no significant amount of mitochon-
dria was found to localize in their subcortical areas. In fact, the area ratio of “mitochondria
in cytoplasm at peripheral region” was 0.98%, while that of “mitochondria in cytoplasm at perin-
uclear region” was 7.71% [32]. A similar perinuclear distribution of individual mitochondria
and small mitochondrial clusters was found in human leftover GV-stage oocytes from
young donors enrolled in an egg donation program [26]. A representative micrograph from
our group of mitochondria from a fully stimulated GV-stage human oocyte is shown in
Figure 1B.

3.2.2. Mitochondria-Smooth Endoplasmic Reticulum (M-SER) Aggregates

There was a close association between the mitochondria and the smooth endoplasmic
reticulum (SER), which appeared as small irregular profiles or sometimes as flattened sacs
with a size of about 0.5 to 1 µm [20]. We previously noted the presence of underdeveloped
M-SER aggregates in human oocytes after full stimulation [22], while others noted the
gradual affiliation of the mitochondria to a smooth membrane of variable ER elements only
in MI-stage oocytes [26].

3.2.3. Golgi Apparatus and Smooth Endoplasmic Reticulum (ER)

The Golgi apparatus consisted of aggregates of tubuli and vesicles in human immature
oocytes after retrieval from unstimulated patients [23]. This was confirmed by further
studies from the group of Sathananthan on immature GV oocytes collected from large
antral follicles at laparoscopy from stimulated patients, who described Golgi complexes as
the most prominent organelles in the oocytes during the early phases of maturation. They
were numerous, hypertrophied and appeared predominantly in the cortical ooplasm, where
they were associated with cortical granules [25]. More recently, distinct Golgi apparatus,
composed of an interconnected system of cisternae and vesicles, was regularly found in
the cytoplasm of leftover human GV oocytes [26]. Interestingly, the cis-trans polarity was
not easily distinguishable [26]. Extensive endoplasmic reticulum was visible in human GV
oocytes [28], with the prevalence of vesicular smooth ER, as seen in PCOS patients [31].

3.2.4. Cortical Granules (CGs)

The cytoplasm of immature human oocytes collected from ovarian-stimulated women
undergoing ARTs for tubal factor infertility contained membrane-bound CGs, with a
diameter of 0.3 to 0.5 µm, in varying numbers located close to the plasma membrane
and deep within the cytoplasm [20]. By contrast, GV-stage human oocytes obtained from
very early antral follicles in unstimulated ovaries presented CGs in the subplasmalemma
and cortical cytoplasm of fully grown, immature oocytes derived from very early antral
follicles [33]. The group of Gethler [34] identified dark and light subpopulations of CGs
in leftover human GV-stage oocytes collected after a “long” protocol (GnRH analogue
and human menopausal gonadotrophin, hMG) for ovulation induction. Many clusters of
light granules were distributed throughout the cytoplasm, with a few granules (mainly
dark) at the cortex. Cryopreservation by slow-freezing induced a decrease in the dark
granule’s abundance, with membrane-coated electron-transparent vesicles, in some cases
aggregated with CGs [34]. We, similarly, found scattered in the ooplasm CGs in both
fresh and vitrified-warmed immature leftover GV-stage oocytes, with a higher counterpart
of dark granules (indicative of a better maturity), probably due to the different protocol
for cryopreservation [22]. In immature oocytes from PCOS patients, CGs were dispersed
throughout the whole cytoplasm, without being prominent [31].



Cells 2022, 11, 1636 6 of 16

3.2.5. Vacuoles

Some vacuoles with a diameter of 1–2 µm were observed in the center of the oocytes [20].
Numerous membrane-bounded vacuoles, small and empty (medium diameter ± SD:
0.975 ± 0.113 µm), were found mainly in the region surrounding the nucleus of human
leftover GV-stage oocytes after full stimulation [22]. Similarly, vacuolar structures were
very abundant and with a variable ultrastructure in leftover human GV oocytes after super-
ovulation [35]. When GV oocytes were subjected to vitrification by Cryotop, vacuoles were
found also in the oocyte periphery. Numerous small MV complexes were identified in the
cortex and subcortex; their number decreased in vitrified-warmed oocytes [22]. A central-
ized vacuolated ooplasm was connected to atresia [24]. A representative micrograph from
our group of vacuoles and smaller vesicles from a fully stimulated human oocyte is shown
in Figure 1B.

3.2.6. Lysosomes

One author reports that primary and secondary lysosomes were not present in GV
oocytes [31]; by contrast, secondary and tertiary lysosomes were commonly found in GV
oocytes from stimulated cycles, and bizarre images were considered a sign of atresia [24].
The lysosomes were also found in the cytoplasm of all analyzed leftover human GV from
young stimulated donors [26]. They varied in size (0.2–1.5 µm) and were described as
membrane-bound bodies containing aggregated vesicles with variable opacity, membrane
remnants, or dark, dense patches (probably insoluble lipid droplets), residues of lysosomal
degradation [26]. Lysosomes were also noticed in preovulatory human oocytes maturing
in vitro at the metaphase I stage from stimulated patients [25]. A representative archived
micrograph of lysosomes from fully stimulated human oocytes is shown in Figure 1B.

3.3. Oolemma
Microvilli, Perivitelline Space (PVS) and Zona Pellucida (ZP) Texture

Numerous fine microvilli were observed closely on the oocyte surface after enzymatic
removal of the zona pellucida in GV oocytes from unstimulated patients. Twenty-eight
hours of culture determined an extension from the surface of the plasma membrane into
the ZP [23]. Numerous slender microvilli, 4–5 µm long, extended from the surface of
the cells [20]. A continuous layer of thin and long microvilli covered the oocyte surface
in leftover human GV-stage oocytes after full stimulation; by contrast, after vitrification,
an irregular coverage of small and short microvilli was noted in the 40% of observed
oocytes [22]. Moreover, when GV-stage oocytes were collected from a PCOS patient after
COS, microvilli were rare and small [28]. In GV-stage oocytes collected from a PCOS patient,
the PVS was very narrow, the outlines of the ZP were sharp and the ZP was less dense in
the exterior and denser in the interior [28].

Immature oocytes retrieved from an in vitro fertilization program showed, by SEM,
a smooth and compact surface of the zona pellucida, different from the spongy appearance
in mature oocytes [36]. Human GV oocytes show corona radiata processes extending
through the ZP, some ending in bulbous or club-shaped terminals containing microfila-
ments, granular vesicles, and a few lysosomes [25]. A representative micrograph of the
cortical ooplasm, oolemma, microvilli, PVS and ZP from fully stimulated human oocytes is
shown in Figure 2.
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Figure 2. Representative unpublished archived TEM micrographs of GV-stage human oocytes from
stimulated ovaries [22,29,30] showing in (A) the cortex with a pale and spongy zona pellucida (ZP)
crossed by numerous residues of transzonal projections (TZP) and a thinner perivitelline space (PVS)
in which numerous thin microvilli (mv) protruding from the oolemma are visible. The ooplasm is
characterized by the rare presence of suboolemmal cortical granules (CG) and numerous mitochondria
(m), which are often present in clusters in the inner ooplasm. TEM, bar: 1 µm; (B) higher magnification
of the cortical ooplasm with round-to-ovoid mitochondria (m), slightly electron-dense cristae and
rare cortical granules (CG). The oolemma is folded in numerous microvilli (mv) protruding in the
perivitelline space. ZP: zona pellucida. TEM, bar: 800 nm.

4. Oocyte Quality and Early Embryo Development from ART Cycles

After ovulation triggering through hCG administration, the oocyte retrieval results in
the collection of both mature MII-stage oocytes (~70–85%) and immature GV-/MI-stage
oocytes (up to 30%) [37–39]. The number of immature oocytes, when high after transvaginal
retrieval, is generally considered a marker of poor oocyte quality [40,41], and can increase
exponentially in PCOS patients [42,43]. During the next steps of IVF, the oocyte quality
covers a pivotal role in determining embryonic development and in increasing the chances
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of a successful clinical pregnancy. The definition of oocyte quality is dependent on its
potential and ability to undergo meiotic maturation and fertilization process, to achieve the
proper embryonic development and to further clinical pregnancy [44]. The quality of human
GV-stage oocytes can be evaluated by morphological markers such as the surrounded
nucleolus (SN) and non-SN, which identify high and low developmental potential cells and
consequent IVM outcomes [45]. Literature data, although limited, provide the scientific and
medical community with information about the importance of GV-oocyte quality utilized in
IVF programs. Escrich and collaborators [46] identified two oocyte populations by real time-
lapse recording, defined on the early or late timings of maturation (E-IVM oocytes: less than
20 h; and L-IVM oocytes: up to 30 h, respectively), which were mainly affected by the hours
needed for the GVBD. While E-IVM oocytes reached the activation rate and pronucleus (PN)
formation in a percentage comparable to in vivo matured oocytes, the L-IVM group showed
abnormal patterns in chromatin segregation that impair normal PN formation and, thus,
fertilization rates and embryo formation/development [46]. The importance of maturation
timings was confirmed by Yang and collaborators, who additionally highlighted the role
of serum progesterone levels, as well as GV-MI maturation, for a better developmental
potential of IVM oocytes [47]. Furthermore, the quality of immature oocytes before and
during IVM is pivotal for increasing the chances of success in women with low functional
ovarian reserve. The application of a correct maturation of these oocytes can add the
+60% of the total embryos available for transfer, providing an improvement in pregnancy
and delivery chances [48]. On the other hand, a non-randomized prospective trial [49]
suggested double ovarian stimulation (DuoStim) as an alternative solution to the rescue
IVM of oocytes retrieved from ovarian reserve poor-prognosis women. The application of
DuoStim resulted in higher efficiency in terms of oocyte competence, embryo viability and
quality [49]. Due to the reasons here discussed, the use of GV-stage oocytes is still limited
in routine clinical practice; thus, more studies are needed on this topic to provide a deeper
knowledge of its potential applications in ARTs.

5. Unstimulated Vs. Stimulated GV-Stage Oocytes

The oocyte retrieval in natural cycles has been the main source of female germ cells
since the beginning of IVF history [50,51]. This procedure consists of the transvaginal
aspiration of oocytes from mature follicles and, to date, is mainly applied in PCOS patients
and poor responders, or highly recommended to couples in which the woman is under the
age of 40 and there is no male factor infertility. Nowadays, women undergoing ARTs are
subjected to COS, which allows the maturation and ovulation of multiple follicles through
the injection of exogenous gonadotropins [40]. Both unstimulated and stimulated cycles
display a plethora of advantages and disadvantages for the successful retrieval of mature
oocytes. Regarding natural unstimulated cycles, the advantages reside in decreasing the
risk of ovarian hyperstimulation syndrome (OHSS), costs, and in avoiding the use of hor-
mones for ovarian stimulation; moreover, IVF cycles may be frequently repeated, thus
reducing the perinatal adverse outcomes and side effects of endometrial functions [52–54].
However, the efficiency of unstimulated cycles is counterbalanced by a lower number of
available oocytes and, therefore, of embryos to be transferred, together with decreased
pregnancy rates per cycle and increased cancellation rate (more than 30%) due to premature
ovulation [55]. On the other hand, the advantages of using COS in IVF cycles include
an increased number of oocytes available during follicular aspiration, and thus a greater
number of embryos to be transferred to the uterine cavity [56]. Nevertheless, the admin-
istration of exogenous hormones, especially at high doses or in the case of repeated IVF
cycles, can decrease endometrial receptivity, increase the risk of OHSS breast cancer and is
associated with higher costs per cycle [57]. In both unstimulated and stimulated cycles, a
high number of immature oocytes from secondary follicles are frequently retrieved and
may undergo IVM [58]. This may increase pregnancy rates, although the percentages of
successful full-term pregnancy and live birth rates from immature oocytes after IVM are
still very low [48]. Particularly, a more numerous retrieval of immature oocytes may be
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correlated with the COS protocol utilized, i.e., when Follicle Stimulating Hormone (FSH),
GnRH antagonist and short GnRH agonist protocols are preferred to FSH/LH, GnRH
agonist and long GnRH agonist protocols, the former characterized by the administration
of GnRH agonist on cycle-day 21 followed by gonadotropin from cycle-day 2 to 14 [59–61].
Therefore, GV-stages oocytes from both unstimulated and stimulated follicles have special
importance for those patients with a history of unsuccessful treatments, representing an
alternative solution for a tailored ART optimization in a patient-friendly and -specific
manner. In this regard, IVM and oocyte cryopreservation may be applied, even if the
potentiality of using immature oocytes is not yet assessed.

6. In Vitro Maturation (IVM)

Among the relevant ARTs, oocyte-cumulus complexes can be retrieved after the
aspiration of mid-sized follicles and subsequently cultured for 24–48 h for undergoing
the process of IVM. Moreover, GV-stage oocytes that did not undergo the transition to
MII-stage after stimulation can be found in the pool of retrieved oocytes and subjected to
IVM [62]. The IVM of these “leftover” immature (GV-stage) oocytes with developmental
competence represents a potential tool for ART patients, in particular for poor responders,
PCOS women, and for avoiding the side effects of OHSS [29,63,64]. While discarded in
the past, today GV oocytes can be cryopreserved before or after IVM, thus increasing the
opportunity for achieving a pregnancy [19,29]. However, the successful application of IVM
on leftover oocytes is still facing issues, mainly due to defects in the cytoplasmic maturation
or asynchronous cytoplasmic and nuclear maturation [30,46,65]. Additionally, the delayed
timings of fertilization after MII arrest and meiotic spindle assembly significantly impair
embryo developmental potential [30,66]. Notably, the IVM rates of GV-stage oocytes from
unstimulated and stimulated cycles highlight differences that seem to be strictly associated
with culture media, age, infertility factor and the presence of cumulus cells [67].

6.1. IVM of Unstimulated GV-Stage Oocytes

The first live birth after IVM resulted from oocytes retrieved from an unstimulated
woman affected by PCOS and was reported in 1994 by Trounson and collaborators [68].
The IVM process is similar in stimulated and unstimulated cycles, although in the latter
it appears to be less efficient, due to a lower number of retrieved oocytes and a decrease
in both cleavage and pregnancy rates [69,70]. However, pilot studies highlighted dif-
ferences between the IVM of stimulated and unstimulated oocytes, as structural and
molecular changes [71], and a protein synthesis profile that leads to different germinal
vesicle break-down (GVBD) time courses [72]. IVM of immature oocytes from unstim-
ulated cycles evidenced smaller diameters after denudation (96–125 µm) and decreased
in vitro competence than in stimulated cycles [73,74]. As a consequence, hCG priming
before oocyte retrieval in control and PCO/PCOS patients increased oocyte maturation and
fertilization rates, developmental potential and clinical pregnancy rates, when compared to
unstimulated cycles [75,76]. Liu and collaborators scored GV- and MI-stage oocytes from
unstimulated PCOS patients according to nuclear maturation, cumulus cells-oocyte shape
and morphology. Maturation, fertilization and cleavage rates were similar between the two
groups, while it is worth noting that the number of retrieved GV-stage oocytes showed a
threefold increase in comparison with MI-stage oocytes [77]. This reinforces the need to
better optimize ART settings for GV-stage oocytes.

6.2. Rescue IVM from Stimulated Oocytes

Nowadays, new strategies are still needed for low functional ovarian reserve patients
with abnormally elevated FSH, together with abnormally low age-specific anti-mullerian
hormone (AMH) levels [78], and for poor responder patients [64]. One of the clinical issues
of these women is poor oocyte quantity and quality after retrieval. Approximately, up
to 30% of the retrieved oocytes are immature (GV- or MI-stage) and need to be matured
in vitro to increase the possibilities of a successful IVF cycle [79]. Oocytes that matured
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on Day 1 after retrieval were significantly higher in quality than those that matured later
on [80]. Hormonal supplementation with key hormones as Epidermal Growth Factor (EGF)
or EGF-like growth factors such as amphiregulin (AREG) and epiregulin (EREG), improved
meiotic resumption and nuclear maturation [81]. Notably, a significantly higher percentage
of GV-stage oocytes that matured, as evidenced by PBI extrusion, were detected when
GVBD occurred in the central nucleolus rather than in the peripheral nucleolus [82]. As
long as this procedure is considered a valuable tool for increasing the chances of successful
fertilization and embryo development, it is worth mentioning that rescue IVM of GV
oocytes could negatively influence embryo morphokinetics, with particular regard to the
timings of the overall embryo formation and development and cleavage patterns [83].

7. Cryopreservation

One of the major debates regarding fertility preservation concerns the cryopreserva-
tion of GV-stage oocytes before or after IVM when they will reach the MII-stage. In 1998,
Tucker and collaborators published the first birth from GV-stage oocytes that were first
cryopreserved and, after thawing, matured in vitro [83]. After ICSI and the achievement of
the cleavage stage, the newly formed embryos underwent embryo transfer and resulted
in a live birth of a female infant [84]. The role of cumulus cells during immature oocyte
cryopreservation is still unclear [85–87]. The presence of somatic cells during oocyte cry-
opreservation may exert a protective role against anisotonic conditions and stress derived
from osmotic changes, mainly induced by the rapid influx and efflux of cryoprotectants
during pre-freeze and post-thawing periods [88]. Among the different procedures of cryop-
reservation, the two methods mostly studied and applied in the clinical daily processes are
the slow freezing and vitrification methods, further discussed in this section.

7.1. Slow Freezing

The slow-freezing method on GV-stage oocytes is an alternative strategy of cryop-
reservation aimed at avoiding spindle depolymerization, decreasing the risk of polyploidy
and/or aneuploidies. The reason relies on the diffuse chromatin status at this stage of
oocyte maturation and the presence of the nuclear membrane surrounding and protecting
the DNA [89]. This method improves oocyte survival rates, and does not, concomitantly,
increase the rates of maturation and fertilization or embryonic development [90,91]. The ad-
vent of vitrification, quick, economic and safe, progressively reduced the use of slow freez-
ing, more subject to the formation of ice crystals in the intra- and extracellular spaces [92].
The warming/thawing process countersigned the main significant difference between slow
freezing and vitrification, with rapid warming being more efficient in terms of survival
rates than rapid thawing [93]. However, a study of GV and MII oocytes subjected to the two
different cryopreservation methodologies found no difference in terms of mitochondrial
distribution and viability rates [94].

7.2. Vitrification

Among cryopreservation protocols, vitrification is the gold standard for the oocyte
and embryo “freeze-all” strategy [95]. It can be performed by using either open or closed
systems, which are in direct and indirect contact with liquid nitrogen, respectively [96,97].
Regarding slow freezing, the use of vitrification achieved better oocyte survival and higher
pregnancy rates [98,99]. Oocyte maturation rates were reduced in GV-stage oocytes sub-
jected to IVM after cryopreservation in comparison with fresh in vitro matured oocytes [100].
Nevertheless, considering the statistics regarding healthy live births, the literature data
demonstrate that vitrification of oocytes subjected to IVM is still less effective compared to
its in vivo ovulated counterpart [29]. Due to the use of high concentrations of cryoprotec-
tants for oocyte vitrification and the high cytotoxicity of these chemicals, linked to osmotic
changes [101], the application of vitrification and the following clinical efficiency needs to
be further investigated and be strengthened with multiple controlled clinical trials [102].
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8. Mitochondrial Replacement

One of the latest ARTs is mitochondrial replacement therapy (MRT). The main function
of mitochondria in eukaryotic cells is the production of ATP through oxidative phosphory-
lation. Being the only semi-autonomous organelle of the cell, the mitochondrion carries up
to 10 copies of mitochondrial DNA (mtDNA), which represent around 0.1% of the genome
present in a cell [103]. The mtDNA mutations, which can be inherited only from the ma-
ternal counterpart, may cause severely debilitating syndromes in newborns, or lead to
abortion during pregnancy [104,105]. Besides the clinical difficulties in the MRT, it faces the-
ological and ethical issues because of the involvement of a mitochondrial donor in embryo
formation [106]. Thus, the newborn will have three distinct genetic materials: the paternal
through the spermatozoon, the maternal through the nuclear DNA of the oocyte, and the
donor through the healthy cytoplasmic mtDNA, ultimately generating a “three-parent
baby” [107]. To date, several techniques are eligible for MRT, which consists preferably
of the removal of the nuclear genome from the oocyte or zygote carrying the mtDNA
mutation and transferring to a healthy enucleated oocyte [108,109]. Among the MRT tech-
niques, ooplasm transfer (OT), spindle transfer (ST), pronuclear transfer (PNT) and polar
body transfer (PBT) are the most widely known and used in ART procedures [107,110].
The OT technique consists of the transfer of 5–15% of the ooplasm of a healthy donated
oocyte to the oocyte-carrying mutated mtDNA and is one of the most controversial among
MRTs [111]. However, OT treatment resulted in 50 clinical pregnancies and more than
30 live births [109,112]. The transfer of the pathological maternal MII-stage oocytes spin-
dle to a healthy donor’s ooplasm previously deprived of its spindle has been applied to
human oocytes by Tachibana and collaborators in 2013 [113]. The first clinical pregnancy
leading to a live birth using ST was reported in 2017 [114]. Interestingly, germinal vesicle
transfer (GVT) is also included among the MRT techniques, even if to date only two studies
on mouse models have been reported, with unpromising results [115,116]. Briefly, GVT
consists of the transplantation of the GV from a patient’s immature oocyte to a healthy
donor enucleated one. The pivotal issue of this technique resides in the need of subjecting
the new immature oocytes to IVM for obtaining a mature oocyte ready for fertilization.

9. Conclusions

ART laboratories might improve the use of immature GV-stage oocytes for further
applications during routine procedures due to an increasing percentage of women unable
to achieve oocyte maturation in unstimulated or stimulated cycles. The current application
of GV-stage oocytes in ARTs is still limited and a matter of debate, underlining the necessity
of morphofunctional studies for shedding light on the correct use of these “leftover”
oocytes. TEM and SEM are the most powerful tools for assessing the fine structure of
immature human oocytes, allowing the qualitative evaluation of pivotal organelles such as
the nucleus, mitochondria, vacuoles and lysosomes before or after COS protocols, IVM and
freezing strategies. However, due to the limited number of available leftover oocytes for
these purposes, more studies are necessary for clarifying the most efficient use of GV-stage
oocytes for ART optimization.
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