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Abstract: Parkinson’s disease (PD) and multiple system atrophy (MSA) are caused by two distinct
strains of disease-associated α-synuclein (αSynD). Recently, we have shown that olfactory mucosa
(OM) samples of patients with PD and MSA can seed the aggregation of recombinant α-synuclein by
means of Real-Time Quaking-Induced Conversion (αSyn_RT-QuIC). Remarkably, the biochemical
and morphological properties of the final α-synuclein aggregates significantly differed between PD
and MSA seeded samples. Here, these aggregates were given to neuron-like differentiated SH-SY5Y
cells and distinct inflammatory responses were observed. To deepen whether the morphological
features of α-synuclein aggregates were responsible for this variable SH-SY5Y inflammatory response,
we generated three biochemically and morphologically distinct α-synuclein aggregates starting from
recombinant α-synuclein that were used to seed αSyn_RT-QuIC reaction; the final reaction products
were used to stimulate SH-SY5Y cells. Our study showed that, in contrast to OM samples of PD
and MSA patients, the artificial aggregates did not transfer their distinctive features to the αSyn_RT-
QuIC products and the latter induced analogous inflammatory responses in cells. Thus, the natural
composition of the αSynD strains but also other specific factors in OM tissue can substantially
modulate the biochemical, morphological and inflammatory features of the αSyn_RT-QuIC products.

Keywords: RT-QuIC; olfactory mucosa; α-synuclein; Parkinson’s disease; multiple system atrophy;
strains

1. Introduction

Parkinson’s disease (PD) and multiple system atrophy (MSA) are neurodegenerative
disorders belonging to a group of pathologies named α-synucleinopathies [1,2]. These
diseases are characterized by the accumulation of misfolded α-synuclein in neurons or
glial cells of PD and MSA patients, respectively [3]. It is known that they are caused
by different conformational states of α-synuclein (αSyn), also referred to as α-synuclein
strains, or αSynD [4–6]. αSynD promotes conformational templating of normally folded
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αSyn resulting in αSynD spreading in specific brain areas with the formation of insoluble
aggregates [7–11].

Besides αSynD accumulation, specific neuroinflammatory responses are known to
contribute to the neurodegenerative processes. Remarkably, toll-like receptor (TLR) sig-
naling is a major pathway mediating inflammation, and TLR2 expression is known to be
increased in PD [12,13]. TLR2 is involved in the induction of pro-inflammatory mediators
by triggering glial activation, autophagy-mediated neuronal αSynD accumulation and
clearance, and pathogenic neuron-to-neuron and neuron-to-glia αSynD transmission [14].
Moreover, activation of neuronal TLR2 may induce an inflammatory response, resulting
in microglia activation, release of inflammatory mediators, as well as the production of
mitochondrial reactive oxygen species [15]. Whether different αSynD strains could trigger
distinct inflammatory pathways is still under debate and the contribution of TLRs, partic-
ularly TLR2, in this response has yet to be elucidated. Cytokines such as IL6, TNFα, and
IFNγ have been reported to be increased in the serum of PD and MSA patients [16,17], but
their role on neurons and glial cells to sustain the neuroinflammatory process has to be
better investigated. Moreover, in the context of PD and MSA, it has been demonstrated that
misfolded αSyn may be released from neurons and can seed intracellular αSyn aggregation
while promoting cytokines release and the shift to a pro-inflammatory environment [18].
αSynD is phagocytosed by microglia and triggers its activation, thus further contributing
to the neurodegenerative process [19].

Thanks to the development of the Seed Amplification Assays (SAAs), traces of αSynD

were found in peripheral tissues of patients with α-synucleinopathies, including cere-
brospinal fluid (CSF) [20–25], skin [26–29], submandibular gland [26,30,31] and olfactory
mucosa [25,32–34]. Recently, we have optimized the Real-Time Quaking-Induced Con-
version (RT-QuIC) assay for detecting αSynD in OM samples of patients with PD and
MSA [33,34]. The αSyn_RT-QuIC exploited the ability of αSynD (also referred to as seed)
present in OM tissues to template the conformational conversion of recombinant αSyn (rec-
αSyn, used as RT-QuIC reaction substrate) which then aggregated to form αSyn amyloid
fibrils [20,24,26]. Notably, the biochemical and morphological properties of the RT-QuIC
generated αSyn fibrils were significantly different between PD and MSA and enabled
diseases discrimination [33]. In 2020, similar findings were published by Shahnawaz et al.
who showed that the RT-QuIC analysis of CSF from patients with PD and MSA led to
the formation of αSyn fibrils useful to readily distinguish between pathologies [35]. It is
therefore conceivable that αSynD may influence the morphological properties of rec-αSyn
aggregates that are formed during the αSyn_RT-QuIC reaction, and this could confer them
also specific inflammatory properties.

For this reason, we have exposed neuron-like differentiated SH-SY5Y cells to αSyn
fibrils generated by RT-QuIC analysis of OM-MSA and OM-PD to evaluate whether distinct
inflammatory responses were induced. This cellular model has been extensively used to
investigate several prion-like properties of αSynD, including cell-to-cell αSynD propaga-
tion, the formation of intracellular aggregates and related toxic effects, especially after
stimulation with recombinant preformed αSyn fibrils (PFF) [36–39].

To better understand whether the inflammatory properties observed in SH-SY5Y cells
were associated with specific biochemical or morphological features of the RT-QuIC prod-
ucts, we have generated three distinct αSyn aggregates (named αSv1, αSv2 and αSv3)
using rec-αSyn. These samples were either challenged in SH-SY5Y cells, or subjected to
αSyn_RT-QuIC to test whether and to what extent they could imprint their specific features
to the reaction substrate. We are aware of the fact that αSv1, αSv2 and αSv3 lacked sev-
eral post-translational modifications (e.g., phosphorylation, nitration, ubiquitination) [40]
that might influence their seeding activity, including the possibility to transmit specific
morphological properties to the reaction products. For this reason, we have performed
additional studies using the αSyn aggregates formed in SH-SY5Y cells stimulated with
αSv1, αSv2 or αSv3 whose structure and composition could better resemble that of the
natural αSynD strains.
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Our findings suggest a link between the aberrant structures of αSyn and the inflamma-
tory pathways activated in SH-SY5Y cells. However, contrary to what has been observed in
the case of OM-MSA and OM-PD samples, the artificial aggregates made up of rec-αSyn
and those generated in SH-SY5Y cells did not transmit specific properties to the αSyn_RT-
QuIC products. Therefore, the natural αSynD strains responsible for MSA and PD (likely
in combination with other still unknown factors present in the OM tissue) possess unique
features which are barely reproducible using in vitro models.

2. Materials and Methods

Expression and purification of recombinant human wild-type α-synuclein. Pet11a plasmid
with the sequence encoding for the recombinant human wild-type α-synuclein (rec-αSyn)
was expressed in BL21 (DE3) E. coli strain (Stratagene, San Diego, CA, USA). One hundred
milliliters of overnight culture was inoculated into M9 minimal medium (1X M9 salts,
2 mM MgSO4, 0.1 mM CaCl2, 0.4% glucose) complemented with 100 µg/mL ampicillin
and growth at 37 ◦C under shaking until 0.6 O.D. measured at 600 nm. The induction of
the construct was obtained by growing cells with 0.6 mM isopropyl b-D galactopyranoside
(IPTG) for 5 h. Protein extraction was performed as described [41]. Briefly, the cell pellet
was resuspended in osmotic shock buffer (30 mM Tris-HCl, 2 mM EDTA, 40% sucrose,
pH 7.2) and boiled for 10 min while stirring. After two subsequent precipitation steps with
35% and 55% of ammonium sulfate, the protein was dialyzed in 20 mM Tris-HCl pH 8 and
purified by anion exchange chromatography (HiTrap Q FF column, cytiva, Washington,
MA, USA). The elution was obtained by a NaCl 0–500 mM linear gradient. The purity of the
protein was confirmed by SDS-PAGE and the fractions containing rec-αSyn were dialyzed
into water, quantified by measuring the absorbance at 280 nm, lyophilized (FreeZone 2.5
Freeze Dry System, Labconco, Kansas City, MO, USA) and stored at −80 ◦C.

Generation of α-synuclein aggregates with different morphological features. Rec-αSyn was
thawed and diluted to a final concentration of 21 µM in three different aggregation buffers:
1. H2O (αSv1); 2. 5 mM Tris and 100 mM NaCl (αSv2); 3. 5 mM Tris (αSv3). All reagents
used to prepare the reaction mixes were filtered through a 0.22 µm filter before use. Re-
actions were performed in sixfold in a black 96-well optical flat bottom plate (Thermo
Fisher Scientific, Waltham, MA, USA) using the Fluoroskan Ascent microplate reader
(Thermo Fisher Scientific, Waltham, MA, USA). One hundred microliters of reaction mix
was added to each well, together with a glass bead (3-mm, Sigma). The plate was sealed
with a sealing film (Thermo Fisher Scientific, Waltham, MA, USA) and subjected to con-
tinuous shaking (600 rpm, single orbital) at 37 ◦C. An additional well was prepared for
each buffer and was supplemented with 10 µM Thioflavin-T (ThT) to monitor rec-αSyn
aggregation. Fluorescence intensities, expressed as arbitrary units (AU), were taken every
60 min using 450 ± 10 nm (excitation) and 480 ± 10 nm (emission) wavelengths, with a
bottom read. Once reached the fluorescence plateau, rec-αSyn aggregates were collected
and characterized by means of biochemical (Western blot, dot blot, dye-binding assay) and
morphological (transmission electron microscopy, TEM) analyses.

Collection and preparation of olfactory mucosa samples. Olfactory mucosa (OM) samples
were collected before the COVID-19 pandemic with non-invasive procedures from exten-
sively characterized patients with a clinical diagnosis of probable PD (n = 2) or MSA-P
(n = 2) or healthy control (HC, n = 1). The nasal cavity was treated with a topical anesthetic
(Ecocain, Molteni Dental, Milan, Italy) for 10 min and the OM were collected between the
septum and the middle turbinate by gently brushing with a cotton swab (FLOQSwabsTM

Copan Italia, Brescia, Italy), as previously described [33]. After collection, cotton swabs
were immersed in saline solution, the olfactory cells were separated by vigorous vortexing
and finally pelleted at 800× g for 20 min at 4 ◦C. Approximately 6 µg of the pellets were
collected with inoculating loops and suspended in 50 µL of PBS for αSyn_RT-QuIC analysis.
The study and its ethical aspects were approved by the ethical committee of Fondazione
IRCCS Istituto Neurologico Carlo Besta. All of the participants provided written informed
consent before OM collection and analysis.
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αSyn_RT-QuIC analysis of olfactory mucosa samples. The αSyn_RT-QuIC reaction mix
was composed by 14 µM rec-αSyn, 40 mM PBS (pH 8.0), 170 mM NaCl and 10 µM ThT. All
the reagents were filtered through a 0.22 µm filter before use. Two microliters of OM sample
prepared as previously described was added to 98 µL of the reaction mix. All samples
were analyzed in triplicate in a black 96-well optical flat bottom plate (Thermo Fisher
Scientific, Waltham, MA, USA) preloaded with a glass bead (3-mm, Sigma, Saint Louis,
MO, USA) per well. The plate was sealed with a sealing film (Thermo Fisher Scientific,
Waltham, MA, USA) and subjected to cycles of shaking (1 min at 600 rpm, single orbital)
and incubation (14 min at 42 ◦C) using the Fluoroskan Ascent microplate reader (Thermo
Fisher Scientific, Waltham, MA, USA). Fluorescence intensities, expressed as AU, were
taken every 15 min using 450± 10 nm (excitation) and 480± 10 nm (emission) wavelengths,
with a bottom read. Final reaction products were named RQ-MSA1, RQ-MSA2, RQ-PD1,
RQ-PD2 and RQ-CTRL.

αSyn_RT-QuIC analysis of αSv1, αSv2, and αSv3. αSv1, αSv2, and αSv3 were serially
diluted (volume/volume) in PBS (1.5 µg, 1.5 ng, 1.5 pg, 1.5 fg, and 1.5 ag) and 5 µL of
pure or diluted samples was added to 95 µL of αSyn_RT-QuIC reaction mix that was
performed as described in “αSyn_RT-QuIC analysis of olfactory mucosa samples”. Final
reaction products were named RQ-αSv1, RQ-αSv2 and RQ-αSv3. As control, unseeded
αSyn_RT-QuIC reactions (RQ-no seed) were performed.

Dye-binding assay of αSv1, αSv2, and αSv3. To perform the dye-binding assay, αSv1,
αSv2, and αSv3 were prepared without ThT. Samples were then diluted to a final con-
centration of 5 µM in PBS and divided in 8 aliquots that were incubated with 8 different
dyes (at room temperature, in the dark): 10 µM ThT, 10 µM 4,4′-bis-1-anilinonaphthalene-
8-sulfonate (Bis-ANS), 5 µM Congo red, Amytracker 480 (1:800 in H2O), Amytracker
520 (1:800 in H2O), Amytracker 540 (1:800 in H2O), Amytracker 630 (1:800 in H2O) and
Amytracker 680 (1:800 in H2O). After 30 min, samples were added to a black 384-well
optical flat bottom plate (Thermo Fisher Scientific, Waltham, MA, USA). This latter was
sealed with a sealing film (Thermo Fisher Scientific, Waltham, MA, USA) and inserted in
a ClarioSTAR microplate reader (BMG Labtech, Ortenberg, Germany). The fluorescence
values were recorded using the appropriate wavelengths: 448/482 nm exc/emi for ThT,
400/505 nm exc/emi for Bis-ANS, 544/620 exc/emi for Congo red, 430/480 nm exc/emi
for Amytracker 480, 470/520 nm exc/emi for Amytracker 520, 470/540 nm exc/emi for
Amytracker 540, 510/630 nm exc/emi for Amytracker 630 and 540/680 nm exc/emi for
Amytracker 680.

Cell culture and stimulation. Undifferentiated SH-SY5Y neuroblastoma cells were main-
tained in Dulbecco’s Modified Eagle Medium (DMEM) with 2 mM L-glutamine, 1X peni-
cillin/streptomycin, and supplemented with 10% Fetal Calf Serum (FCS) at 37 ◦C, 5% CO2.
Differentiation of SH-SY5Y cells into neuron-like cells was achieved by 10 µM trans-retinoic
acid in DMEM 1% FCS, for 7 days, and seeded on 24 well-plates for molecular biology
analysis, lysate preparation (250,000 cells/well), and for immunofluorescence analysis
(70,000 cells/well). Cells were exposed to RQ-MSA1, RQ-MSA2, RQ-PD1, RQ-PD2, αSv1,
αSv2, αSv3, RQ-αSv1, RQ-αSv2, RQ-αSv3 and related controls (final concentration 2.5 µM)
for 24 h. For lysate preparation, SH-SY5Y cells were detached with PBS by scraping.
Supernatants were centrifuged at 10,000 rpm for 5 min and stored at −80 ◦C.

RT-qPCR analysis. cDNA was synthesized from total RNA (TRIzol, Thermo Fisher
Scientific, Waltham, MA, USA) using random hexamers, and reverse transcriptase (Super-
Script VILO cDNA Synthesis Kit, Thermo Fisher Scientific, Waltham, MA, USA). Real-time
quantitative PCR (RT-qPCR) for TLR2 (Hs02621280_s1), TLR6 (Hs01039989_s1), TRAF6
(Hs00939742_g1), IL6 (Hs00174131_m1), NLRP3 (Hs00918080_g1), SOD2 (Hs00167309_m1)
expression was performed using Assays-on-Demand Gene Expression assay (Thermo
Fisher Scientific, Waltham, MA, USA). GAPDH (Hs02758991_G1) was used as housekeep-
ing endogenous gene. Target mRNA expression was calculated as mean 2-∆Ctx100 value, in
which ∆Ct is the difference between target and housekeeping Ct. Real-time PCR reactions
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were performed in duplicate using ViiA7 Real-Time PCR System (Thermo Fisher Scientific,
Waltham, MA, USA), according to the manufacturer’s instructions.

Confocal microscopy analysis. Neuron-like SH-SY5Y cells, seeded on 13 mm coverslips
and exposed to RQ-MSA1, RQ-MSA2, RQ-PD1, RQ-PD2, αSv1, αSv2, αSv3, RQ- αSv1, RQ-
αSv2, RQ-αSv3 and related controls for 24 h, were fixed with 4% paraformaldehyde in PBS
(pH 7.0), permeabilized with 0.5% Triton-X100 in PBS, and incubated for 1 h in PBS- 5%BSA
2% NGS (blocking solution). TLR2 expression was detected with the mouse monoclonal
antibody anti-TLR2 (TL2.1, Invitrogen, Waltham, MA, USA) and α-synuclein was detected
with the mouse monoclonal antibody 4D6 (Abcam, Cambridge, UK), followed by Alexa
Fluor-555 donkey anti-mouse secondary antibody (Thermo Fisher Scientific). Alexa Fluor
488® phalloidin (Thermo Fisher Scientific, Waltham, MA, USA) was used to stain F-actin
(cytoskeleton). Nuclei were stained with 4′,6-diamidino-2-phenylindole (DAPI) (Thermo
Fisher Scientific, Waltham, MA, USA). Isotype control antibodies were used as negative
controls (non-specific background). Maximum projection images from 10-slice Z-stack
(300 nm step size) were acquired via confocal microscopy (C1/TE2000-E microscope; Nikon,
Tokyo, Japan) using 40× (NA 1.30) and 100× (NA 1.40) oil objectives; at least 5 adjacent
image fields were analyzed. Parameters for image acquisition were not modified to allow
the comparison of fluorescence intensity as a measure of relative quantification. Image
analysis was performed with Image J and FIJI software [42].

NO release analysis. NO production was determined by measuring the accumulation of
nitrite in the culture medium. Nitrite was assayed colorimetrically by a diazotization
reaction using the Griess reagent, composed of a 1:1 mixture of 1% sulfanilamide in
5% orthophosphoric acid and 0.1% naphtylethylenediamine dihydrochloride in water.
One hundred microliters of culture medium was mixed to 100 µL of Griess reagent in
a 96-multiwell plate and the O.D. at 550 nm was measured within 10 min. The nitrite
concentration in the samples was interpolated from a NaNO2 standard curve ranging from
0 to 100 µM. The limits of detection and quantification were 0.25 and 0.7 µM, respectively.

Multiparametric assay. A Bio-Plex ProTM Human Cytokine 27-plex Immunoassay
96-well kit (Bio-Rad Laboratory, Hercules, CA, USA) was used to measure the concen-
tration of pro- and anti-inflammatory cytokines, chemokines and growth factors in cells
stimulated with αSv1, αSv2 and αSv3. The immunoassay includes: gamma interferon
(IFNγ), interleukin-1β (IL1β), IL1 receptor antagonist (IL1ra), interleukin-2 (IL2), IL4, IL6,
IL9, IL15, IL17, tumor necrosis factor-alpha (TNFα), interferon gamma-induced protein
10 (IP10).

αSyn_RT-QuIC analysis of SH-SY5Y cell lysates stimulated with RQ-MSA, RQ-PD, αSv1,
αSv2 or αSv3. SH-SY5Y cells stimulated with RQ-MSA, RQ-PD, αSv1, αSv2 or αSv3 were
lysed as described in the section “Cell culture and stimulation” and analyzed by αSyn_RT-
QuIC. Five microliters of each lysate, named CS-RQ-MSA, CS-RQ-PD, CS-αS1, CS-αS2
or CS-αS3, respectively, was added to 95 µL of αSyn_RT-QuIC reaction mix that was
performed as described in αSyn_RT-QuIC analysis of olfactory mucosa samples. Final
reaction products were named RQ-CS-RQ-MSA1, RQ-CS-RQ-MSA2, RQ-CS-RQ-PD1, RQ-
CS-RQ-PD2, RQ-CS-αS1, RQ-CS-αS2 and RQ-CS-αS3.

PK digestion assays. Eight microliters of αSv1, αSv2 or αSv3 and all αSyn_RT-QuIC
products were subjected to limited proteolytic digestion with Proteinase K (PK, Invitrogen)
at the final concentration of 10 and 50 µg/mL, respectively. Digestions were performed
under shaking (500 rpm), at 37 ◦C for 60 min. PK activity was stopped by the addition of
LDS-PAGE loading buffer and boiling of the samples at 100 ◦C for 10 min.

Western blot analysis. Eight microliters of samples, either untreated or digested with
PK, were loaded into 12% Bolt Bis-Tris Plus gels (Invitrogen), subjected to SDS-PAGE and
transferred onto polyvinylidene difluoride (PVDF) membranes (Immobilon-P, Millipore,
Burlington, MA, USA). Membranes were first incubated with paraformaldehyde (0.4%
in PBS) for 30 min (under shaking) at room temperature and then blocked with non-fat
dry milk (5% in TBS with 0.05% Tween-20, TBST) for 60 min (under shaking) at room
temperature. Finally, membranes were immunoblotted with specific primary antibody
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directed against the N-terminal part of the protein (monoclonal AS08 358 Agrisera, Vän-
näs, Sweden: epitopes 1–15), overnight (under shaking) at 4 ◦C. After washing 3 times
with TBST, membranes were incubated with the secondary antibody conjugated with
horseradish peroxidase (Amersham donkey against rabbit IgG-HRP, diluted 1:2000 in TBST
supplemented with 5% non-fat dry), subjected again to 3 washes with TBST and developed
with chemiluminescent system (ECL Prime, cytiva). Reactions were visualized using a
G:BOX Chemi Syngene system (Syngene, Bangalore, India).

Dot blot analysis. Two microliters of each αSyn aggregate or final αSyn_RT-QuIC
products was diluted with 100 µL of PBS containing 0.1% Tween-20. Two microliters of
the diluted samples were loaded onto nitrocellulose membranes (0.2 µm pore) and, after
30 min, the membranes were blocked with non-fat dry milk (5% in TBST) for 60 min (under
shaking) at room temperature. Membranes were then incubated with a rabbit monoclonal
αSyn filament-specific antibody (Abcam ab209538, MJFR-14-6-4-2, diluted 1:5000 in 5%
BSA-PBS) for 60 min (under shaking) at room temperature. After washing 3 times with
TBST, the membranes were incubated with the secondary antibody (Amersham donkey
against rabbit IgG-HRP, diluted 1:10,000 in 5% BSA-PBS) for 60 min at room temperature.
After 3 washes in TBST, membranes were developed with chemiluminescent system (ECL
Prime) and reactions were visualized using a G:BOX Chemi Syngene system.

Transmission electron microscopy analyses. For transmission electron microscopy (TEM),
all αSyn aggregates were properly diluted in water and 10 µL of the final dilutions was
dropped onto 200-mesh Formvar-carbon coated nickel grids. After 30 min, the remaining
drop was dried using filter paper and the samples were negatively stained with 25%
Uranyl Acetate Replacement (UAR) for 10 min. Finally, the remaining staining solution was
removed with filter paper and the grids were air-dried for 15 min. Samples were analyzed
with a FEI Tecnai Spirit (FEI Company, Hillsboro, OR, USA), equipped with an Olimpus
Megaview G2 camera.

Statistical analyses. Data related to cell analyses were expressed as the mean ± SD of
two independent experiments. One-way ANOVA test, followed by Dunnett’s multiple
comparison test, was used to evaluate statistical differences; p-values were corrected
for multiple comparisons. p < 0.05 was considered statistically significant. GraphPad
Prism v8.0 was used to represent αSyn_RT-QuIC kinetics, to elaborate data and to perform
statistical analyses.

3. Results
3.1. αSyn_RT-QuIC Analysis of OM Samples and Biochemical Characterization of
Reaction Products

OM collected from MSA and PD patients (OM-MSA1, OM-MSA2, OM-PD1 and OM-
PD2) induced an efficient αSyn_RT-QuIC seeding activity while that of HC (OM-HC) did
not (Figure 1A). Final reaction products were digested with PK and analyzed by Western
blot using the AS08 358 antibody. As observed in our previous study [33], the αSyn_RT-
QuIC products generated by OM-MSA (RQ-MSA1 and RQ-MSA2) were considerably
more resistant to proteolytic digestion than those generated by OM-PD (RQ-PD1 and RQ-
PD2) (Figure 1B). Dot blot analysis performed with the MJFR antibody, which recognizes
fibrillary forms of α-synuclein, showed higher signal intensity in RQ-MSA1 and RQ-MSA2
samples than RQ-PD1 and RQ-PD2, thus suggesting that the aggregates possessed distinct
morphological properties (Figure 1C).
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Figure 1. (A) αSyn_RT-QuIC analysis of OM-MSA and OM-PD samples. OM-MSA1, OM-MSA2, 
OM-PD1 and OM-PD2 induced a seeding activity while OM-HC did not. Curves represented in the 
graph were obtained by plotting the average fluorescence intensities of each sample against time. 
(B) Western blot analysis of untreated or PK digested αSyn_RT-QuIC products, collected at 40 h. 
RQ-MSA1, RQ-MSA2, RQ-PD1 and RQ-PD2 showed similar signal intensities before digestion. RQ-
MSA1 and RQ-MSA2 were more resistant to PK digestion than RQ-PD1 and RQ-PD2. Blots were 
immunostained with the AS08 358 antibody. Number on the right indicates the molecular weight. 
(C) Dot blot analysis of αSyn_RT-QuIC products, collected at 40 h. Using the αSyn filament-specific 
MJFR antibody, RQ-MSA1 and RQ-MSA2 showed a more intense signal than RQ-PD1 and RQ-PD2. 

3.2. Inflammatory Profile of Neuronal-like SH-SY5Y Cells Exposed to αSyn_RT-QuIC Products 
Generated by OM-MSA and OM-PD 

Exposure of differentiated SH-SY5Y cells to RQ-MSA1, RQ-MSA2, RQ-PD1 and RQ-
PD2 for 24 h induced intracellular αSyn aggregation. The results obtained from RQ-MSA1 
and RQ-MSA2 were mediated and collectively named RQ-MSA while those obtained 
from RQ-PD1 and RQ-PD2 were mediated and collectively named RQ-PD. In particular, 
by immunofluorescence analysis, we have observed that cells cultured with RQ-MSA and 
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Figure 1. (A) αSyn_RT-QuIC analysis of OM-MSA and OM-PD samples. OM-MSA1, OM-MSA2,
OM-PD1 and OM-PD2 induced a seeding activity while OM-HC did not. Curves represented in
the graph were obtained by plotting the average fluorescence intensities of each sample against
time. (B) Western blot analysis of untreated or PK digested αSyn_RT-QuIC products, collected at
40 h. RQ-MSA1, RQ-MSA2, RQ-PD1 and RQ-PD2 showed similar signal intensities before digestion.
RQ-MSA1 and RQ-MSA2 were more resistant to PK digestion than RQ-PD1 and RQ-PD2. Blots were
immunostained with the AS08 358 antibody. Number on the right indicates the molecular weight.
(C) Dot blot analysis of αSyn_RT-QuIC products, collected at 40 h. Using the αSyn filament-specific
MJFR antibody, RQ-MSA1 and RQ-MSA2 showed a more intense signal than RQ-PD1 and RQ-PD2.

3.2. Inflammatory Profile of Neuronal-like SH-SY5Y Cells Exposed to αSyn_RT-QuIC Products
Generated by OM-MSA and OM-PD

Exposure of differentiated SH-SY5Y cells to RQ-MSA1, RQ-MSA2, RQ-PD1 and RQ-
PD2 for 24 h induced intracellular αSyn aggregation. The results obtained from RQ-MSA1
and RQ-MSA2 were mediated and collectively named RQ-MSA while those obtained from
RQ-PD1 and RQ-PD2 were mediated and collectively named RQ-PD. In particular, by
immunofluorescence analysis, we have observed that cells cultured with RQ-MSA and RQ-
PD showed the presence of clusters of αSyn aggregates mainly localized in the cytoplasm
(Figure 2, red), whereas cells exposed to unseeded αSyn_RT-QuIC reaction mix (RQ-no
seed) were characterized by a diffuse pattern of αSyn expression. The distribution and
amount of αSyn deposits were similar between RQ-MSA and RQ-PD exposed SH-SY5Y
cells (Figure 2, red) and no alterations in the structure of the cytoskeleton were observed,
as confirmed by F-actin staining (Figure 2, green).

Inflammatory effects were analyzed by means of RT-qPCR; SH-SY5Y cells exposed to
RQ-PD and RQ-MSA showed an increase in transcription levels of inflammatory mediators,
including TLR2, TLR6, TRAF6, IL6, NLRP3 inflammasome, and SOD2 (Figure 3). In
particular, cells stimulated with RQ-MSA showed a significantly higher expression levels
for TLR2 (RQ-MSA vs. RQ-no seed: p = 0.005; RQ-MSA vs. RQ-PD: p = 0.01) (Figure 3A),
TRAF6 (RQ-MSA vs. RQ-no seed: p < 0.0001; RQ-MSA vs. RQ-PD: p < 0.0001) (Figure 3C),
IL6 (RQ-MSA vs. RQ-no seed: p = 0.008; RQ-MSA vs. RQ-PD: p = 0.001) (Figure 3D), NLRP3
(RQ-MSA vs. RQ-no seed: p = 0.008; RQ-MSA vs. RQ-PD: p = 0.003) (Figure 3E), and
SOD2 (RQ-MSA vs. RQ-no seed: p = 0.01; RQ-MSA vs. RQ-PD: p = 0.0042) (Figure 3F) than
those stimulated with RQ-PD and RQ-no seed. Although upregulated, TLR6 (Figure 3B)
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expression levels did not reach statistical significance. Moreover, we have evaluated the
levels of nitrites and nitrates (generally referred to as NO) in culture supernatants and
found a significant increase of NO release in cells exposed to both RQ-MSA and RQ-PD
compared to unseeded αSyn_RT-QuIC reaction mix (RQ-MSA vs. RQ-no seed: p < 0.0001;
RQ-MSA vs. RQ-PD: p < 0.001; RQ-PD vs. RQ-no seed: p = 0.004) (Figure 3G). The
increased TLR2 expression in RQ-MSA and RQ-PD stimulated cells was further confirmed
by immunofluorescence analysis (Figure 3H).
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Figure 2. Intracellular αSyn aggregates in human differentiated neuroblastoma cells (SH-SY5Y)
stimulated with RQ-MSA and RQ-PD. Representative pictures of SH-SY5Y cells incubated with RQ-
MSA, RQ-PD (2.5 µM) or the unseeded αSyn_RT-QuIC reaction mix (RQ-no seed) were stained with
mouse monoclonal antibody against αSyn (4D6), followed by Alexa Fluor-555 donkey anti-mouse
secondary Abs (red) to show the presence of intracellular aggregates of αSyn. SH-SY5Y cells were
counterstained with fluorescently-conjugated Alexa-Fluor 488-Phalloidin (green) to highlight the
thin neurite-like cytoplasmic structures (cell-to-cell contacts) denoted by F-actin filaments. Scale
bar = 25 µm.

3.3. Generation and Morphological Characterization of Recombinant α-Synuclein Aggregates

To better investigate whether the αSynD strains responsible for MSA and PD might
have influenced the distinctive biochemical properties of RQ-MSA and RQ-PD, we de-
cided to generate three different artificial αSyn amyloid fibrils, named αSv1, αSv2 and
αSv3. These aggregates were produced starting from rec-αSyn that was incubated in three
different buffers without ThT (Table 1). To monitor the formation of αSyn fibrils in each
experimental condition, a group of samples was supplemented with ThT (Figure 4A). At
the end of the aggregation (monitored by ThT), samples were extensively characterized
from a biochemical and morphological point of view. In particular, αSv1 fibrils mostly
aggregated side-by-side, were sensitive to PK treatment and barely recognized by the
MJFR antibody (Figure 4B–D). In contrast, αSv2 fibrils were generally longer than those
of αSv1 and did not aggregate side-by-side but formed a net-like structure. In addition,
over-twists were detectable at regular intervals in most of the fibrils. These aggregates
were partially resistant to proteolytic digestion and four PK-resistant bands (migrating
between 3 and 14 kDa) were detected by Wb. The MJFR antibody well-interacted with
the sample (Figure 4B–D). Finally, αSv3 fibrils aggregated either side-by-side or by form-
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ing a net-like structure and many of them showed the presence of over-twists. We have
also observed the presence of some amorphous material that was not found in the other
samples (see arrows in Figure 4D). αSv3 was less resistant to enzymatic digestion than
αSv2 and two PK-resistant bands were observed at Wb, always migrating between 3 and
14 kDa. In this case, the MJFR antibody did not interact with the fibrils (Figure 4B–D).
The differences in PK resistance properties, biochemical profiles, affinity toward the MJFR
antibody, and TEM findings of αSv1, αSv2 and αSv3 demonstrated that we efficiently
generated distinct artificial aggregates of αSyn (Figure 4B–D, Table 1). Finally, αSv1, αSv2
and αSv3 were incubated with eight fluorescent probes which differently interacted with
the aggregates, hence confirming that they acquired distinct morphological properties
(Supplementary Figure S1).
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Figure 3. Analysis of inflammatory molecules in differentiated SH-SY5Y cells stimulated with RQ-
MSA, RQ-PD and RQ-no seed. RT-qPCR analysis of TLR2 (A), TLR6 (B), TRAF6 (C), IL6 (D), NLRP3
(E), SOD2 (F) transcripts in SH-SY5Y exposed to RQ-MSA, RQ-PD (2.5 µM), and RQ-no seed for 24 h
(mean± SD). (G) NO release (mean± SD) quantification through Griess’ reaction in the supernatants
of cells stimulated with RQ-MSA, RQ-PD and RQ-no seed. Statistical significance was assessed by
one-way ANOVA test with Dunnett’s multiple comparison test. Corrected p-values are reported in
the results section. * p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001. (H) Confocal microscopy analysis showed
increased TLR2 expression (red) in SH-SY5Y exposed to RQ-MSA and RQ-PD. Counterstaining
with Alexa-Fluor 488-Phalloidin (green) was performed to monitor the cytoskeleton structure that
appeared preserved in all experimental conditions. Scale bar = 25 µm.
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Table 1. Summary of the characteristics of recombinant α-synuclein variants.

αSyn Variant Aggregation Buffer Biochemical Properties of
the Fibrils

Morphological Properties of the Fibrils

Length Over-Twists Note

αSv1 H2O Completely digested
by PK Short No Arranged side-by-side

αSv2 5 mM Tris + 100 mM NaCl
Partially resistant to

digestion (4 PK resistant
bands detected)

Long
Yes, although few fibrils
without over-twists were

also found

Arranged in a
net-like structure

αSv3 5 mM Tris
Partially resistant to

digestion (2 PK resistant
bands detected)

Mainly short
Yes, although several

fibrils without over-twists
were also found

Arranged either side-by-side
or in a net-like structure.

Presence of
amorphous material
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Figure 4. (A) Kinetics of αSv1, αSv2 and αSv3 aggregation. Rec-αSyn was induced to aggregate
in H2O (αSv1, light grey line), 5 mM Tris and 100 mM NaCl (αSv2, dark grey line) or 5 mM Tris
(αSv3, black line), under continuous shaking, and the aggregation was monitored with the use of
ThT. Curves represented in the graph were obtained by plotting the average fluorescence intensities
of each sample against time. (B) Western blot analysis of untreated or PK digested αSv1, αSv2 and
αSv3. Before aggregation, the rec-αSyn was completely digested, regardless of the reaction buffer.
After aggregation, αSv1 was completely digested by PK, αSv2 showed four PK-resistant bands while
αSv3 showed two PK-resistant bands. Samples were immunoblotted with the AS08 358 antibody.
Number on the right indicates the molecular weight. (C) Dot blot analysis of αSv1, αSv2 and αSv3
using MJFR antibody. As expected, before aggregation, MJFR did not recognize αSyn fibrils. After
aggregation, αSv1 and αSv2 fibrils were recognized by MJFR (although with different affinity) while
αSv3 fibrils did not. (D) TEM analysis of αSv1, αSv2 and αSv3. TEM analysis showed that αSv1,
αSv2 and αSv3 possessed different morphological features. Arrows indicate amorphous material
found together with αSv3 fibrils. Scale bar = 200 nm.
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3.4. αSyn_RT-QuIC Analysis of Recombinant α-Synuclein Aggregates and Characterization of
Final Reaction Products

αSv1, αSv2 and αSv3 were subjected to αSyn_RT-QuIC analysis to test whether they
could transmit their specific morphological features to the reaction substrate. All aggregates
induced a seeding activity (Figure 5A), even when tested at very low dilutions (attograms)
(Supplementary Figure S2). This finding showed that traces of αSv1, αSv2 and αSv3
triggered rec-αSyn aggregation with an efficiency similar to that of OM samples. How-
ever, although the αSv1, αSv2 and αSv3 were characterized by distinctive features, their
αSyn_RT-QuIC reaction products (named RQ-αSv1, RQ-αSv2 and RQ-αSv3, respectively)
did not retain these properties and showed similar PK resistant bands at Wb. Notably,
aggregates were also found in RQ-no seed and their biochemical properties were compara-
ble to those of RQ-αSv1, RQ-αSv2 and RQ-αSv3 (Figure 5B). In particular, we observed
four bands in each sample, migrating between 3 and 14 kDa. In addition, MJFR antibody
recognized with similar affinity RQ-αSv1, RQ-αSv2, RQ-αSv3 and RQ-no seed (Figure 5C).
Therefore, while OM-MSA and OM-PD samples were able to generate αSyn_RT-QuIC
products with distinctive properties, the in vitro generated αSv1, αSv2 and αSv3, although
characterized by different morphological features, did not. For this reason, we hypothe-
sized that only the αSynD strains present in OM samples and likely other tissue factors
(e.g., microbiota [43]) could markedly influence the misfolding process of rec-αSyn and the
biochemical and morphological features of the RT-QuIC products. Hence, αSv1, αSv2 and
αSv3 produced from rec-αSyn, lacked peculiar features which are present in the natural
α-synuclein strains (e.g., phosphorylation) that could play a role in this process.
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Figure 5. (A) αSyn_RT-QuIC analysis of αSv1, αSv2 and αSv3. Minute amounts (1.5 ag) of αSv1,
αSv2 and αSv3 were tested in αSyn_RT-QuIC and induced an efficient seeding activity, with respect
to the control (no seed). Curves represented in the graph were obtained by plotting the average
fluorescence intensities of each sample against time. (B) Western blot analysis of untreated or PK
digested αSyn_RT-QuIC products, collected at 30 h. RQ-αSv1, RQ-αSv2, RQ-αSv3 and RQ-no seed
showed similar signal intensities before digestion. After PK treatment, all samples showed similar
resistance to digestion and comparable biochemical profiles (AS08 358 antibody). Number on the
right indicates the molecular weight. (C) Dot blot analysis of αSyn_RT-QuIC products, collected at
30 h. Dot blot analysis performed using the MJFR antibody showed the presence of a strong signal in
all samples.
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3.5. Inflammatory Profile of SH-SY5Y Cells Exposed to αSv1, αSv2, αSv3 and Their
αSyn_RT-QuIC Reaction Products

As RQ-MSA and RQ-PD induced distinct inflammatory responses in neuron-like
SH-SY5Y cells, we then evaluated the inflammatory effects of αSv1, αSv2, αSv3 and their
αSyn_RT-QuIC reaction products in the same cellular model. This experiment was aimed at
demonstrating a correlation between the biochemical/morphological features of the αSyn
aggregates and the inflammatory responses observed in cells. In particular, we performed
RT-qPCR analyses of selected inflammatory mRNAs in cells exposed to αSv1, αSv2, and
αSv3 or to their reaction buffers (devoid of rec-αSyn) as controls (Figure 6). The analysis
showed differential expression of TLR2, TLR6, TRAF6 and IL6 transcripts. Since SH-SY5Y
cells stimulated with all the three control buffers showed analogous responses, the H2O
condition was chosen as representative control (CTRL). In particular, the expression of
TLR2 was significantly higher in cells exposed to αSv3 than those exposed to αSv1 and
αSv2 (αSv3 vs. αSv2: p < 0.0001; αSv3 vs. αSv1: p < 0.0001) or control (αSv3 vs. CTRL:
p < 0.0001) (Figure 6A) and this increase was also confirmed at protein level by confocal
microscopy analysis (Figure 6F, red color); the expression of TLR6 was found higher in
cells exposed to αSv2 and αSv3 than those exposed to αSv1 or CTRL. These differences
were statistically significant (αSv1 vs. αSv2: p = 0.002; αSv1 vs. αSv3: p < 0.0001; αSv2
vs. αSv3: p = 0.03; αSv2 vs. CTRL: p = 0.003; αSv3 vs. CTRL: p < 0.0001) (Figure 6B);
with respect to the cells challenged with control buffers, the expression of TRAF6 was
significantly higher only in those exposed to αSv2 and a statistically significant difference
was also found between αSv2 and αSv3 stimulated cells (p = 0.017) or CTRL (p = 0.013)
(Figure 6C); finally, a statistically significant increase of IL6 was observed in all stimulated
cells compared to controls (αSv1 vs. CTRL: p = 0.0002; αSv2 vs. CTRL: p < 0.0001; αSv3 vs.
CTRL: p = 0.007). Among challenged cells, a statistically significant difference was observed
only between αSv2 and αSv3 (p = 0.0007) (Figure 6D). We have then analyzed a panel of
pro-inflammatory mediators via multiparametric assays in the supernatants of stimulated
cells and found a general upregulation of IFNγ, IL1β, IL1ra, IL2, IL4, IL6 IL9, IL15, IL17,
IP10 and TNFα with respect to CTRL (Supplementary Figure S3). Finally, we have assessed
the production of NO (Figure 6E) which was found increased with respect to the controls
but not significantly different among αSv1, αSv2, αSv3 (αSv1 vs. CTRL: p = 0.0002; αSv2
vs. CTRL: p < 0.0001; αSv3 vs. CTRL: p = 0.0004). No alterations in the structure of the
cytoskeleton of stimulated cells were detected, as confirmed by F-actin staining (Figure 6F,
green color). Finally, accumulation of α-synuclein was observed in all stimulated cells,
and the highest signal intensity was observed in those challenged with αSv3 (Figure 7,
red color). Regarding the cells stimulated with RQ-αSv1, RQ-αSv2, RQ-αSv3, respectively,
we have found analogous expression levels of inflammatory mediators, including TLR2,
TLR6, TRAF6, and IL6 that were higher than those of cells stimulated with CTRL (Figure 6).
However, these differences did not reach a statistical significance. In contrast, we have
observed a significantly higher production of NO in cells stimulated with RQ-αSv1, RQ-
αSv2, and RQ-αSv3 compared to the control (RQ-αSv1 vs. CTRL: p < 0.0001; RQ-αSv2
vs. CTRL: p < 0.0001; RQ-αSv3 vs. CTRL: p < 0.0001). However, although we did not
observe significantly different inflammatory responses in cells stimulated with RQ-αSv1,
RQ-αSv2, and RQ-αSv3, immunofluorescence analysis revealed that cells stimulated with
RQ-αSv3 showed higher amount of αSyn aggregates than the others. Remarkably, higher
accumulation of αSyn was also observed in cells stimulated with αSv3 (Figure 7, red color).
Thus, even if the biochemical profiles of αSv3 and RQ-αSv3 differed between each other,
both samples showed stronger seeding activity for αSyn when challenged in SH-SY5Y cells.
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Figure 6. Analysis of inflammatory molecules in differentiated SH-SY5Y cells stimulated with αSv1,
αSv2, αSv3 and their αSyn_RT-QuIC reaction products (RQ-αSv1, RQ-αSv2, and RQ-αSv3). RT-qPCR
analysis of TLR2 (A), TLR6 (B), TRAF6 (C), IL6 (D) showed an upregulation of the inflammatory
mediators transcript levels in cells stimulated with αSv1, αSv2, αSv3 but not in those stimulated
with RQ-αSv1, RQ-αSv2, and RQ-αSv3. (E) NO quantification in the supernatants of cells stimulated
with αSv1, αSv2, αSv3, RQ-αSv1, RQ-αSv2, and RQ-αSv3 and related control buffers. A significant
increase in NO release was found only in αSv1, αSv2, αSv3, RQ-αSv1, RQ-αSv2, and RQ-αSv3
stimulated cells. Values are expressed as mean ± SD. Statistical significance was assessed by one-way
ANOVA test with Dunnett’s multiple comparison test. Corrected p-values are reported in the results
section. * p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001. (F) Immunofluorescence analysis of TLR2 expression
(red) in SH-SY5Y treated cells or in control condition showing an increase in protein expression in
all SH-SY5Y stimulated cells that was more intense in those challenged with αSv3. Counterstaining
with Alexa-Fluor 488-Phalloidin (green) was performed to monitor the cytoskeleton structure. Bar
scale = 25 µm.

3.6. αSyn_RT-QuIC Analysis of Lysates from Cells Stimulated with αSv1, αSv2, αSv3 and
RQ-MSA and RQ-PD

The lack of biochemical differences among RQ-αSv1, RQ-αSv2, RQ-αSv3 could be due
to the artificial nature of αSv1, αSv2, and αSv3, as previously mentioned. For this reason,
the αSyn aggregates formed in SH-SY5Y cells stimulated with αSv1, αSv2, αSv3 (CS-αSv1,
CS-αSv2, and CS-αSv3, respectively) were subjected to αSyn_RT-QuIC analysis considering
that their composition might be more similar to that of the natural αSynD strains (e.g.,
presence of phosphorylation). Indeed, it has already been shown that the stimulation
of SH-SY5Y cells with PFFs induced intracellular accumulation of phosphorylated αSyn,
which is similar to that aggregating in the brains of patients with α-synucleinopathies [44].
All samples induced an efficient seeding activity with respect to the control (CS-CTRL).
Notably, the kinetics of rec-αSyn aggregation stimulated by αSv3 (Figure 4A) and CS-
αSv3 (Figure 8A) were found to be less efficient compared to the other samples. The final
αSyn_RT-QuIC products generated by CS-αSv1, CS-αSv2, CS-αSv3 and CS-CTRL (named
RQ-CS-αSv1, RQ-CS-αSv2, RQ-CS-αSv3 and RQ-CS-CTRL, respectively) were subjected
to Wb analysis after PK digestion and showed the presence of three PK resistant bands,
thus confirming the lack of biochemical differences among specimens (Figure 8B). Dot blot
analysis revealed that the MJFR antibody was able to bind all the aggregates with similar
affinity, sustaining that they all possessed similar morphological properties (Figure 8C).
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Figure 7. Intracellular αSyn aggregates in SH-SY5Y cells stimulated with αSv1, αSv2, αSv3 and their
αSyn_RT-QuIC reaction products (RQ-αSv1, RQ-αSv2, and RQ-αSv3). SH-SY5Y cells, stimulated
with αSv1, αSv2, αSv3, RQ-αSv1, RQ-αSv2, RQ-αSv3 (2.5 µM for 24 h) and control (CTRL), were
stained for αSyn (red) to visualize the cellular aggregates. With respect to CTRL, all stimulated
SH-SY5Y cells showed clusters of αSyn aggregates that were more abundant in those challenged
with both αSv3 and RQ-αSv3. Cells were counterstained with Alexa-Fluor 488-Phalloidin (green)
to highlight the thin neurite-like cytoplasmic structures (cell-to-cell contacts) denoted by F-actin
filaments. The cytoskeleton of the cells was preserved, regardless of the presence of αSyn aggregates.
Scale bar = 25 µm.

These findings demonstrate that even the αSyn aggregates produced in cells were
not able to imprint distinctive features to the αSyn_RT-QuIC products. However, we
have noticed a difference between the biochemical profiles of RQ-αSv1, RQ-αSv2, RQ-
αSv3 (Figure 4B) and those of RQ-CS-αSv1, RQ-CS-αSv2 and RQ-CS-αSv3 (Figure 8B).
Finally, we have decided to test whether the lysates of cells stimulated with RQ-MSA and
RQ-PD were still able to trigger rec-αSyn aggregation by αSyn_RT-QuIC and investigate
their biochemical properties. As control, we have used cells stimulated with unseeded
αSyn_RT-QuIC reaction mix. These samples were named CS-RQ-MSA, CS-RQ-PD and
CS-RQ-CTRL, respectively and, except the control, efficiently seeded the aggregation of
rec-αSyn (Figure 9A). Surprisingly, the biochemical profiles of the αSyn_RT-QuIC products
were similar among each-others but those generated by CS-RQ-MSA were more resistant
than those generated by CS-RQ-PD (Figure 9B). Such a different sensitivity toward PK
digestion of MSA and PD generated samples was also observed in RQ-MSA and RQ-
PD (Figure 1B). However, the biochemical profiles of resulting αSyn_RT-QuIC products
obtained from both experimental conditions have changed, suggesting that the passage in
cells might have further modified the αSynD strain properties of MSA and PD. Dot blot
analysis revealed that the MJFR antibody was able to bind all the aggregates with similar
affinity (Figure 9C).
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Figure 8. (A) αSyn_RT-QuIC analysis of CS-αSv1, CS-αSv2 and CS-αSv3. All samples triggered a
seeding activity when tested by αSyn_RT-QuIC. Curves represented in the graph were obtained by
plotting the average fluorescence intensities of each sample against time. (B) Western blot analysis of
untreated or PK digested αSyn_RT-QuIC products, collected at 60 h. Undigested samples showed the
same biochemical profiles. PK treatment of αSyn_RT-QuIC products (RQ-CS-αSv1, RQ-CS-αSv2 and
RQ-CS-αSv3 and RQ-CS-CTRL) showed that the samples were characterized by similar biochemical
profiles, resulting in the formation of three PK resistant bands migrating between 3 and 14 kDa.
Membranes were immunoblotted with the AS08 358 antibody. Number on the right indicates the
molecular weight. (C) Dot blot analysis of αSyn_RT-QuIC products, collected at 60 h. Dot blot analysis
performed using the MJFR antibody showed the presence of a strong signal in all the samples.
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Figure 9. (A) αSyn_RT-QuIC analysis of CS-RQ-MSA and CS-RQ-PD. All samples were tested by
αSyn_RT-QuIC and induced an efficient seeding activity with respect to the control (CS-RQ-CTRL).
Curves represented in the graph were obtained by plotting the average fluorescence intensities of
each sample against time. (B) Western blot analysis of untreated or PK digested αSyn_RT-QuIC
products, collected at 30 h. Undigested samples showed the same biochemical profiles. Western
blot analysis of PK digested RQ-CS-RQ-MSA1 and RQ-CS-RQ-MSA2 showed higher resistance to
proteolytic digestion than RQ-CS-RQ-PD1 and RQ-CS-RQ-PD2. Membranes were immunoblotted
with the AS08 358 antibody. Number on the right indicates the molecular weight. (C) Dot blot
analysis of αSyn_RT-QuIC products, collected at 30 h. Dot blot analysis performed using the MJFR
antibody showed the presence of a strong signal in all samples.
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4. Discussions

MSA and PD are neurodegenerative diseases caused by different strains of αSynD.
Variations in the aberrant structure of αSynD are believed to give the protein disease-
specific pathological features, including the capability to activate distinct inflammatory
pathways. In 2019, we have shown that OM samples collected from patients with MSA and
PD were able to seed αSyn_RT-QuIC reaction, leading to the formation of distinct αSyn
aggregates, named RQ-MSA and RQ-PD. Notably, RQ-MSA samples were more resistant
to PK digestion than RQ-PD.

In this work, we have demonstrated that RQ-MSA and RQ-PD induced different
levels of inflammatory responses when challenged in neuronal-like differentiated SH-SY5Y
cells. Other than confirming their ability to seed the aggregation of endogenous αSyn,
RQ-MSA elicited a significant increase in the transcription levels of several inflammatory
mediators, including TLR2, TRAF6, IL6, NLRP3, SOD2 than those activated by RQ-PD
and controls. Notably, the level of transcription factors activated in cells stimulated with
RQ-PD was slightly higher than that of cells stimulated with control, but this difference
was not statistically significant. This indicates that RQ-PD possesses less inflammatory
features than RQ-MSA, even though both samples induced a significant increase of NO
release in stimulated cells compared to controls.

These findings suggested the existence of a link between the morphology of the
aggregates and their inflammatory properties. Since the OM samples contain several
components, besides αSynD, that could have influenced the misfolding of rec-αSyn, we
have decided to evaluate to what extent the aberrant structures of αSynD could have
impacted this process. Hence, we have produced three different aggregates of αSyn (αSv1,
αSv2, αSv3) starting from the same rec-αSyn. The aim of this experiment was to generate,
in a controlled environment, artificial αSyn seeds, resembling to some extent the αSynD

strains present in OM, and test their behavior by αSyn_RT-QuIC without the presence of
specific tissue factors. Although capable to efficiently seed rec-αSyn aggregation, αSv1,
αSv2, and αSv3 did not transmit their seed-specific properties to the reaction products
which showed comparable biochemical properties, instead. Probably, our experimental
setting was too artificial to properly recapitulate the phenomenon of the seeding effect
exerted by αSynD in αSyn_RT-QuIC.

However, when used to stimulate SH-SY5Y cells, αSv1, αSv2, and αSv3 acted on differ-
ent activators of inflammatory pathways, thus strengthening the existence of a correlation
between morphological and inflammatory properties of αSyn fibrils. All stimulated cells
showed aggregates of endogenous αSyn that could be more similar to the αSynD present
in OM samples with respect to the artificial αSv1, αSv2, and αSv3. For this reason, we have
lysed the cells and tested the lysates by αSyn_RT-QuIC to verify whether they could seed
the reaction and generate final products eventually showing distinctive biochemical prop-
erties. Although the cell-derived aggregates were able to seed the reaction, resulting αSyn
fibrils (named RQ-CS-αSv1, RQ-CS-αSv2, and RQ-CS-αSv3) showed similar biochemical
properties. Notably, by comparing the biochemical profiles of the αSyn_RT-QuIC products
generated by αSv1, αSv2, and αSv3 (RQ-αSv1, RQ-αSv2, RQ-αSv3) with those obtained
from cells stimulated with them (RQ-CS-αSv1, RQ-CS-αSv2, and RQ-CS-αSv3), we have
observed that the number of PK resistant αSyn bands were different. In particular, four
bands were found in the first case and three bands in the second one. This finding indicates
that the aggregates generated in cells, hence in a more physiological environment, might
have acquired conformations that were slightly different from that of αSv1, αSv2, and αSv3.
Therefore, the properties of these αSyn aggregates (e.g., presence of post-translational mod-
ifications), the existence of specific cellular components (e.g., different microenvironments),
or both, might have influenced the biochemical properties of the final αSyn_RT-QuIC
products further sustaining that they could depend on several factors, not only on the
structure and composition of the original αSyn seeds.

Unfortunately, we did not have enough OM samples for a direct stimulation of the
cells that were stimulated with RQ-MSA and RQ-PD, instead. Cells were then lysed and
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lysates subjected to αSyn_RT-QuIC analysis. All samples were able to seed the aggregation
of rec-αSyn and final reaction products (RQ-CS-RQ-MSA and RQ-CS-RQ-PD) did not
show distinct biochemical profiles but, surprisingly, those generated from RQ-MSA were
again more resistant to PK digestion than those generated by RQ-PD. Also in this case, the
passage in cells has partially altered the biochemical features of RQ-MSA and RQ-PD. For
this reason, we can assume that passaging of αSyn aggregates in cells might alter their
original features, regardless of the origins (artificial vs. natural).

Our study, although performed on a limited number of samples, showed that there
might be an association between the aberrant conformations of the αSyn aggregates and
the inflammatory responses that they are capable to induce in SH-SY5Y stimulated cells. It
is important to verify whether the inflammatory pathways altered in RQ-MSA and RQ-PD
stimulated cells might resemble those eventually altered by αSynD responsible for MSA and
PD. If this was the case, stimulation of cells with OM generated αSyn_RT-QuIC aggregates
can be exploited to study the molecular events associated with αSyn misfolding and aggre-
gation in vitro and eventually identify novel disease-specific therapeutic targets. Finally, we
have observed that not only the structure of these aggregates, but also other environmental
factors might play a role in modulating the final properties of the αSyn_RT-QuIC reaction
products. Hence, the discovery of specific environmental modulators involved in αSynD

misfolding in MSA and PD might further help to plan innovative targeted therapies.
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Multiparametric analysis of inflammatory mediator production from stimulated SH-SY5Y.
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