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Abstract: Fragile X syndrome (FXS) is the most common inherited cause of autism and intellectual
disability. The majority of FXS cases are caused by transcriptional repression of the FMR1 gene
due to epigenetic changes that are not recapitulated in current animal disease models. FXS patient
induced pluripotent stem cell (iPSC)-derived gene edited reporter cell lines enable novel strategies
to discover reactivators of FMR1 expression in human cells on a much larger scale than previously
possible. Here, we describe the workflow using FXS iPSC-derived neural cell lines to conduct a
massive, unbiased screen for small molecule activators of the FMR1 gene. The proof-of-principle
methodology demonstrates the utility of human stem-cell-based methodology for the untargeted
discovery of reactivators of the human FMR1 gene that can be applied to other diseases.

Keywords: fragile X syndrome; drug screen; human pluripotent stem cells; FMR1; gene reactivation;
small molecule

1. Introduction

Fragile X syndrome (FXS) is the most common inherited cause of autism spectrum
disorder and intellectual disability, affecting an estimated 1 in 5000 males in the general
population [1]. The neuropsychiatric symptoms and sequelae of FXS, including social
anxiety, hyperactivity, developmental delay, autism symptoms, and seizures, typically cause
the greatest medical, social, and financial burden for affected individuals and families [2,3].
The neuropsychiatric endophenotype of FXS is attributable to the loss of expression of
the FMR1 gene during development. In almost all cases, this loss of expression is due
to an expansion of a CGG trinucleotide repeat region in the 5′ UTR of the FMR1 gene to
>200 copies. This expanded CGG region subsequently leads to CpG hypermethylation,
histone modification, and transcriptional repression of the FMR1 gene [4–6]. FMR1 encodes
the FMRP translational regulator 1 protein (also called FMRP), an RNA-binding protein that
is highly expressed in the brain [7] and canonically functions by regulating the translation
of a large number of target genes [8].
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There are currently no specific pharmacological interventions for FXS. Preclinical work
using FXS murine models has yielded valuable insight into the dysfunction of specific
cellular processes associated with FMRP loss [9–12] and has largely guided interventional
strategies up to this point. However, despite promising preclinical results in FXS animal
models [13–15], clinical trials have shown modest results or failed to meet primary outcome
measures [16–26]. The mixed results of these trials underscore an opportunity for new
approaches to identify novel treatment targets for FXS [17].

Human cell-based strategies for treatment target discovery address some of the limita-
tions of traditional animal model-based approaches [27,28]. Human induced pluripotent
stem cells (iPSCs) recapitulate the hallmark epigenetic pathogenesis of FXS, harboring
the full FXS CGG expansion mutation and exhibiting FMR1 CpG hypermethylation and
drastically reduced FMR1 mRNA expression. Neural progenitor cells (NPCs) and neu-
rons differentiated from FXS patient-derived cells retain their CpG methylation status and
reduced FMR1 mRNA [29,30].

Targeted screens for FMR1-reactivating treatments using FXS iPSCs and derived
NPCs have confirmed or identified de-novo several small molecules capable of increas-
ing FMR1 expression in mitotic cells [31–33]. Molecules capable of reactivating FMR1
expression, including DNA methyltransferase inhibitors such as 5-azacytidine and its
derivatives [34], a histone deacetylase inhibitor [31], and a histone methyltransferase in-
hibitor (3-deazaneplanocin) [32], were identified from these and previous studies. However,
these pharmacological agents all share a common mechanism of action based on blockade
of DNA methylation or deacetylation during cell replication. The efficacy of these agents is
cell cycle-dependent, with the major effects occurring only during the S phase [35,36]. Small
molecules capable of reactivating FMR1 expression in post-mitotic neurons, the primary
target cell type responsible for FXS symptomatology, will likely demonstrate an alternative
mechanism of action and will be required for inclusion in future targeted screening studies.

Many iPSC drug screens rely on mRNA, protein, or morphological analysis as readouts
that are often characterized by low reproducibility and high variability and are time-
consuming. The identification of compounds that reactivate FMR1 in iPSC-derived neural
progenitors have relied on antibodies to detect FMRP, which are limited in signal-to-
background ratio, time-consuming, and expensive [31,33]. The use of a direct reporter line
provides a more robust, simpler, and more economical assay that can be readily adapted to
high throughput screening.

Recently, Nano luciferase FMR1 (FMR1-Nluc) reporter iPSC lines from FXS patients
were generated using CRISPR/Cas9 gene-editing strategies [30,37]. These reporter iP-
SCs can be differentiated into neural lineage cells, provide a highly sensitive readout of
FMR1 expression, and can be scaled to test thousands of candidate treatments simulta-
neously [30,38], making them an ideal tool to perform large, unbiased screens for novel
reactivators of FMR1 expression. In the present study, we used an FXS FMR1 reporter
line [30,37] to optimize and conduct an untargeted screen of over 320,000 small molecules
for FMR1 reactivation (Figure 1). We demonstrate the utility of human stem cell-based
platforms for drug discovery by describing the workflow for the largest unbiased molecular
screen for the reactivation of the FMR1 gene published to date.
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2. Materials and Methods
2.1. FMR1-Nano Luciferase Reporter Cell Lines

Human FXS iPSC stem cell lines (FXS-iPSCs) used to establish FMR1 reporter lines
have been described previously (FX13-2, >435 CGG repeats) [29]. The generation of the
FMR1 P2A-Nano luciferase (P2A-Nluc) reporter line has been previously described in
full [30,37] using the same strategy as described [39]. Briefly, using CRISPR/Cas9 genome
editing, a P2A-Nluc gene from the pNL1.1 template plasmid (Promega, Madison, WI,
USA) was inserted at the endogenous FMR1 locus of FXS-iPSCs, downstream of the CGG
expansion region. The reporter line maintains the CGG repeats, methylation status, and
FMR1 expression status of the parental line [30]. FX-iPSC-Nluc1 iPSCs were maintained on
a MEF feeder layer (WiCell) in an hESC medium of DMEM/F12 (Thermo Fisher, Waltham,
MA, USA), 20% KnockOut™ serum replacement (Thermo Fisher, Waltham, MA, USA),
1 mM L-glutamine (Thermo Fisher, Waltham, MA, USA), 100 µm 2-mercaptoethanol (Sigma,
St. Louis, MO USA), and 4 ng/mL human recombinant FGF-2 (Waisman Biomanufacturing),
changed daily.

2.2. iPSC Neural Differentiation

For differentiation of iPSCs into neural progenitor cells, an established dual SMAD
inhibition method [40] was used as previously modified [30]. Reporter NPCs were main-
tained on Matrigel (Corning) coated plates in NPC media of Neurobasal™ (Thermo Fisher,
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Waltham, MA, USA), 1× GlutaMAX (Gibco, Waltham, MA, USA), 1% N2 (Thermo Fisher),
0.5% B27 without vitamin A (Thermo Fisher), 10 ng/mL human recombinant FGF-2, and
1× antibiotic-antimycotic (Gibco, Waltham, MA, USA). An amount of 10 µm ROCK in-
hibitor (Y-27632 dihydrochloride, Tocris) was added to media during passaging with
TrypLE Express (Thermo Fisher, Waltham, MA, USA) and washed out the subsequent day.
Reporter NPCs were passaged once 100% confluent and were discarded after 35 passages
from iPSC differentiation. Detailed methods are described in [38].

2.3. Immunocytochemistry and Fluorescence Imaging

After 4 days in vitro, NPCs were fixed in 4% paraformaldehyde for 15 min at room
temperature. Following three washes with 1× PBS, cells were permeabilized and blocked
with blocking reagent (3% normal goat serum (NGS), 0.1% Triton X-100, in 1× PBS) for
30 min at room temperature. Primary antibodies (Rabbit anti-Nestin 1:1500 Abcam #5968)
were applied in 3% NGS in 1× PBS overnight at 4 ◦C in a humidified chamber. Following
three 10 min washes with 1× PBS, secondary antibodies (goat anti-rabbit Alexa flour
546, Thermo Fisher) were applied in 3% NGS in 1× PBS for 60 min at room temperature.
Coverslips were washed in 1× PBS three times for 10 min with 1 µM DAPI added during
the second wash to counterstain cell nuclei. Images were acquired using an AxioImagerZ2
ApoTome confocal microscope (Zeiss, Oberkochen, Germany).

2.4. High Throughput Drug Screen

Detailed methods for the development and optimization of the drug screen assays
have been described previously [30,38]. 5-Aza-DC is currently the most effective known
small molecule treatment to reactivate FMR1 in FXS cells [32] and was used as the positive
control condition for all the present experiments. For the present high throughput (HT)
drug screen experiments, confluent reporter NPCs were dissociated and prepared as a
single cell suspension. Immediately prior to plating, HT screen media was prepared
by adding 10 µM ROCK inhibitor and 0.05 mg/mL Matrigel to cold NPC media. The
single-cell suspension of reporter NPCs was added to cold HT screen media to a final
concentration of 1500–3000 cells per 5 µL and was immediately plated onto clear-bottom
1536-well tissue culture plates (Corning, Corning, NY, USA). The cell number was adjusted
slightly to obtain a consistent Nano-Glo response since different passages of the reporter
line proliferated at slightly different rates. After 16 h, the test compounds, 0.1% DMSO
(negative control), and 0.3 µM 5-aza-2′-deoxycytidine (5-Aza-DC, positive control) were
added to screening plates at the nL scale using acoustic liquid transfer with the Echo
550 liquid-handling instrument (Labcyte, San Jose, CA, USA). NPCs were incubated with
test molecules for an additional 72 h before being assayed. FMR1 reporter expression was
measured using the Nano-Glo®Luciferase Assay System (Promega, Madison, WI, USA)
according to manufacturer instructions. Luciferase activity was measured on a PheraStar
FS plate reader (BMG LABTECH, Ortenberg, Germany).

2.5. Cell Viability Assay

Cell viability was measured using the CellTiter-Glo®Luminescent Cell Viability Assay
(Promega, Madison, WI, USA) according to manufacturer instructions. Luminescence was
measured using a PheraStar FS plate reader.

2.6. Small Molecules

The NIH’s Molecular Libraries Probe Production Centers Network (MLPCN) small
molecule screening library was used for the main primary screen. The MLPCN library
contains over 320,000 compounds and was compiled for large-scale screening projects
across a wide range of biological areas (National Center for Biotechnology Information,
2010). No compounds in the MLPCN library have been shown to affect FMR1 expression
in previous studies.
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A total of 135 candidate molecules were obtained from commercial vendors
(Supplementary Table S1).

2.7. Data Analysis

For primary and secondary screens, Z’ (formula below) was used as an indicator of
assay quality for each test plate.

σ = standard deviation, µ = mean

Z′ = 1− 3 ∗ (σPositiveCtl + σNegativeCtl)
|µPositiveCtl − µNegativeCtl|

Assay Relative Light Unit (RLU) values were converted to % mean plate positive
control. Response cut-offs to identify “hits” were 10% and 5% of the mean positive control
response for the primary and secondary screens, respectively.

For confirmatory testing experiments, one-way analyses of variance were performed at
each time point or concentration as an omnibus test of differences in mean response across
all treatment conditions. Tukey’s honest significance tests were subsequently run to assess
mean differences between each individual pair of treatment conditions. When quantifying
differences in treatment group means, the Tukey multiple comparison of means and 95%
confidence family-wise confidence level are reported. A critical α of 0.05 defined statistical
significance, and all statistical tests were two-sided unless otherwise noted. Statistical
analyses were conducted in R (Version 3.5.1) [41].

3. Results
3.1. Primary Screen of Compounds for Reactivation at the FMR1 Locus in FXS NPCs

FXS NPCs (Figure 2A) were used in the primary screen (Figure 2B) to test a total of
320,587 unique small molecules for reporter activity. Each molecule was tested singularly
at a concentration of 12.5 µM, and plate Z’ was used as a robust quality control measure. A
quality threshold of 0.20 plate Z’ (mean (min, SD) plate Z’ for entire primary screen = 0.49
(0.20, 0.13)) and response threshold of 10% mean plate 5-Aza-DC reporter activity were used
to identify candidate molecules for follow-up testing (Figure 2C). This response threshold
was chosen to identify a feasible number of candidate molecules for secondary screening
while providing reasonable protection against false positives. Since the screen was for
activation, the chance of false-positive results was significantly lower than would be the
case for inhibitor screens. As such, the modest Z’ cutoff of 0.2 was deemed acceptable.
This activity threshold was equivalent to 6.7 SD above the mean DMSO response across
all primary screening plates. A total of 287 unique novel small molecules (0.09% of all
molecules tested) exceeded quality and response thresholds and were considered for the
confirmatory validation screen.

3.2. Selection of Candidate Molecules

Candidate molecules were next selected for the confirmatory validation screen
(Figure 3). All validation experiments were carried out in triplicate. All 287 molecules
identified in the primary screen were first screened for pan-assay interference [42] using the
Free ADME-Tox Filtering Tool (FAFDrugs4) [43]. Eleven molecules were flagged for likely
assay interference and excluded from subsequent analysis. Of the remaining 276 molecules,
135 candidate molecules were located from commercial vendors (Supplementary Table S1)
and included in the secondary screen.
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Figure 2. Primary screen for small molecules capable of reactivating FMR1 in human neural stem
cells. Neural progenitor cells (NPCs) were differentiated from human FXS iPSC reporter line. Mi-
crograph of reporter NPCs demonstrates characteristic morphology and expression of Nestin via
immunofluorescence (A). A high-throughput small molecule screening assay was designed and
optimized to test FMR1 reporter activity in neural progenitor cells (NPCs) (B). NPCs were treated
with either test compound (320,587 unique compounds, 12.5 µM), 5-aza-2′-deoxycytidine (5-Aza-DC,
positive control), or DMSO (vehicle) for 72 h prior to being assayed. The results of the entire primary
screen are plotted displaying test plate Z’ on the x-axis against individual test molecule response on
the y-axis (C). Molecules were considered as candidates for secondary screening if they exceeded
a plate Z’ threshold of 0.20 (blue dashed vertical line) and an individual response threshold of 10%
mean plate 5-Aza-DC response (red dashed horizontal line). Scale bar = 50 µm.

The confirmatory screen procedures are illustrated (Figure 4A). Molecules were
tested in triplicate on a 12-point dose-response scale from 0.005 to 20 µM, and FMR1
reporter responses were compared with the maximal positive control (5-Aza-DC) response
(Figure 4B).

Of the 135 candidate molecules tested in the secondary validation screen (Figure 4),
two exceeded the response threshold and were used in further validation experiments
(Supplementary Table S1). Both compounds initially exerted an expected dose-response
of FMR1 reporter activity without cell toxicity. We purchased small amounts of each of
these candidate compounds from the original vendor for the MLPCN library, and we were
unable to reproduce the results, despite the expected responses from control compounds
and the original test compounds in the same assay. Because we were unable to reproduce
the initial results with subsequent batches of the compounds, we could not validate these
compounds as potential candidates for FMR1 reactivation strategies.
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Figure 4. Confirmatory validation screen of candidate molecules for FMR1 reporter activity in neural
progenitor cells. Candidate small molecules were selected for secondary screening on the basis
of response in primary screen and availability (A). Reporter neural progenitor cells (NPCs) were
treated for 72 h with candidate molecules from the MLPCN library, 5-aza-2′-deoxycytidine (5-Aza-DC,
positive control, orange boxes and line), or DMSO (vehicle, gray triangles, and line) (B).

3.3. Confirmatory Validation (Secondary) Screen for Candidate Molecules

All molecules were counter-screened for toxicity using an NPC viability assay
(Figure 5). Many test molecules, including 5-Aza-DC, began to show dose-dependent
decreases in cell viability at concentrations of ~2–5 µm and higher.
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Figure 5. Secondary screen neural progenitor cell viability. Reporter neural progenitor cells (NPCs)
were treated for 72 h with candidate molecules, 5-aza-2′-deoxycytidine (5-Aza-DC, positive control)
or doxorubicin (kill control), or DMSO (vehicle). NPCs treated with each concentration of candidate
molecule were counter-screened for cell viability.

Comparing the dose-dependent cell viability and FMR1 reporter activity for secondary
screen molecules demonstrated that the common dose-dependent decrease in viability
was not accompanied by concomitant changes in FMR1 reporter activity (Figure 6). An
FMR1 reporter response threshold of 5% positive control activity was used to identify
novel candidate molecules for further analysis and future validation. Many secondary
screen molecules showed a dose-dependent decrease in cell viability but not an FMR1
reporter response.
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Figure 6. Confirmatory validation screen of candidate molecule dose-response characteristics of
both FMR1 reporter response and cell viability in FXS neural progenitor cells. FXS reporter neural
progenitor cells (NPCs) were treated with secondary screen candidate molecules for 72 h. Mean cell
viability (x-axis) is plotted against mean FMR1 reporter activity (y-axis) across a range of treatment
concentrations (color scale). Results from each unique test molecule are connected with lines in order
of increasing concentration. A response threshold of 5% mean 5-Aza-DC (positive control) activity
was used to identify candidate molecules for follow-up analysis (red dashed line).

4. Discussion
4.1. Summary and Limitations of Drug Screen

This study provides proof of principle that FXS patient-derived reporter neural cells
are a viable research platform to conduct large-scale untargeted screens and a reference
for other researchers interested in small molecule drug discovery for FXS. We used human
FXS iPSC-derived neural reporter cells to screen over 320,000 unique small molecules for
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reactivation of FMR1, the largest untargeted screen for chemical reactivators of FMR1
published to date.

In this report, we demonstrated the use of an FXS patient stem cell-based platform
to conduct a complete untargeted drug screen for small molecule reactivators of FMR1
from discovery through confirmatory assays. In an initial untargeted primary screen using
a relatively low response threshold to minimize false negatives, 0.09% of all molecules
screened exhibited sufficient activity to be considered as candidate molecules for confirma-
tory screening (Figure 2C). A number of test molecules exhibited dose-dependent decreases
in cell viability above concentrations of 2 µM (Figure 5), although this did not coincide
with notable decreases in FMR1 reporter activity (Figure 6). Together, this suggests that the
limited number of candidate molecules showing FMR1 reporter activity was due to a lack
of efficacy rather than a function of toxicity and reduced cell viability.

Important limitations of the present experiments should be noted. Although quality-
control measures were designed to avoid false negatives in the primary drug screen, the
logistical limitations of testing the large library dictated that most screening molecules were
only assayed singularly and at a single concentration. This raises the possibility that some
molecules that screened negative might have FMR1 reactivation activity at more optimal
concentrations. In addition, this library, although large, is limited to molecules with known
biological functions. It will be important to test custom-made libraries in the future.

Reproducibility (batch-dependent activity difference) remains a major consideration.
The inability to reproduce results with different batches of compounds could be due to
contaminants in initial library compounds, degradation of active compounds, or other
unknown reasons.

4.2. Validation Assays of Candidate Molecules

Once candidate molecules are identified, several additional assays need to be per-
formed to validate that, in this case, the compounds can reliably elicit FMR1 reporter
activity and lend confidence that the HT screening method did successfully identify true
hits. Targeted validation experiments include dose-response assessments and temporal
dynamics of potential candidate molecules on FMR1 reporter activity and cell viability.

Drug discovery for neurological disease often requires that the candidate compounds
exert their effects in post-mitotic neurons, rather than proliferating NPCs. To determine
whether post-mitotic neurons could be used for validation experiments, testing can be
repeated on FXS iPSC-derived reporter neurons.

Further validation experiments may include reactivation in non-reporter (e.g., patient-
derived) cell lines as well as studies to uncover the epigenetic and potentially non-epigenetic
mechanisms triggered by candidate compounds. In addition, it is important to assess the
effects of candidate compounds on non-FXS lines to rule out the possibility that these cells
will have different responses.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/cells11010069/s1, Table S1.
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