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Simple Summary: Osteosarcoma is a rare type of cancer with poor prognoses. However, to the
best of our knowledge, there are no mathematical models that study the impact of chemotherapy
treatments on the osteosarcoma microenvironment. In this study, we developed a data driven
mathematical model to analyze the dynamics of the important players in three groups of osteosarcoma
tumors with distinct immune patterns in the presence of the most common chemotherapy drugs.
The results indicate that the treatments’ start times and optimal dosages depend on the unique
growth rate of the tumor, which implies the necessity of personalized medicine. Furthermore, the
developed model can be extended by others to build models that can recommend individual-specific
optimal dosages.

Abstract: Since all tumors are unique, they may respond differently to the same treatments. There-
fore, it is necessary to study their characteristics individually to find their best treatment options.
We built a mathematical model for the interactions between the most common chemotherapy drugs
and the osteosarcoma microenvironments of three clusters of tumors with unique immune profiles.
We then investigated the effects of chemotherapy with different treatment regimens and various
treatment start times on the behaviors of immune and cancer cells in each cluster. Saliently, we
suggest the optimal drug dosages for the tumors in each cluster. The results show that abundances
of dendritic cells and HMGB1 increase when drugs are given and decrease when drugs are absent.
Populations of helper T cells, cytotoxic cells, and IFN-γ grow, and populations of cancer cells and
other immune cells shrink during treatment. According to the model, the MAP regimen does a good
job at killing cancer, and is more effective than doxorubicin and cisplatin combined or methotrexate
alone. The results also indicate that it is important to consider the tumor’s unique growth rate
when deciding the treatment details, as fast growing tumors need early treatment start times and
high dosages.

Keywords: osteosarcoma; data driven mathematical model; immune infiltrations; chemotherapy;
precision medicine; optimal dosage; doxorubicin; cisplatin; methotrexate

1. Introduction

Osteosarcoma is a rare kind of cancer that occurs in the bone, and around 1000 new
cases of osteosarcoma are identified each year in the United States [1]. It can affect people
of any age, but it mostly occurs in children who are 10 to 14 and in adults who are 65 and
older [2,3]. There are some factors such as gender, age, heritable syndromes, and certain
other conditions that affect the risk of osteosarcoma [4]. The types of standard treatment
for osteosarcoma include surgery, chemotherapy, radiotherapy, and targeted therapy [5].

Although neoadjuvant chemotherapy has shown improved results in treating os-
teosarcoma, patients with metastases have continued to have low survival rates [6–8].
Immunotherapy and targeted therapy are known alternative treatments of osteosarcoma;
however, they are still inefficient for many patients [9]. Meanwhile, resistance to radio-
therapy has also been observed in osteosarcoma tumors [10,11]. To overcome therapeutic
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resistance, improve survival rates, and achieve precision medicine, we need to investigate
osteosarcoma tumor progression and identify the primary factors in the growth of tumors
for each patient [12].

The immune system is one of the major players in the responses to various cancer
therapies [13–15]. Immune cells in the tumor microenvironment interact with tumor cells
directly or indirectly via chemokine and cytokine signaling, and they play critical roles in
improving or inhibiting treatment effectiveness and tumor behaviors [16]. The necrotic
cell death of tumor cells caused by radiotherapy or chemotherapy triggers the production
of high mobility group box 1 (HMGB1), which is a damage-associated molecular pattern
(DAMP) molecule, and thus can induce immune responses [17–20]. HMGB1 can promote
dendritic cell maturation from naive dendritic cells [21–24]. Dendritic cells in turn can
activate helper and cytotoxic T cells [25–27], leading to the elimination of cancer cells
by cytotoxic T cells and IFN-γ [25,27,28], a cytokine secreted by helper and cytotoxic
T cells [28–30].

Many studies have also reported connections between clinical outcomes and immune
cell types in osteosarcoma. Cytotoxic T cells, known as the primary receptors of the
immune response targeting ostersarcoma [27], have an important role in the immunological
responses of osteosarcoma patients [31]. Additionally, a large number of M1 macrophages
in an osteosaroma tumor has been found to be associated with good prognosis in many
studies [32,33], and it has been reported that low-risk patients have high numbers of CD8
T cells and NK cells [34]. Moreover, certain chemotherapy drugs, such as cisplatin, can
increase the cancer killing capacity of cytotoxic T cells [35–38], so the effectiveness of the
drug also depends on the number of cytotoxic T cells in the tumor microenvironment.
Furthermore, most cancer therapies also kill immune cells. Some immune cells have anti-
tumor effects and others have pro-tumor effects, so the death of immune cells can have
an indirect impact on the growth of tumor. Hence, the complicated relationship between
immune cells and tumor cells should be taken into account while studying the impact of a
treatment on tumor growth, especially when the treatment affects the immune system.

Most chemotherapy treatments for osteosarcoma include one of or a combination of the
following drugs: high-dose methotrexate (MTX), doxorubicin (DOX), and cisplatin (CDDP).
The most popular treatment regimen for adolescents is the MAP regimen, consisting of
all those three drugs [39,40], and a widely used treatment for older adults is a two-drug
regimen of doxorubicin and cisplatin [40]. This study investigated the responses to these
regimens by developing a data driven mathematical model which takes into consideration
the interactions between tumor-infiltrating immune cells and chemotherapy agents by
categorizing patients into groups based on tumor-infiltrating immunological variants.

Mathematical models are commonly used to study the growth of a tumor, to identify
the optimal combination of treatments, to improve responses to therapies, and to combat
drug resistance in various types of cancer [41–51]. While many of such models exist, only a
few focus on the complex interactions between tumor cells and several types of immune
cells [52–54], and none of them model osteosarcoma. Although there have been some
studies that included bone modeling, osteoblast cells, or bone metastases [55–57], to the
best of our knowledge, our previous work [58] was the first to model the growth of primary
osteosarcoma tumors. However, that study did not include the effects of chemotherapy, as
it modeled osteosarcoma’s progression in the absence of treatments.

In the above-mentioned study [58], we developed a data driven mathematical model
for the interaction network between key immune cells and cancer cells to investigate the
growth behavior of three distinct groups of osteosarcoma tumors, grouped based on their
immune compositions [33]. Group-specific parameters have been calculated to discover
differences in tumor growth among the groups [58]. In this study, we extend our previous
model by including the interactions between methotrexate, doxorubicin, cisplatin, and
important cell types in the tumor microenvironment in order to examine the effects of these
drugs on osteosarcoma tumors in each group.
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2. Materials and Methods
2.1. Mathematical Model

Our previous work [58] developed a comprehensive model of various interactions
between the immune system and the osteosarcoma tumor microenvironment. This model
includes cancer cells, necrotic cells, macrophages, dendritic cells, cytotoxic cells (cytotoxic
T cells and natural killer cells), helper T cells, regulatory T cells, along with IFN-γ, HMGB1,
and cytokine groups µ1 and µ2—where µ1 consists of TGF-β, IL-4, IL-10, and IL-13, and
µ2 consists of IL-6 and IL-17. In this work, we build upon the model in [58] to inspect
the effects of chemotherapy on osteosarcoma, by adding the interactions of chemotherapy
drugs with immune and cancer cells.

The interactions among key components of the osteosarcoma tumor microenvironment
modeled in [58] are summarized below. IFN-γ, which is secreted by helper T cells and cyto-
toxic cells [28–30], can promote macrophages and inhibit cancer cell proliferation [25,27,28,59–62].
Cytokine group µ1 is released by helper T cells, macrophages, and cancer cells [30,60–65].
µ1 can activate regulatory T cells and macrophages, promote tumor proliferation [29,59,60,62,64,66–69],
and inhibit cytotoxic cells and helper T cells [62,66,70,71]. Cytokine group µ2 is also pro-
duced by helper T cells, macrophages, and cancer cells [30,62–64,72,73], and can promote
tumor proliferation [29,61,67,68,72–74]. HMGB1, which is passively secreted by necrotic
cells [22,26,75,76] and actively secreted by dendritic cells and macrophages [21–24,75,77],
can activate dendritic cells [21–24].

Cancer cells activate dendritic cells by releasing tumor antigens [25], but also promote
apoptosis in dendritic cells through many tumor-derived factors [78]. Dendritic cells in turn
can activate cytotoxic cells and helper T cells by presenting tumor antigens to them [25–27],
and regulatory T cells inhibit these two cells [25,29,79,80]. Macrophages also activate
cytotoxic cells and helper T cells through IL-12 and IL-23 production [25,29,30,64,81–83],
and helper T cells can directly activate cytotoxic cells as well [25,29]. When cancer cells
die and go through necrotic cell death, they become necrotic cells; thus, necrotic cells are
promoted by cancer cells.

The model in [58] also included naive T cells, naive macrophages, and naive dendritic
cells since mature immune cells differentiate from naive immune cells. The mass action
law was used to describe the activation of a cell from its naive form. In particular, for
biochemical process A + B → C, the rate of change of C is dC

dt = λAB, where λ is the
production rate of C from A and B. The growth of tumor was modeled using the logistic
growth, that is, the rate of change of cancer cell population is proportional to [C]

(
1− [C]

C0

)
,

with C0 being the carrying capacity. Cytokines in [58] were modeled to be proportional to
the populations of cells that produce them.

The full system of ODEs from the model in [58] is:

d[MN ]

dt
= AMN −

(
λMIγ [Iγ] + λMµ1 [µ1]

)
[MN ]− δMN [MN ], (1)

d[M]

dt
=
(

λMIγ [Iγ] + λMµ1 [µ1]
)
[MN ]− δM[M], (2)

d[TN ]

dt
= ATN −

(
λTh M[M] + λThD[D]

)
[TN ]

− λTrµ1 [µ1][TN ] (3)

−
(
λTcTh [Th] + λTc M[M] + λTcD[D]

)
[TN ]− δTN [TN ],

d[Th]

dt
=
(
λTh M[M] + λThD[D]

)
[TN ]−

(
δThTr [Tr] + δThµ1 [µ1] + δTh

)
[Th], (4)

d[Tr]

dt
=
(
λTrµ1 [µ1]

)
[TN ]− δTr [Tr], (5)

d[Tc]

dt
=
(
λTcTh [Th] + λTc M[M] + λTcD[D]

)
[TN ]

−
(
δTcTr [Tr] + δTcµ1 [µ1] + δTc

)
[Tc], (6)
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d[DN ]

dt
= ADN − (λDC[C] + λDH [H])[DN ]− δDN [DN ], (7)

d[D]

dt
= (λDC[C] + λDH [H])[DN ]− (δDC[C] + δD)[D], (8)

d[C]
dt

=
(
λC + λCµ1 [µ1] + λCµ2 [µ2]

)
[C]
(

1− [C]
C0

)
−
(

δCTc [Tc] + δCIγ [Iγ] + δC

)
[C], (9)

d[N]

dt
= αNC

(
δCTc [Tc] + δCIγ [Iγ] + δC

)
[C]− δN [N], (10)

d[Iγ]

dt
= λIγTh [Th] + λIγTc [Tc]− δIγ [Iγ], (11)

d[µ1]

dt
= λµ1Th [Th] + λµ1 M[M] + λµ1C[C]− δµ1 [µ1], (12)

d[µ2]

dt
= λµ2Th [Th] + λµ2 M[M] + λµ2C[C]− δµ2 [µ2], (13)

d[H]

dt
= λHM[M] + λHD[D] + λHN [N]− δH [H]. (14)

Here, λ parameters denote proliferation, activation, or production rates. δ parameters
denote inhibition, decay, or death rates. AMN , ATN , and ADN correspond to the produc-
tion/proliferation rates of naive macrophages, naive T cells, and naive dendritic cells,
respectively; and αNC corresponds to the fraction of dying cancer cells that become necrotic
cells. The descriptions of all variables in this system are given in Table 1.

We build upon this system of ODE by adding the interactions of the variables in this
system with the following chemotherapy drugs: methotrexate, doxorubicin, and cisplatin.
The interaction network of these drugs with cells and cytokines of osteosarcoma tumor
microenvironment is shown in Figure 1. We used an exponential kill model, as introduced
in [84], to describe how chemotherapy affects the cancer microenvironment, and modeled
the change in population of the new model’s variables over time in the unit of days. The
details of the effects of chemotherapy drugs on immune cells and cancer cells are explained
below (changes to Equations (1)–(14) are in bold).

Table 1. Model Variables. Names and descriptions of the variables used in the model.

Variable Name Description

TN Naive T-cells
Th Helper T-cells
TC Cytotoxic cells includes CD8+ T-cells and NK cells
Tr Regulatory T-cells
Dn Naive dendritic cells
D Activated dendritic cells antigen presenting cells

MN Naive macrophages includes naive macrophages and monocytes
M Macrophages includes M1 macrophages and M2 macrophages
C Cancer cells
N Nectrotic cells
H HMGB1
µ1 Cytokines group µ1 includes effects of TGF-β, IL-4, IL-10 and IL-13
µ2 Cytokines group µ2 includes effects of IL-6 and IL-17
Iγ IFN-γ
A1 methotrexate methotrexate concentration at tumor site
A2 doxorubicin doxorubicin concentration at tumor site
A3 cisplatin cisplatin concentration at tumor site
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Figure 1. Interaction network with chemotherapy drugs. Activation effects, proliferation effects,
and stimulation effects are indicated by blue arrows; and inhibitory effects are indicated by red
arrows. Chemotherapy drugs also inhibit all immune cells (red arrows from drugs to immune cells
not shown).

2.1.1. Cancer Cells

All chemotherapy drugs in our model aim to kill tumor cells, though they have
different mechanisms of action. Methotrexate hinders DNA synthesis in fast dividing
cancer cells by inhibiting folate-dependent pathways [85]. Doxorubicin can kill cancer
cells by binding to DNA-associated enzymes, intercalating the base pair of DNA’s double
helix, and targeting many molecular targets such as topoisomerase enzymes I and II, which
results in DNA damage [86]. Cisplatin binds platinum to DNA by forming inter-stranded
and intra-stranded crosslinks, and thus induces DNA damage which leads to cell death in
rapidly proliferating cells [87,88].

Similarly to [84,89], we use saturation kill term (1− eβA) to model the direct cytotoxic
effects of chemotherapy drugs on cancer cells, where β is the drug efficacy parameter, and
A is the drug concentration at the tumor site. This is based on the observation that at
low concentrations, the cancer killing effects of these drugs are almost linear, but at very
high concentrations the cancer killing effects plateau. Unlike doxorubicin and cisplatin,
methotrexate can only eliminate cancer cells during certain phases of the cell cycle, so
we added the term ( f − τ

a + 1
24a ) to methotrexate’s cytotoxic effect to account for this

phenomenon, as modeled in [84]. Here, f denotes the fraction of cells in the vulnerable
phase of the cell cycle for methotrexate, a denotes cell cycle time in days, and τ is defined
to be minimum(T, f a), with T being drug exposure time in days.

Besides its direct role in targeting tumor cells, cisplatin has also been reported to
increase cytotoxic cells’ cancer killing capability by upregulating MHC-1 expression in
cancer cells [35,87,90,91]. We also use a saturation term to describe this effect, as it is
very likely that a high concentration of cisplatin can also plateaus in the upregulation of
MHC-1 in cancer cells. We make the assumption that the concentration of cisplatin at
which this effect slows down is about the same concentration at which the cancer killing
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effect of cisplatin slows down, so we use the same drug efficacy parameter β3 in both terms,
resulting in the following equation for cancer cells:

d[C]
dt

=
(
λC + λCµ1 [µ1] + λCµ2 [µ2]

)
[C]
(

1− [C]
C0

)
−
(

δCIγ [Iγ] + δC + δCTc

(
1 + δCTc A3(1 − e−β3 A3)

)
[Tc]

)
[C]

−
(

KC

(
f − τ

a
+

1
24a

)
(1 − e−β1 A1) + KC(1 − e−β2 A2)

+ KC(1 − e−β3 A3)

)
[C] (15)

where δCTc A3 represents cisplatin’s promotion of cytotoxic cells’ cancer killing ability; KC is
rate of chemotherapy-induced tumor death; and β1, β2, and β3 are the medicine efficacy
coefficients of methotrexate, doxorubicin, and cisplatin, respectively. A description of every
chemotherapy-related parameter in our model is given in Table 2.

2.1.2. Necrotic Cells

As a proportion of cancer cells killed by chemotherapy drugs become necrotic cells,
we describe the change in population of necrotic cells with the presence of chemotherapy
as follows:

d[N]

dt
= αNC

(
δCIγ [Iγ] + δC + δCTc

(
1 + δCTc A3(1 − e−β3 A3)

)
[Tc]

)
[C]

+ αNCA

(
KC

(
f − τ

a
+

1
24a

)
(1 − e−β1 A1) + KC(1 − e−β2 A2)

+ KC(1 − e−β3 A3)

)
[C]− δN [N] (16)

where αNCA is the fraction of dying cancer cells induced by chemotherapy that turn into
necrotic cells.

2.1.3. Immune Cells

Since chemotherapy does not only eliminate tumor cells but also kills immune cells,
we include the effects of chemotherapy in the equations of immune cells as well. Similarly
to [89], we assume that the same quantity of chemotherapy drugs is required to affect
cancer cells and immune cells, even when the rate at which chemotherapy kills cancer
cells is different than the rate at which it kills immune cells. Hence, we use the same drug
efficacy coefficients for cancer and immune cells, but different rates of drug-induced cell
death, leading to the following modified immune cell equations:

d[MN ]

dt
= AMN −

(
λMIγ [Iγ] + λMµ1 [µ1]

)
[MN ]− δMN [MN ]

−
(

KMN

(
f − τ

a
+

1
24a

)
(1 − e−β1 A1) + KMN (1 − e−β2 A2) (17)

+ KMN (1 − e−β3 A3)

)
[MN ]

d[M]

dt
=
(

λMIγ [Iγ] + λMµ1 [µ1]
)
[MN ]− δM[M]−

(
KM

(
f − τ

a
+

1
24a

)
(1 − e−β1 A1)
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+ KM(1 − e−β2 A2) + KM(1 − e−β3 A3)

)
[M] (18)

d[TN ]

dt
= ATN −

(
λTh M[M] + λThD[D]

)
[TN ]− λTrµ1 [µ1][TN ]

−
(
λTcTh [Th] + λTc M[M] + λTcD[D]

)
[TN ]− δTN [TN ]

−
(

KTN

(
f − τ

a
+

1
24a

)
(1 − e−β1 A1) + KTN (1 − e−β2 A2)

+ KTN (1 − e−β3 A3)

)
[TN ] (19)

d[Th]

dt
=
(
λTh M[M] + λThD[D]

)
[TN ]−

(
δThTr [Tr] + δThµ1 [µ1] + δTh

)
[Th]

−
(

KTh

(
f − τ

a
+

1
24a

)
(1 − e−β1 A1) + KTh(1 − e−β2 A2)

+ KTh(1 − e−β3 A3)

)
[Th] (20)

d[Tr]

dt
=
(
λTrµ1 [µ1]

)
[TN ]− δTr [Tr]−

(
KTr

(
f − τ

a
+

1
24a

)
(1 − e−β1 A1)

+ KTr(1 − e−β2 A2) + KTr(1 − e−β3 A3)

)
[Tr] (21)

d[Tc]

dt
=
(
λTcTh [Th] + λTc M[M] + λTcD[D]

)
[TN ]−

(
δTcTr [Tr] + δTcµ1 [µ1] + δTc

)
[Tc]

−
(

KTc

(
f − τ

a
+

1
24a

)
(1 − e−β1 A1) + KTc(1 − e−β2 A2)

+ KTc(1 − e−β3 A3)

)
[Tc] (22)

d[DN ]

dt
= ADN − (λDC[C] + λDH [H])[DN ]− δDN [DN ]

−
(

KDN

(
f − τ

a
+

1
24a

)
(1 − e−β1 A1) + KDN (1 − e−β2 A2)

+ KDN (1 − e−β3 A3)

)
[DN ] (23)

d[D]

dt
= (λDC[C] + λDH [H])[DN ]− (δDC[C] + δD)[D]

−
(

KD

(
f − τ

a
+

1
24a

)
(1 − e−β1 A1) + KD(1 − e−β2 A2)

+ KD(1 − e−β3 A3)

)
[D] (24)

where KMN , KM, KTN , KTh , KTr , KTc , KDN , and KD are the rates of chemotherapy-induced
cell death of naive macrophages, macrophages, naive T cells, helper T cells, regulatory T
cells, cytotoxic cells, naive dendritic cells, and dendritic cells, respectively.
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2.1.4. Chemotherapy Drugs

Chemotherapy drugs are given through IV infusion in osteosarcoma treatments, so
their bioavailability is 100%. Thus, we use the following equations to model the changes in
concentration of the chemotherapy drugs at the tumor site over time:

d[A1]

dt
= vA1(t)− δA1 [A1] (25)

d[A2]

dt
= vA2(t)− δA2 [A2] (26)

d[A3]

dt
= vA3(t)− δA3 [A3] (27)

Here, vA1(t), vA2(t), and vA3(t) are the amounts of methotrexate, doxorubicin, and
cisplatin injected per day per liter of body volume, with the unit of mg/L per day; δA1 , δA2 ,
and δA3 are the decay rates of methotrexate, doxorubicin, and cisplatin, respectively.

2.2. Data of the Model
2.2.1. Tumor Microenvironment Data

A recent study showed that among the available digital cytometry methods with
which to deconvolve the gene expression data of a tissue into relative abundances of cells
in the tissue, CIBERSORTx B-mode performs best [92]. In our previous study [58], we used
the gene expression data of 88 osteosarcoma tumors from TARGET data set and applied
CIBERSORTx B-mode to estimate the fractions of immune cells in each of these tumors.
Then, k-means clustering was performed on the estimated cell fractions, and three clusters
of osteosarcoma tumors with distinctive immune patterns were found. In this work, we
study the impacts of chemotherapy drugs on the same three clusters. The average immune
fractions in each cluster are presented in Figure 2.

Cluster 1 Cluster 2 Cluster 3
0.0

0.1

0.2

0.3

0.4

Fr
eq

ue
nc
y

Naive Macrophages
M1 Macrophages
M2 Macrophages
Naive T-cells
helper T-cells
Treg cells
cytotoxic cells
Naive Dendritic cells
Dendritic cells

Figure 2. Estimated immune infiltrates in each cluster. Clusters were derived according to varia-
tions in 22 immune cell types of osteosarcoma tumors.

To obtain immune cell populations, we multiplied the immune fractions estimated
from CIBERSORTx by a scaling factor αdim. From the supplementary data of TARGET
project, which include information on the percentage of tumor, necrotic, stroma, and
normal cells of each sample, we derived the cancer and necrotic populations from immune
populations. We used the percentage of normal cells to denote the percentage of total
immune cells. In particular, given total immune population I, we computed the populations
of cancer and necrotic cells as follows:

C = I × % of cancer cells
% of total immune cells

, (28)

N = I × % of necrotic cells
% of total immune cells

, (29)

where C and N are the populations of cancer and necrotic cells, respectively.
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We chose αdim based on the average cancer cell population of osteosarcoma. The
mean volume of Ewing sarcomas is reported to be 275 mL [93], and a study found Ewing
sarcoma volumes to be similar to osteosarcoma volumes [94]. Therefore, we approximated
the mean volume of osteosarcoma to be 275 mL. Since osteoblasts have a diameter of
20–50 µm [95], we estimated that osteosarcoma cells, which are malignant osteoblasts, have
an average diameter of 35 µm, leading to an estimated average of 6.4× 109 cancer cells in
osteosarcoma tumors. Thus, αdim was chosen to be 1.765× 108 to match the average cancer
cell population among all patients in TARGET data to 6.4× 109. It is worth noting that a
smaller size of osteoblasts has also been reported [96]. However, αdim is simply a scaling
factor and has no impacts on the dynamics of cells and cytokines in our system; thus, the
size of osteoblasts does not affect our results.

2.2.2. Treatment Data

Given a treatment regimen of interest, we applied its standard dosage to our model.
Most doses of chemotherapy drugs for osteosarcoma are measured in mg/m2, but we
modeled the drug concentration at the tumor site in milligrams per liter of body volume.
We therefore need to convert drug doses from mg/m2 to mg/L. We used an average body
surface area of a human male of 1.9 m2 [97] and an average male body volume of 59.7 L [98]
for conversion. That is, for example, 75 mg/m2 would be equivalent to:

75 mg/m2 =
75 mg

m2 × 1.9 m2

59.7 L
= 2.3869 mg/L (30)

2.3. Parameter Values

The drug efficacy coefficients, cell cycle time, and fraction of cells in the vulnerable
phase of the cell cycle are taken from [84]. Using the molecular mass of chemotherapy
drugs [89,99–101], we can convert the drug efficacy coefficients given in [84] to units
of (mg/L)−1:

β1 =

(
1.126 L
µmol

)(
106 µmol

1 mol

)(
1 mol

454.4 g MTX

)(
1 g

1000 mg

)
= 2.4780 L/mg (31)

β2 =

(
1.063 L
µmol

)(
106 µmol

1 mol

)(
1 mol

580 g DOX

)(
1 g

1000 mg

)
= 1.8328 L/mg (32)

β3 =

(
0.044 L
µmol

)(
106 µmol

1 mol

)(
1 mol

300 g CDDP

)(
1 g

1000 mg

)
= 0.1467 L/mg (33)

Drug efficacy coefficients for doxorubicin-resistant and cisplatin-resistant cells were
also included in [84], and can be converted in a similar way. The values for all chemotherapy-
related parameters in our model and their sources are given in Table 2.

The fraction of cancer cells killed by chemotherapy, KC, was taken from [89,102]
to be 0.9, based on the notion that chemotherapy strength is one log kill [103]. Since
chemotherapy is more effective at eliminating fast proliferating cells, it is safe to assume
that the rates of chemotherapy-induced death of immune cells are smaller than those of
chemotherapy-induced death of cancer cells. Hence, KMN , KM, KTN , KTh , KTr , KTc , KDN ,
and KD are assumed to be smaller but in the same order of magnitude as KC, and we use a
value of 0.6 for all of them, as in [102]. Decay rates of chemotherapy drugs were derived
from their elimination half lives in the following way:

δA =
ln2

half life of A in days
(34)

where δA is the decay rate of A. On average, the elimination half lives of doxorubicin,
cisplatin, and high-dose methotrexate are 2 hours, 25 min, and 11.5 h respectively [104–106],
resulting in the corresponding decay rates of 8.3178, 39.9253, and 1.4466.
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As no values for αNCA and δCTc A3 can be found in the literature, we assume biologically
reasonable values for these parameters. αNCA is the fraction of dying cancer cells induced
by chemotherapy that become necrotic cells, so it is bounded between 0 and 1. We make the
assumption that a large proportion of dying cancer cells from treatment turn into necrotic
cells, and set αNCA = 0.8. For δCTc A3 , we assume that cisplatin at maximum effect can
double the cancer killing ability of cytotoxic cells, or equivalently δCTc A3 = 1. In order to
investigate whether our assumptions for those parameters have large impacts on the cancer
cell population, we performed sensitivity analysis and studied the change in cancer cell
population after treatment while varying these two parameters.

Table 2. Chemotherapy Parameters. Names, units, descriptions, values, and sources of chemotherapy-
related parameters used in the model.

Parameter Unit Description Value Source

f none Initial fraction of cells in vulnerable
phase of the cell cycle 0.5 [84]

a day Cell cycle time 0.6667 [84]
T day Duration of drug exposure
τ day min(T, f a) [84]
β1 mg/L−1 methotrexate efficacy coefficient 2.4780 [84]
β2 mg/L−1 doxorubicin efficacy coefficient 1.8328 [84]
β3 mg/L−1 cisplatin efficacy coefficient 0.1467 [84]
KC day−1 Rate of chemo-induced tumor death 0.9 [89,102]

KMN day−1 Rate of chemo-induced death
of naive macrophages 0.6 [102]

KM day−1 Rate of chemo-induced death
of macrophages 0.6 [102]

KTN day−1 Rate of chemo-induced death
of naive T-cells 0.6 [102]

KTh day−1 Rate of chemo-induced death
of helper T-cells 0.6 [102]

KTr day−1 Rate of chemo-induced death
of regulatory T-cells 0.6 [102]

KTc day−1 Rate of chemo-induced death
of cytotoxic cells 0.6 [102]

KDN day−1 Rate of chemo-induced death
of naive dendritic cells 0.6 [102]

KD day−1 Rate of chemo-induced death
of dendritic cells 0.6 [102]

δCTc A3 none Effect of cisplatin to promote cancer
killing ability of cytotoxic cells 1 Assumed

αNCA none Fraction of chemo-induced dying tumor
cells that become necrotic cells 0.8 Assumed

δA1 day−1 Decay rate of methotrexate 1.4466 [106]
δA2 day−1 Decay rate of doxorubicin 8.3178 [104]
δA3 day−1 Decay rate of cisplatin 39.9253 [105]

2.4. Non-Dimensionalization

To achieve additional numerical stability, non-dimensionalization of the whole system
was carried out. For each variable X of the original system in [58], its dimensionless form
can be written as:

X =
X

X∞ , (35)
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where X∞ is the steady state value of X given in [58]. For the newly added variables, which
are the chemotherapy drugs, we introduced the following non-dimensional variables:

A =
A δA
v∗A

, (36)

where A is the dimensional variable, δA is the decay rate of A, and v∗A is the amount
of drug A injected on its first injection day of the treatment. Further details on non-
dimensionalization are given in Appendix A.

To solve the non-dimensional system of ordinary differential equations, we used
the solve_ivp function from Scipy package in python [107], with initial conditions from a
chosen data point of interest in each cluster.

2.5. Sensitivity Analysis

We performed local gradient-based sensitivity analysis on all chemotherapy-related
parameters to study their impacts on the outputs of the system. For the non-dimensional
system dX

dt = F(X, θ, t) with model parameters θ = θ1, ..., θN , the local (first order) sensitiv-
ity of parameter θi with respect to the variable X is defined as [108]:

si =
∂X
∂θi

(37)

As we are mainly interested in how drug-related parameters affect the number of
cancer cells, we calculated the sensitivity of treatment parameters with respect to cancer
and total cell populations. Since the effects of the treatment do not reach steady state, we
consider time-dependent sensitivity. That is, we measure sensitivity of parameters in every
time step throughout the treatment and some time after. The change in sensitivity of θi
over time can be derived as follows:

∂si
∂t

=
∂

∂t

(
∂X
∂θi

)
=

∂

∂θi

(
∂X
∂t

)
=

∂F(X, θi, t)
∂θi

(38)

By applying the chain rule, we have:

∂si
∂t

=
∂F
∂θi

+
∂F
∂X

si (39)

In addition, we also look at the relative sensitivity, which is commonly used in
metabolic control analysis of biological networks [108]:

si(t) = si(t)
θi

X(t)
(40)

Then, we compute the average sensitivity of each type over a period of time T:

Si =
1
T

∫ T

0
si(t)dt, Si =

1
T

∫ T

0
si(t)dt (41)

The sensitivity varies for different values of the parameters, so we consider a small
neighborhood Ω(θ) of the given parameter set and calculate:

Si =
∫

Ω
Si(θ)dθ, Si =

∫
Ω

Si(θ)dθ (42)

where the integrals are computed using a numerical technique called sparse grid points [109,110].
In particular, to evaluate Si, sparse grid point method samples θk from parameter space
Ω for k = 1, ..., m, where the number of samples m are chosen by the user. Then Si(θk) is
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evaluated for k = 1, ..., m, and the summation
m

∑
k=1

Si(θk) is used as an approximation to Si.

Here, to generate sparse grid points samples, we apply Matlab package nwspgr provided
by [109], and we use m = 39.

2.6. Optimization of Drug Dosage

We introduce a framework to find the appropriate dose of a given treatment regimen
for each patient. With it, one aims to achieve a target cancer cell population at a given time
t, typically to reduce the size of tumor for the day of surgery. Hence, we want to minimize
the difference between the estimated cancer cell population at t from our model and the
target cancer cell population. The least square error is used to model this difference, as least
square error penalizes high errors more than absolute error, and is less computationally
expensive than hinge loss.

Since high doses of chemotherapy are known to induce high toxicity to the patient,
we would like to achieve cancer cell populations close to the target population with the
smallest dosages possible. Therefore, we added a L1 norm regularization term, which is
the sum of absolute values of drug dosages, to the loss function. We used the L1 norm
instead of the L2 norm, because the L2 norm penalizes high doses of individual drugs
more severely. In most osteosarcoma treatments, methotrexate is used at a much higher
dose than other drugs, so L2 norm would put too much weight on methotrexate dose and
neglect other drugs’ doses.

As patients can only tolerate certain dosages of chemotherapy and drug doses cannot
be negative, we also put lower and upper bounds on the drug doses. Thus, we have the
following loss function:

L(v, t) =
(
Ĉ(v, t)− Ctarget

)2
+ κ

M

∑
i=1
|vi| (43)

subject to 0 ≤ vi ≤ Ui, i = 1, ..., M

Here, v is a vector of length M, denoting the doses of the M drugs in the given treat-
ment. t is the time of interest at which cancer cell population is evaluated for optimization.
Ĉ(v, t) is the cancer cell population with drug doses v at time t of interest, and is computed
via our ODE solver. Ctarget is the target cancer cell population at time t, and is chosen by
the user. Ui is the highest allowable value for vi. κ is the regularization parameter; the
higher κ is, the more the optimizer focuses on achieving small doses and less on achieving
small error between Ĉ(v, t) and Ctarget.

The optimize.minimize function from Scipy package in python is used to solve this
optimization problem, with the outputs being the optimal doses.

3. Results
3.1. Dynamics of the Cancer Microenvironment with MAP Treatment

Typical treatments for osteosarcoma include neoadjuvant chemotherapy, usually for
10 weeks, then surgery, and adjuvant chemotherapy after the surgery for up to a year [40].
The most common chemotherapy regimen for osteosarcoma in children and young adults
is the MAP regimen, which is a combination of doxorubicin, cisplatin, and high-dose
methotrexate [39]. This regimen consists of six 35-day cycles; two cycles are applied before
surgery and the remaining four are applied after surgery. In each cycle, 37.5 mg/m2 of
doxorubicin and 60 mg/m2 of cisplatin are administered through IV per day on days 1
and 2, and 12,000 mg/m2 of methotrexate is administered through IV over 4 h per day
on days 22 and 29 [111,112]. Different infusion schedules have been used for doxorubicin
and cisplatin: doxorubicin can be injected as a bolus or a 4-h infusion each day, or a
continuous infusion over 48 h, whereas cisplatin can be injected over 2 or 4 h each day, or
continuously over 72 h [112]. We studied the dynamics of cell and cytokine populations
in large osteosarcoma tumors during neoadjuvant MAP treatment, which includes two
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35-day cycles. In particular, we used the steady state values of cells and cytokines in [58]
as initial conditions, the typical dosage of the MAP regimen as the drug inputs, and 4-h
infusions on previously specified days as the injection schedule for each drug. We set the
start of chemotherapy treatment to be 7 days after biopsy, as it usually takes a few days to
receive the results of the biopsy.

Figure 3 shows that for all clusters, cancer cell populations are reduced significantly
after two cycles of MAP treatment. It is important to note that the cancer cell populations do
not reach zero after chemotherapy, so cancer cells will start growing again after chemother-
apy. However, the goal of neoadjuvant therapy is not to eradicate cancer cells completely,
but only to reduce the boundaries of the tumor and to remove any small metastases that
have not been detected [113].
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Figure 3. Dynamics with MAP treatment. Behaviors of cells and cytokines in osteosarcoma tumors
during the MAP treatment and a few months after treatment. Initial conditions are large tumors in
each cluster, i.e., the without-treatment steady state values of each cluster. Drug doses are the typical
doses of the MAP regimen. The different color lines indicate the dynamics of different clusters.

Cluster 2 had the highest cancer cell population at the start of treatment, so naturally
cluster 2 also had the highest cancer cell population left after neoadjuvant therapy. Interest-
ingly, cluster 1 had approximately the same number of cancer cells as cluster 3 at the start of
treatment, but ended up with a higher cancer cell population than cluster 3 after treatment.
This is because in each chemotherapy cycle, there are a few weeks where no chemotherapy
drugs are administered in order to allow the patient to recover from the drugs’ toxicity, and
thus during these few weeks, cancer cells can start growing again. Cluster 1’s cancer cell
population, which was reported in [58] to have the highest growth rate in the three clusters,
grew more during the weeks with no drugs given, resulting in a higher number of cancer
cells after treatment compared to cluster 3. This observation suggests that we should take
the patient’s cancer growth rate into account when choosing their chemotherapy dosage.

During the MAP treatment, necrotic cells, dendritic cells, and HMGB1 oscillated
between increasing and decreasing in abundance. Since chemotherapy drugs aim to kill
cancer cells, and a fraction of dying cancer cells become necrotic cells, the population
of necrotic cells increases on the days the drugs are injected and there are many drug-
induced dying cancer cells. However, during the weeks where no chemotherapy drugs
are administered, only drug-free dying cancer cells can become necrotic cells, and with the
cancer cell population being already reduced by the previously given drugs, the number of
drug-free dying cancer cells is small, leading to a decrease in necrotic cell population.

HMGB1 is mainly produced by necrotic cells, so HMGB1 abundance increases when
the necrotic population increases and decreases when the necrotic population decreases.
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Meanwhile, dendritic cells are activated largely by HMGB1, so the dynamics of dendritic
cells share the same trend as the dynamics of HMGB1. That means both HMGB1 and
dendritic cells increase on the days chemotherapy drugs are administered and decrease on
the weeks with no drugs given. An increase in dendritic cell population right after dox-
orubicin [114–117] or cisplatin [35,36,87] administration, and a rise in HMGB1 production
following doxorubicin [116–118], have been shown in several studies, which aligns with
our results.

We observed that in general, helper T cells, cytotoxic cells, and IFN-γ increase in popu-
lation during chemotherapy. There are many studies that report an increase in helper T cells’
and/or cytotoxic T cells’ abundance due to doxorubicin [117–122], cisplatin [35,87,90,123]
or methotrexate [124], and thus they support our findings. Doxorubicin has been known
to induce immunogenic cell death, which leads to the maturation of dendritic cells and
accordingly the activation of helper and cytotoxic T cells [114,120,125]. IFN-γ is pro-
duced by helper T cells and cytotoxic cells; thus, IFN-γ abundance also increases as
these two cells increase in population during MAP treatment. The increase in IFN-γ
level after administration of doxorubicin and cisplatin has also been observed in multiple
studies [87,116,117,126].

On the other hand, populations of macrophages, regulatory T cells, cytokines groups
µ1, and µ2 mainly decrease during MAP treatment. These immune cells are not affected
by the necrotic cell death process caused by chemotherapy, so they decrease in population
during chemotherapy, as they are also killed by the drugs. µ1 and µ2 are produced by helper
T cells, macrophages, and cancer cells. Even though the helper T cell population increases
during treatment, macrophage and cancer cell populations decrease more so, which leads
to an overall decrease in µ1 and µ2 throughout MAP treatment. Several other studies have
also reported a reduction in regulatory T cell quantity due to cisplatin [35,87,90] and a
decrease in the level of IL-6, which is the main component of µ2, due to methotrexate and
doxorubicin [124,126–128].

3.2. Sensitivity Analysis

To study the impacts of the newly introduced parameters on the outputs of the model,
we performed local sensitivity analysis on the chemotherapy-related parameters using
the non-dimensional system. The initial conditions for sensitivity analysis are the large
tumors in each cluster, which we used without-treatment steady state values to represent.
It is worth noting that the cell cycle time, a, was not included in this sensitivity analysis,
because it is a simple measurement rather than a parameter that needs to be estimated or
fitted to the experimental data. The most sensitive time-averaged parameters in terms of
sensitivity and relative sensitivity are presented in Figure 4.

In all clusters, the initial fraction of cells in the vulnerable phase of the cell cycle f has
the largest impact on cancer cell population among treatment-related parameters according
to both the sensitivity and relative sensitivity analyses. The rate of chemotherapy-induced
cancer cell death, KC, and the drug efficacy coefficients of doxorubicin and cisplatin, β2
and β3, are also sensitive to cancer and total cell population during treatment. Meanwhile,
the drug efficacy coefficient of methotrexate, β1, does not seem as sensitive, but the decay
rate of methotrexate is.

We notice that the parameters whose values are assumed, αNCA and δCTc A3 , do not
have large effects on the cancer cell population or total cell population based on the
results of the sensitivity analysis. To further confirm this, we also plotted the cancer cell
populations after treatment with different values of these parameters. We chose αNCA
ranging from 0.2 to 1, because it is a fraction and thus is bounded between 0 and 1, and
δCTc A3 ranges from 0.2 to 5 times its original value. Figure 4C,D shows that varying either
of these parameters results in negligible changes to cancer cell population after treatment.
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SensitivityA Relative sensitivityB C

D

Figure 4. Sensitivity of chemotherapy-related parameters. Sub-figure (A) shows the local sensi-
tivity of the 5 most sensitive treatment-related parameters with respect to cancer cell population
and total cell population. Sub-figure (B) shows the local relative sensitivity of the 5 most sensi-
tive treatment-related parameters with respect to cancer cell population and total cell population.
Sub-figures (C,D) display the cancer cell population after treatment with different values of αNCA

and δCTc A3 , respectively.

3.3. Dynamics of the Cancer Microenvironment in Chemo-Resistant Tumors with MAP Treatment

The effectiveness of chemotherapy is highly dependent on the existence of resistant
cancer cells. We are interested in studying the changes in quantity of cells and cytokines
when osteosarcoma cells are resistant to one or multiple drugs within the MAP regimen.
As mentioned in Section 2, we obtained drug efficacy coefficients from [84]; these values
were estimated to fit the survival data of cancer cells under different chemotherapy drugs.
The same study [84] also included the estimated drug efficacy coefficients of doxorubicin
and cisplatin in doxorubicin-resistant and cisplatin-resistant cancer cells, respectively.
Using these parameter values, we plotted the dynamics in the osteosarcoma microenvi-
ronment during MAP treatment when cancer cells are resistant to either doxorubicin or
cisplatin, or to both drugs. Since methotrexate-resistant cells were not used in [84], and
hence no parameter values were available for them, we did not model the dynamics with
methotrexate-resistant cells.

Figure 5A shows that MAP treatment is not as effective at shrinking the tumor when
cancer cells are resistant to doxorubicin; the cancer cell population after treatment is about
60% to 70% higher in doxorubicin-resistant cells than in non-doxorubicin-resistant cells
(Table 3). The smaller reduction in cancer cell population of doxorubicin-resistant cells
during doxorubicin administration means fewer necrotic cells are produced in the process,
and accordingly a lower level of dendritic cells (Figure 5A), as necrotic cells indirectly
promote dendritic cell maturation through the release of HMGB1. We notice no clear
difference in the dynamics of T cells and macrophages compared to the microenvironment
of non-doxorubicin-resistant cells. It is worth noting that we modeled only cancer cells
to be resistant to chemotherapy drugs, so immune cells were by design not resistant to
these drugs.

Table 3. Cancer cell populations after MAP treatment with chemotherapy-resistant cells.

Cluster
Initial Cancer

Cancer Cell Population after Treatment

Population Chemotherapy Resistant to Resistant to Resistant to
Sensitive DOX CDDP DOX + CDDP

1 1.34× 1010 2.44× 109 3.82× 109 2.49× 109 3.89× 109

2 1.6× 1010 2.6× 109 4.32× 109 2.66× 109 4.41× 109

3 1.34× 1010 1.87× 109 3.23× 109 1.92× 109 3.29× 109
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Resistant to CDDP

A

B

C

Resistant to DOX

Resistant to DOX and CDDP

Figure 5. Dynamics in chemotherapy-resistant cells with MAP treatment. Sub-figures (A–C) show
the dynamics of immune, cancer, and necrotic cells in osteosarcoma during the MAP treatment and
a few months after treatment when cancer cells are resistant to doxorubicin, cisplatin, and both
doxorubicin and cisplatin, respectively.

On the other hand, with cisplatin-resistant cells, we observed little difference in the
reduction of cancer cell population compared to non-cisplatin-resistant cells (Figure 5B,
Table 3). This is due to the fact that cisplatin’s drug efficacy parameter, β3, is small com-
pared to methotrexate and doxorubicin’s drug efficacy parameters, resulting in cisplatin
having a rather minor effect on cancer reduction in the MAP treatment. Hence, the
resistance to doxorubicin matters more than the resistance to cisplatin. Since the cisplatin-
resistance does not have a large impact on the effectiveness of MAP treatment, cancer cells
that are resistant to both doxorubicin and cisplatin have similar dynamics to doxorubicin-
resistant cancer cells (Figure 5A,C).
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3.4. Varying Treatment Start Time

We studied the effects of delays in the starting time of treatments on the tumors’
responses to the treatments. Since the tumor’s growth rate depends on the tumor’s size,
we investigated the effects of delaying the chemotherapy treatments in small, medium, and
large tumors, separately. Small tumors were chosen as follows: we first chose the tumor
with the smallest cancer cell population in cluster 1, then found the tumors in cluster 2
and 3 that had cancer cell populations closest to the chosen tumor from cluster 1. Medium
tumors were taken to be the mean values of all patients in each cluster. For large tumors,
we took the without-treatment steady state values. We plotted the dynamics of the cancer
cell population in each cluster when chemotherapy was started 1 week after diagnosis,
which we assume is the earliest start time, as it takes a few days to obtain biopsy results;
and the dynamics of beginning 1 month, 3 months, and 6 months after the initial diagnosis.

Figure 6 and Table 4 show that in small and medium tumors, the cancer cell pop-
ulations after treatment are higher the longer we wait to start the chemotherapy. Thus,
starting chemotherapy earlier leads to better outcomes with these tumors. On the contrary,
the cancer cell population stays the same after treatment in large tumors regardless of the
treatment start time. This is because these large tumors are at steady state and do not grow
more while the patient waits for the treatment. Theoretically, the treatment start time does
not matter as much for tumors at steady state or close to reaching steady state. However,
in reality, when tumors are large, the functionality of the cancerous body part is likely
compromised, and the quality of the patient’s life is affected, which makes us want to start
the chemotherapy promptly for large tumors.

Start at 1 week Start at 1 month Start at 3 months Start at 6 months

B

C

A

Figure 6. Dynamics with different start times of MAP treatment. Sub-figures (A–C) show the
dynamics of cancer cell populations for different MAP treatment start times in small, medium, and
large tumors, respectively. In each sub-figure, from left to right: the treatment started 1 week, 1 month,
3 months, or 6 months after initial diagnosis.

It was previously observed in [58] that tumors in cluster 1 grow fast even when the
tumor is small, whereas tumors in clusters 2 and 3 start growing fast when the tumor
is a bit bigger. Hence, when we delay the treatment for a long time, the small tumor
in cluster 1 grows quickly and ends up with a far higher cancer cell population after
the treatment than in other clusters, as seen in the treatments starting at 3 months and
6 months (Figure 6A, Table 4). For small tumors in clusters 2 and 3, even though they do
grow while the patients wait for treatment, their growth rates are not as high, and their
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cancer cell populations after the treatment are still relatively small despite the treatment
delays. Therefore, it is important to start the treatment early for small tumors of cluster 1,
and it would be ideal but not as urgent to start the treatment early for small tumors in
clusters 2 and 3.

Table 4. Cancer cell populations after MAP treatment with different treatment start times.

Tumor Cluster Initial Cancer
Cancer Cell Population after Treatment

Size Population Start at Start at Start at Start at
1 Week 1 Month 3 Months 6 Months

1 2.7× 108 7.64× 107 9.81× 107 1.82× 108 4.04× 108

Small 2 3.07× 108 6.73× 107 7.76× 107 1.05× 108 1.52× 108

3 1.93× 108 4.29× 107 5.26× 107 8.13× 107 1.31× 108

1 6.9× 109 1.41× 109 1.53× 109 1.81× 109 2.12× 109

Medium 2 6.96× 109 1.27× 109 1.37× 109 1.6× 109 1.9× 109

3 5.05× 109 7.55× 108 8.02× 108 9.19× 108 1.09× 109

1 1.34× 1010 2.44× 109 2.44× 109 2.44× 109 2.44× 109

Large 2 1.6× 1010 2.6× 109 2.6× 109 2.6× 109 2.6× 109

3 1.34× 1010 1.87× 109 1.87× 109 1.87× 109 1.87× 109

Figure 6B indicates that medium-sized tumors in all three clusters grow comparably
fast, and since their cancer cell populations after treatment will not be very small, we
should start chemotherapy for them as early as possible. We also notice that for small and
medium tumors in all clusters, the differences in cancer cell population after any treatment
were not significant when comparing starting the treatment 1 week or 1 month after the
diagnosis. However, treatments starting 3 or 6 months after resulted in much larger cancer
cell populations after the treatment. Based on our model, it is thus not recommended to
start the chemotherapy several months after the diagnosis, but rather to start within a
month of the initial diagnosis.

3.5. Dynamics of the Cancer Microenvironment with Different Treatment Regimens

We investigated the effects of two other chemotherapy regimens on the osteosarcoma
microenvironment. A combination of doxorubicin and cisplatin (AP) is a very common
treatment of osteosarcoma tumors in older adults, as they are less likely to be able to
tolerate high-dose methotrexate. This regimen consists of three preoperative 21-day cycles,
where 25 mg/m2 of doxorubicin is given as a bolus once per day from day 1 to day 3,
and 100 mg/m2 of cisplatin is given as a continuous infusion over 24 h on day 1 in each
cycle [129,130]. High-dose methotrexate (MTX) has also been used as a single agent to treat
osteosarcoma, with four courses of 8 to 12 mg/m2 given weekly before surgery [131]. In
this study, we used the average dose, which is 10 mg/m2 of methotrexate injected over 4 h
on day 1 every week for this regimen.

Figure 7 shows that MTX and AP regimens both had higher cancer cell populations
after treatment than MAP. This agrees with the finding from [132]: that the AP regimen
is less effective but safer than the MAP regimen. Meanwhile, MTX as a single agent was
reported to be insufficient as a neoadjuvant therapy for osteosarcoma in [131], which used
the same MTX dosages and schedules as this study. Overall, according to our model,
MAP is the superior treatment to MTX and AP in terms of cancer-killing ability. In fact, a
recent study reports that MAP is still the favorable option for osteosarcoma among various
combinations of chemotherapy drugs [133].

The AP regimen has relatively similar dynamics of cells and cytokines as the MAP
regimen. That is, the populations of HMGB1, necrotic cells, and dendritic cells increase
when drugs are given and decrease when no drugs are given; populations of helper
T cells, cytotoxic cells, and IFN-γ decrease less than they increase, so in general they
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increase during treatment; and regulatory T cells, macrophages, and cytokine groups µ1
and µ2 generally decrease in abundance during treatment. The MTX treatment is given
at closer intervals than AP and MAP treatments, so there is always some drug at the
tumor site during MTX treatment. Therefore, the changes in cell populations and cytokine
concentrations over time for MTX regimen are smoother and do not fluctuate as much as
in the other two treatments, even though the dynamics of MTX regimen follow the same
trend as them.

A Treatment with DOX and CDDP

Treatment with MTX as single agentB

Figure 7. Dynamics with different treatment regimens. Sub-figure (A) shows the dynamics of
cells and cytokines in osteosarcoma microenvironment in response to the combination of doxoru-
bicin and cisplatin. Sub-figure (B) shows the dynamics of cells and cytokines in the osteosarcoma
microenvironment in response to a high dose of methotrexate as a single agent.

3.6. Optimal Dosage for MAP Treatment

Since neoadjuvant chemotherapy tries to reduce the boundaries of the tumor before
surgery, we can choose the desired size of tumor for surgery and run our optimization
framework to find the optimal dosages of chemotherapy drugs for the tumor to reach this
size at a specific time. Osteosarcoma sizes vary greatly among patients at first diagno-
sis, and large tumors cannot reduce to the same size as small tumors after neoadjuvant
treatment without exceeding the safe dosages of chemotherapy drugs. Thus, we chose
different desired cancer cell populations to optimize for depending on the size of tumor at
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first diagnosis. With MAP being the preferable treatment for osteosarcoma, as mentioned
in the previous section, here we present the optimal dosages of the MAP regimen for
large and small tumors in each cluster; the desired cancer cell population is 2.916× 109

for large tumors and 1.36× 108 for small tumors, which is equivalent to about 5 cm per
dimension (length, width, depth) for large tumors and 1.8 cm per dimension for small
tumors. We used 20,000 mg/m2 of methotrexate, 45 mg/m2 of doxorubicin, and 75 mg/m2

of cisplatin per infusion day as maximum potential dosage, or equivalently 40,000 mg/m2

of methotrexate, 90 mg/m2 of doxorubicin, and 150 mg/m2 of cisplatin per 35-day cycle.
The optimal dosages for large tumors are given in Table 5. Large tumors were taken to

be the steady state values of each cluster. As cluster 2 had the highest cancer cell population
at the steady state, it had the highest optimal dosage for each drug of the MAP treatment
among all clusters. Interestingly, clusters 1 and 3 had the same cancer cell population
before treatment, but cluster 1 needed a higher dosage to achieve the same cancer cell
population after the treatment as cluster 3. This was due to the fact that cluster 1’s cancer
cells grew faster during treatment, so the same dosage of drugs resulted in a higher cancer
cell population in cluster 1 than in cluster 3 after treatment, as seen in Section 3.1. Thus, it
is important to take the tumor growth rate of the patient into account while finding the
optimal dosage of chemotherapy.

Figure 8A shows that cancer cells in cluster 1 also grow fast after treatment, so it would
be ideal to perform surgery quickly after neoadjuvant therapy. If it is impossible to start
surgery promptly, we can choose a later time point to optimize for, so that at the time of
surgery we still have the desired tumor size for resection. For example, if we cannot perform
surgery until a month after chemotherapy, instead of using the cancer cell population at
day 80 for optimization, which is 3 days after the second cycle of chemotherapy, we can use
the cancer cell population at day 107 for optimization to find the optimal dosage, which is
30 days after the second cycle of chemotherapy. Then with the estimated optimal dosage,
we will have the desired cancer cell population at day 107, which is the time of surgery.

The optimal dosages for a small tumor in each cluster are given in Table 6. Small
tumors were chosen with the same method as described in Section 3.4. The cancer cell
populations in these small tumors were not much larger than the desired cancer cell
population after treatment, so in all clusters the optimal dosages for small tumors are much
smaller than the optimal dosages for large tumors. Cluster 3 particularly, whose cancer cell
population before treatment was very close to the desired cancer cell population, has very
small optimal dosages.

Table 5. Optimal MAP dosages for large tumors.

Cluster
Initial Cancer Cancer Population MTX DOX CDDP

Population after Treatment (mg/m2) (mg/m2) (mg/m2)

1 1.34× 1010 2.916× 109 8993 28 45
2 1.6× 1010 2.916× 109 10,134 32 51
3 1.34× 1010 2.916× 109 6176 19 31

Table 6. Optimal MAP dosages for small tumors.

Cluster
Initial Cancer Cell

MTX DOX CDDPCancer Cell
Population

Population
after Treatment (mg/m2) (mg/m2) (mg/m2)

1 2.7× 108 1.36× 108 4926 15 25
2 3.07× 108 1.36× 108 4196 13 21
3 1.93× 108 1.36× 108 1305 3 6

In many cases, even though the tumor is small enough for resection, neoadjuvant
chemotherapy is still given to remove any potential metastases that are too small to be
yet detected. Another reason for neoadjuvant chemotherapy in small tumors is to allow



Cells 2021, 10, 2009 21 of 33

evaluation of the tumor response [39]. Figure 8B suggests that although chemotherapy
does not reduce cancer cell populations significantly as the cancer cell populations are
already small to begin with, it helps prevent the cancer cell populations from growing
bigger before surgery. Therefore, chemotherapy can also be used to control the growth ofa
tumor while the patient waits for surgery.

A B

Figure 8. Dynamics with optimal dosages for MAP treatment. Sub-figure (A) shows the dynamics
of the cancer cell population in a large tumor in each cluster; MAP dosages were optimized to
obtain 2.916× 109 cancer cells after treatment. Sub-figure (B) shows the dynamics of the cancer cell
population in a small tumor in each cluster; MAP dosages were optimized to obtain 1.36× 108 cancer
cells after treatment.

Overall, with our optimization framework, we can find an optimal chemotherapy
dosage to obtain the desired cancer cell population on the day of surgery. Our results
show that it is important to consider each individual patient’s cancer growth rate while
computing the optimal dosage, as patients with faster growth will need higher doses.

4. Discussion

Cancer is a complex disease that consists of various components, such as immune
cells, lymphatic vessels, and tumor cells [134]. Traditional in vivo and in vitro studies often
explore one component of cancer at a time; thus, each study alone does not supply sufficient
knowledge to understand cancer in all its heterogeneity, even though these studies do
provide important insights about the individual cancer components they examine [135].
Mathematical modeling has also been utilized to study the components of cancer, especially
the interactions between immune cells and cancer cells. However, the majority of the
models only included one or two immune cells [136–143]. Only a small subset of them have
investigated the effects of multiple immune cells on cancer growth [52–54]. In addition,
none of these studies applied their models to osteosarcoma. To the best of our knowledge,
our previous work [58] was the first to study the interactions between cancer cells and the
immune system in osteosarcoma.

With the increasing availability of gene expression data for many cancer types and
the growing accuracy of tumor deconvolution methods, utilizing a deconvolution method
on the gene expression data of a tumor to study the various components of the tumor
microenvironment has become a more and more attractive option. Many recent studies
applied the currently best performing deconvolution method, CIBERSORTx, to study the
dynamics of cancer growth or to explore the relationships between clinical information and
immune infiltrates [33,144–146]. In this study, we extended our previous work [58], which
used CIBERSORTx to obtain immune abundances of osteosarcoma tumors and studied
the tumor growth while considering its interactions with immune cells, to investigate the
effects of chemotherapy on the osteosarcoma microenvironment.

Our results indicate that besides reducing the number of cancer cells, chemotherapy
induces specific behaviors in certain immune cells and cytokines by causing necrosis of
cancer cells. In particular, the populations of HMGB1 and dendritic cells increase when
chemotherapy drugs are administered and decrease when these drugs are not given. In
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addition, helper T cells, cytotoxic cells, and IFN-γ generally increase in quantity during
treatment, which aligns with the findings from [35,36,87,90,114–124,126]. Meanwhile, cells
and cytokines that are not affected by this necrotic cell death decrease in abundance due to
being killed by chemotherapy drugs.

We note that it is good to start chemotherapy early, unless the tumor is close to its
steady state, as tumors small or medium in size will grow more while the patient waits
for treatment. It is especially important to start chemotherapy promptly for tumors that
grow fast, such as those in cluster 1. Interestingly, we also noticed that even with the
same initial cancer cell populations and the same dosages, the cancer cell population after
treatment was higher in cluster 1 than in cluster 3 (cluster 3 has slower cancer growth rate
than cluster 1). All of these observations suggest that it is necessary to take the unique
growth rate of the tumor into consideration when choosing the dosage and treatment start
time for the patient, thereby emphasizing the importance of personalized medicine.

In this study, we introduced a simple optimization framework to find the appropriate
drug dosages to achieve a desired cancer cell population on a chosen day, such as the
day of surgery. The results of our optimization also agree with the above observation
that the individual’s cancer growth rate is essential for calculating optimal chemotherapy
dosages. Since high doses of chemotherapy are known to have high toxicity and to induce
many serious health problems [147,148], it could be useful to use a mathematical model
such as ours to estimate the appropriate dose rather than to give the standard dose for all
tumor sizes, especially when small tumors are likely to need far smaller doses than the
standard ones. Moreover, our model divides patients into groups based on their immune
compositions, and thus can estimate their cancer growth more accurately than having
one model for all patients, resulting in a more customized dosage recommendation for
each patient.

Finding the right parameter values is a big challenge in the mathematical modeling
of cancers. While it would be ideal to acquire parameters by performing in vivo and in
vitro experiments, these experiments are often expensive and time-consuming. Therefore,
numerous mathematical models approximate biologically reasonable values for parameters,
or make assumptions about the relationships between parameters to derive their values,
or vary the parameter values within certain ranges to study their effects on the outcomes.
Here, we used chemotherapy-related parameters from a study that fitted these values
to experimental data [84], so our treatment parameters should be more accurate than
those chosen based on biological rationality or derived from assumptions. For the two
parameters that we had to assume appropriate values for, we studied their impacts on the
results through sensitivity analysis and by varying them, and found that different values
of these parameters result in fairly similar outputs with our model.

There are still some factors that our model does not account for. For instance, there
are multiple levels of cancer cell sensitivity to chemotherapy, which means two different
patients can both be resistant to a chemotherapy drug, but one patient might be more
sensitive than the other. Thus, the drug efficacy coefficient of doxorubicin/cisplatin-
resistant cells used in our model does not represent all doxorubicin/cisplatin-resistant drug
efficacies, as these parameters vary based on the levels of resistance of the cells. Despite
that, our model is still useful for dose recommendations or for physicians to take into
consideration while choosing between treatment options. Based on our model, a physician
can monitor the tumor reduction throughout the treatment and adjust parameters such as
drug efficacy coefficients according to how the tumor responds to treatment. However, it
is important to note that although the results of our model align with some experimental
observations in the literature, in vivo experiments should be performed to further validate
our model before it can be utilized in clinic.

The chemotherapy-induced death rates of immune cells in our model were all approx-
imated to be 0.6, so technically we could use one parameter to represent all of them. How-
ever, since chemotherapy targets cells with faster metabolic rates more successfully [89],
it is reasonable to expect that the death rates via chemotherapy differ between types of
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immune cells. Therefore, by keeping these death rates as separate parameters, our model
can be easily improved by updating the rates of chemotherapy-induced death for immune
cells in proportion to their metabolic rates. Other ways to improve upon this work include
adding other chemotherapy drugs, such as ifosfamide, which is also a commonly used
drug for osteosarcoma [39,40]; using partial differential equations to take into account the
spatial distribution of the tumors as well; or extending it to different treatment options,
such as radiotherapy and immunotherapy. To use our model for another type of treatment,
one has to replace chemotherapy with the treatment of interest and include the interactions
between that treatment and the tumor microenvironment.

5. Conclusions

In this study, we developed a mathematical model for the interaction network between
the most common chemotherapy drugs and the key components of osteosarcoma microen-
vironment. We found that during chemotherapy, dendritic cells and HMGB1 increase in
population when drugs are given and decrease in population while the patient waits for the
next dose of drugs. Helper T cells, cytotoxic cells, and IFN-γ increase in abundance overall.
Other cells and cytokines of the microenvironment that do not succumb to necrotic cell
death have reduced populations after the treatment. Overall, the MAP regimen is effective
at minimizing the number of cancer cells, and works better than methotrexate alone or
a combination of doxorubicin and cisplatin. Our study also suggests the importance of
considering the unique growth rate of the tumor when deciding on the dosage and the
treatment start time for a patient, because fast growing tumors require higher dosages and
earlier starts to treatment than slow growing tumors, as shown in our results.
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HMGB1 High mobility group box 1
DAMP Damage-associated molecular pattern
NK Natural killer

Appendix A. ODE System and Non-Dimensionalization
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