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Abstract: Glomerulonephritis are renal inflammatory processes characterized by increased permeabil-
ity of the Glomerular Filtration Barrier (GFB) with consequent hematuria and proteinuria. Glomerular
endothelial cells (GEC) and podocytes are part of the GFB and contribute to the maintenance of its
structural and functional integrity through the release of paracrine mediators. Activation of the com-
plement cascade and pro-inflammatory cytokines (CK) such as Tumor Necrosis Factor α (TNF-α) and
Interleukin-6 (IL-6) can alter GFB function, causing acute glomerular injury and progression toward
chronic kidney disease. Endothelial Progenitor Cells (EPC) are bone-marrow-derived hematopoietic
stem cells circulating in peripheral blood and able to induce angiogenesis and to repair injured
endothelium by releasing paracrine mediators including Extracellular Vesicles (EVs), microparticles
involved in intercellular communication by transferring proteins, lipids, and genetic material (mRNA,
microRNA, lncRNA) to target cells. We have previously demonstrated that EPC-derived EVs activate
an angiogenic program in quiescent endothelial cells and renoprotection in different experimental
models. The aim of the present study was to evaluate in vitro the protective effect of EPC-derived
EVs on GECs and podocytes cultured in detrimental conditions with CKs (TNF-α/IL-6) and the
complement protein C5a. EVs were internalized in both GECs and podocytes mainly through a
L-selectin-based mechanism. In GECs, EVs enhanced the formation of capillary-like structures and
cell migration by modulating gene expression and inducing the release of growth factors such as
VEGF-A and HGF. In the presence of CKs, and C5a, EPC-derived EVs protected GECs from apoptosis
by decreasing oxidative stress and prevented leukocyte adhesion by inhibiting the expression of adhe-
sion molecules (ICAM-1, VCAM-1, E-selectin). On podocytes, EVs inhibited apoptosis and prevented
nephrin shedding induced by CKs and C5a. In a co-culture model of GECs/podocytes that mimicked
GFB, EPC-derived EVs protected cell function and permeselectivity from inflammatory-mediated
damage. Moreover, RNase pre-treatment of EVs abrogated their protective effects, suggesting the
crucial role of RNA transfer from EVs to damaged glomerular cells. In conclusion, EPC-derived EVs
preserved GFB integrity from complement- and cytokine-induced damage, suggesting their potential
role as therapeutic agents for drug-resistant glomerulonephritis.
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1. Introduction

The glomerulus is a crew of capillaries implicated in the ultrafiltration processes
of the kidney. The glomerular capillary wall is composed of three layers: a fenestrated
endothelium of glomerular endothelial cells, a glycocalyx with a complex mesh of proteins
called glomerular basement membrane (GBM), and a layer of specialized visceral epithelial
cells called podocytes [1]. Glomerular Filtration Barrier (GFB) has a very high hydraulic
permeability combined with a marked selective permeability that excludes macromolecules
such as albumin. Therefore, GFB retains most of the plasma proteins, with only 0.06% of
albumin getting across the GBM [2]. In particular, podocytes constitute the slit diaphragms
between their inter-digitating foot processes that prevent large molecules from reaching
the urinary space [3]. The expression of nephrin in the podocyte slit diaphragm is crucial
for maintaining GFB selectivity [4]. Injury to any of these three components can result in
the development of proteinuria. In addition to external factors, several paracrine mediators
released by resident glomerular or immune cells strictly regulate GFB integrity in precise
cellular crosstalk [5,6]. In particular, the glomerular microenvironment maintains GEC
function stimulating expression of endothelial receptors such as Platelet Endothelial Cell
Adhesion Molecule-1 (PECAM-1) and Vascular Endothelial Growth Factor Receptor-2
(VEGFR-2) [7]. On podocytes, this crosstalk preserves cell function by maintaining the
expression of nephrin [8,9]. Following GEC damage, different growth factors stimulate
the migration of surviving cells to the injured site to repair vessels triggering angiogene-
sis [10,11].

Glomerulonephritis are inflammatory diseases affecting renal glomeruli able to com-
promise their filtering capacity and leading to chronic renal failure due to progressive
fibrotic damage [12]. Activation of the complement cascade is a key factor for glomeru-
lonephritis development and progression [13]. Complement protein fragment C5a induces
the synthesis of pro-inflammatory cytokines (CKs) such as Interleukin-6 (IL-6) and Tumor
Necrosis Factor (TNF-α) in the kidney, thus amplifying tissue damage [14,15]. TNF-α
also increases the production of reactive oxygen species (ROS) [16] that produce multi-
ple biological effects on glomeruli, including apoptosis or programmed cell death [17];
TNF-α induces in GECs an inflammatory phenotype by increasing interleukin-6 (IL-6)
release and membrane expression of adhesion molecules such as ICAM-1, VCAM-1 and
E-selectin [18,19]: these biological changes increase vascular permeability and leukocyte mi-
gration [17,20,21]. Moreover, TNF-α induces cell injury and loss of nephrin expression on
podocytes disrupting the glomerular slit diaphragm [9,22,23]. IL-6 has an equally important
role in glomerular cells, increasing inflammation and the recruitment of leukocytes [24].

Several studies have suggested that bone marrow-derived stem cells can repair injured
glomeruli in experimental glomerulonephritis models [25,26]. In this context, endothelial
progenitor cells (EPCs) are adult stem cells circulating in the peripheral blood to localize
within sites of endothelial injury, triggering a regenerative program [27]. EPCs express
both stem cell (CD34, CD133) and endothelial (VEGFR2, CD31) markers but they do not
express monocyte (CD14) and platelet (P-selectin, CD41, CD42b) proteins [28,29]. Adhesion,
tethering and rolling process of EPCs on endothelial cells is mediated by surface molecules
such as L-selectin and various integrins [28,29].

At the level of the renal glomeruli, the main L-selectin ligands are the members of the
CD34-superfamily, such as CD34 and podocalyxin [30]. In addition, the modification of
the glycidic residues, such as the fucosylation of these molecules potentially induced by
different injurious stimuli may allow the binding to L-selectin [28].

Injection of EPCs in experimental models of glomerulonephritis in rats with IgA
nephropathy lowered disease progression by down-regulating the expression of inflamma-
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tory factors [31]; moreover, intra-renal injection of EPCs in the experimental rat model of
Thy1.1 glomerulonephritis demonstrated a significant reduction of endothelial injury and
complement-mediated mesangial cell activation [32].

The regenerative effect of EPCs is mainly ascribed to their ability to release paracrine
mediators such as growth factors and extracellular vesicles (EVs) [33,34]. EVs have a
critical role in intercellular communication by transferring proteins, lipids, and genetic
information: EVs include different families such as exosomes and shedding vesicles that
differ in size and intracellular formation [35,36]. We have previously demonstrated that
EVs released from EPCs-activated angiogenesis in quiescent endothelial cells through
the horizontal transfer of mRNAs [34]; moreover, we also observed that EVs protected
the kidney from acute ischaemic injury by delivering pro-angiogenic and anti-apoptotic
microRNAs [37]. Last, in the anti-Thy1.1 glomerulonephritis experimental model, we
found EPC-derived EVs localized within injured glomeruli and inhibited complement-
mediated mesangiolysis [38]. To demonstrate that the RNAs carried by the EVs mediated
these effects, we have also investigated the biological effect of the EVs after treatment with
the RNase, the enzyme able to degrade RNA [34,37,38].

In this study, we studied in vitro the protective effects of EPC-derived EVs on GECs
and podocytes cultured with TNF-α, IL-6, and C5a, in an inflammatory microenvironment
resembling that observed in glomerulonephritis.

2. Materials and Methods
2.1. Isolation and Characterization of Human EPCs

EPCs were isolated by density centrifugation from peripheral blood mononuclear cells
(PBMC) of healthy donors, characterized and maintained in culture on fibronectin-coated
plates as previously described [28].

2.2. Isolation and Characterization of Human EPC-Derived EVs

EVs were obtained from EPC supernatants by ultracentrifugation (Beckman Coulter
Optima L-90K ultracentrifuge; Beckman Coulter, Fullerton, CA, USA) and characterized as
previously described [34,37]. We resuspended EVs pellets in medium 199; we quantified
protein content by the Bradford method (BioRad, Hercules, CA, USA), and we evaluated
EV concentration, shape, and size by transmission electron microscopy and Nanosight
analysis [37]: we stored EVs at−80 ◦C until use. In selected experiments, EVs were labelled
with the red fluorescent dye PKH26 (Sigma Aldrich, St. Louis, MO, USA) or treated with
1 U/mL RNase (Ambion, Austin, TX, USA) [34].

2.2.1. Nanoparticle Tracking Analysis

EPC-derived EV preparations were diluted (1:1000) in sterile 0.9% saline solution and
analyzed by Nanosight LM10 (Nanosight, Amesbury, UK) equipped with the Nanoparticle
Analysis System and NTA 1.4 Analytical Software. The Nanoparticle Tracking Analysis
software allows the analysis of particle movement under Brownian motion in videos cap-
tured by Nanosight LM10 and calculates the diffusion coefficient, sphere equivalent, and
hydrodynamic radius of particles by using the Strokes–Einstein equation. The concentra-
tion of EVs in supernatants was obtained by multiplying the instrument microparticles/mL
value for the dilution. In addition, we analyzed all information on the size of the EVs in
nm: mean, mode, median.

2.2.2. RNA Extraction and Analysis

Total RNA from EPC-derived EVs was extracted using mirVana kit (Life Technologies,
Carlsbad, CA, USA) and analyzed by NanoDrop1000 spectrophotometer. In addition, we
assessed RNA quality by capillary electrophoresis on an Agilent 2100 Bioanalyzer (Agilent
Technologies, Inc., Santa Clara, CA, USA) where the presence of total RNA (Agilent RNA
6000 Pico kit) and small RNAs (Agilent Small RNA kit) following manufacturer’s protocol.
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2.2.3. Guava FACS Analysis

FACS analysis was performed by the Guava easyCyte Flow Cytometer (Millipore,
Billerica, MA, United States) and analyzed with InCyte software using the following FITC-,
PE- or APC- conjugated antibodies: α4-integrin, α6-integrin (Miltenyi Biotec, Bergisch
Gladbach, Germany), β1-integrin, L-selectin (BD Biosciences), αVβ3-integrin (Biolegend,
San Diego, CA, USA). FITC, PE or APC mouse isotypic IgG (Miltenyi Biotec) were used as
negative controls. Briefly, EPC-derived EVs (5 × 108 particles) were resuspended in 100 µL
of 0.1 µm filtered saline solution and incubated with antibodies for 15 min at 4 ◦C; then
samples were diluted in 200 µL filtered saline solution and acquired by the instrument.

2.3. Isolation and Characterization of Human Renal Glomerular Cells

Primary cultures of human glomerular endothelial cells (GECs) and podocytes were
isolated from glomeruli from the cortical segment of kidneys of patients undergoing
surgery for renal carcinomas. Cells were characterized and immortalized to obtain cell lines
as previously described [39,40]. We cultured GEC lines in vitro on gelatin-coated flasks
on EBM medium containing endothelial growth factors (Lonza, Basel, Switzerland) and
podocyte cell lines in DMEM (GIBCO). All mediums contained 10% Fetal Bovine Serum
(FBS, Hyclone, Logan, UT, USA) and 2 mM glutamine (GIBCO): for experimental proce-
dures, we plated all cell lines in multi-well plates (Falcon Labware, Oxnard, CA, USA) [41].
In selected experiments, we incubated cells in an appropriate medium containing 20 ng/mL
tumor necrosis factor (TNF)-α (Sigma Aldrich), 2.5 ng/mL IL-6, and 50 ng/mL human re-
combinant C5a protein (R&D Systems, Minneapolis, MN, USA) in the presence or absence
of different concentrations of EPC-derived EVs assessed by Nanosight analysis.

2.4. Internalization of EPC-Derived EVs in GECs and Podocytes

We cultured GECs and podocytes on six-well plates or chamber slides (Thermo
Scientific, Waltham, MA, USA). We incubated cells with PKH26-labelled EVs for 1 h, and
then cells seeded on chamber slides were fixed with paraformaldehyde (Sigma Aldrich),
nuclei were counterstained in blue by 2.5 µg/mL Hoechst (Sigma Aldrich), evaluated by
confocal microscopy (Zeiss LSM 5 PASCAL, Jena, Germany). Cells cultured on six-well
plates were detached by EDTA (Sigma) and analyzed by FACS (FACS Calibur, Becton
Dickinson, Franklin Lakes, NJ, USA). In selected experiments, PKH26-labelled EVs were
pre-incubated with 1 µg/mL of different antibodies directed to block the binding to αVβ-3
integrin (Biolegend, San Diego, CA, USA), α4-integrin, α6-integrin (Chemicon, Temecula,
CA), CD29 or L-selectin (Becton Dickinson).

2.5. In Vitro Studies on Human GECs and Podocytes
2.5.1. Angiogenesis

We studied the formation of capillary-like structures of GECs cultivated overnight on
growth-factor reduced Matrigel (Becton Dickinson) on 24-well plates (5 × 104 for well). We
observed GECs under an inverted microscope at ×100 magnification (Leica DM IRE2 HC,
Leica Microsystem, Deerfield, IL, USA).

2.5.2. Proliferation

The 5 × 103 GECs for the well were cultured on 96-well plates and incubated for 24 h
with appropriate stimuli. GECs were then incubated for 24 h with 10 µM BrdU (Roche Di-
agnostics, Mannheim, Germany) and then analyzed in an automatized spectrophotometer
at a wavelength of 405 nm, following the protocol of the manufacturer.

2.5.3. Migration

We studied GEC migration under an inverted microscope. We calculated the net
migratory speed using the MicroImage software (Casti Imaging, Venice, Italy) based on
the straight-line distance between the starting and ending points divided by the time
of observation.
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2.5.4. Gene Array Analysis

We used the Human GEarray kit to study angiogenesis on GECs (SuperArray Inc.,
Bethesda, MD, USA) to characterize the gene expression profile of cells cultured in the pres-
ence or absence of EVs. Microarray data archive: E-MEXP-3762, European Bioinformatics
Institute: https://www.ebi.ac.uk/arrayexpress/experiments/E-MEXP-3762/, accessed on
30 November 2020).

2.5.5. Prediction of miRNAs- Target Genes Interaction

We used miRNet (https://www.mirnet.ca/, accessed on 13 December 2020), a bioinfor-
matics software that gives information about miRNA-target interactions and displays the
association in a visual network [42]. We predict miRNAs involved in the down-regulation
of the 16 genes identified by gene array analysis after searching in the miRNet human
kidney database. We compared the suggested miRNAs by miRNet with previously iden-
tified miRNAs of EPC-derived EVs. (E-MEXP-2956, European Bioinformatics Institute:
www.ebi.ac.uk/arrayexpress/, accessed on 13 December 2020) [37].

2.5.6. ELISA

We analyzed GEC supernatants for VEGF-A and HGF levels by ELISA (R&D Systems).
We estimated their concentrations by generating a standard curve with appropriate controls
according to the manufacturer.

2.5.7. Immunofluorescence Studies

After appropriate stimuli for 24 h, GECs cultured in chamber slides were fixed with
ethanol-acetic acid 2:1 and stained for 1 h at 4 ◦C with a polyclonal antibody directed to anti-
VEGF or anti-CD31 (Santa Cruz Biotech, Santa Cruz, CA, USA). After extensive washing,
GECs were incubated for 1 h at 4 ◦C with appropriate anti-isotype Alexa fluor-conjugated
antibodies (Life Technologies, Carlsbad, CA, USA). We fixed cells with paraformaldehyde,
performed nuclei counterstaining with 1 µg/mL propidium iodide (Sigma Aldrich), and
analyzed samples on fluorescence microscopy ×400 magnification (Leica DM LA, Leica
Microsystem). We assessed fluorescence intensity in 10 different microscopic fields for each
experimental point by the ImageJ program (NIH, Bethesda, MD, USA).

In experiments with podocytes, after appropriate stimuli, we fixed cells in 4% paraformalde-
hyde for 15 min at 4 ◦C and incubated for 1 h at 4 ◦C with polyclonal antibody GP-N1
(Progen Biotechnik GmbH, Heidelberg, DE) to bind nephrin. After washing, we performed
incubation for 40 min at 4 ◦C with Alexa Fluor-conjugated (Life Technologies) anti-guinea
pig secondary antibodies. Finally, we performed nuclei counterstaining with 1 µg/mL
propidium iodide (Sigma Aldrich), and we proceed to analyze samples on fluorescence
microscopy at ×400 magnification (Leica DM LA, Leica Microsystem).

2.5.8. PMN and PBMC Adhesion

After 12 h of stimulation in 24-well, we incubated GECs for 1 h with 5 × 104/well
polymorphonuclear neutrophils (PMNs) or PBMCs isolated from healthy volunteers
and labelled with a 10 µm Vybrant cell tracer (Life Technologies). We fixed cells with
paraformaldehyde, performed nuclei counterstaining with 1 µg/mL propidium iodide,
and analyzed samples on fluorescence microscopy at ×400 magnification (Leica DM LA,
Leica Microsystem). Samples were analyzed under a fluorescence microscope, count-
ing green-stained cells in 10 different microscopic fields at ×200 magnification for each
experimental point.

2.5.9. FACS Analysis

We seeded GECs on six-well plates, and after appropriate stimuli for 24 h, cells were
detached by EDTA and stained for 30 min at 4 ◦C with FITC- or PE-conjugated antibodies
directed to bind ICAM-1, VCAM-1, E-Selectin (Beckton Dickinson). We used appropri-
ate FITC- or PE-conjugated isotype antibodies as a negative control; FACS analysis was

https://www.ebi.ac.uk/arrayexpress/experiments/E-MEXP-3762/
https://www.mirnet.ca/
www.ebi.ac.uk/arrayexpress/
www.ebi.ac.uk/arrayexpress/
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performed after fixation with paraformaldehyde 4% for 15 min at 4 ◦C. After appropriate
stimuli, we detached cells by EDTA solution in experiments with podocytes, and we fixed
cells with 4% paraformaldehyde solution for 15 min at 4 ◦C. We incubated cells with
polyclonal antibody GP-N1, and after washing, we stained cells with FITC- (Sigma Aldrich)
anti-guinea pig secondary antibodies incubation for 40 min at 4 ◦C before proceeding to
FACS analysis.

2.5.10. Cytotoxicity Assay

The 5 × 104 GECs or podocytes were cultured on 24-wells and incubated for 24 h
in different experimental conditions. At the end of this period, we incubated cells with
XTT (Trevigen, Gaithersburg, MD, USA) in a medium lacking phenol red. After 1 h, we
analyzed samples in an automatized spectrophotometer at a wavelength of 450 nm.

2.5.11. Apoptosis

2 × 104 GECs or podocytes were cultured on 96-well plates, incubated for 24 h
with different stimuli, and then subjected to TUNEL assay following the manufacturer’s
instructions (Apop-Tag; Oncor, Gaithersburg, MD, USA). Samples were analyzed under a
fluorescence microscope, counting green-stained apoptotic cells in 10 different microscopic
fields at ×100 magnification for each experimental point.

2.5.12. Reactive Oxygen Species (ROS) Detection Assay

After 12 h of stimulation, we added 5-(and-6)-carboxy-2′,7′-dichlorodihydrofluorescein
diacetate (carboxy-H2DCFDA) to GECs following the instructions of the manufacture
(Image-iT LIVE Green ROS Detection Kit, Life Technologies); after 30 min cells were an-
alyzed by FACS and immunofluorescence studies on confocal microscopy, as previously
reported [43].

2.5.13. Co-Culture of GECs and Podocytes

We seeded GECs on 24-well plates and stimulated them for 24 h. Then we changed
the medium and put them on collagen-coated transwells with podocyte monolayers for
24 h (Corning Costar Corp., Cambridge, MA, USA). After stimulation, we put transwells
in new plates, and we measured cytotoxicity, cell polarity, and permeability to albumin.
For cytotoxicity, we used 250 µg/mL XTT (Sigma Aldrich) solution. Supernatants and
filtrates were collected after 2 hr. and analyzed at a wavelength of 450 nm. Cell polarity
was analyzed by measuring trans-epithelial electrical resistance (TEER) with an epithelial
volt-ohm meter (EVOM, World Precision Instruments, Inc., Sarasota, FL, USA). We also
evaluated permeability to albumin by diffusion of Trypan blue-albumin complexes across
transwells. Aliquots of the medium from the upper and the lower wells were transferred
to a 96-well plate and analyzed at the 590 nm wavelength (Model 680 Spectrophotometer,
Biorad, Hercules, CA, USA). Results are expressed as arbitrary units (upper medium
O.D./lower medium O.D.).

2.6. Statistical Analysis

We express all data of different experimental procedures as average ± 1 SD. We
performed statistical analysis with ANOVA by Newmann–Keuls multi comparison test,
and Student’s t-test when indicated. For FACS data, we performed the Kolmogorov
Smirnov nonparametric statistical test. The significance level for all tests was set at p < 0.05.
Data were analyzed using the GraphPad Prism 8.0.2 software. Data are expressed as
mean ± 1 SD.

3. Results
3.1. Internalization of EPC-Derived EVs in Human Glomerular Cells

As shown by confocal microscopy studies (Figure 1A), we observed that PKH26
red-labeled EVs were efficiently internalized in vitro in GECs as well as in podocytes.
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FACS analysis showed that EVs stained both glomerular cell lines in a dose-dependent
manner (Figure 1B). These results confirmed our previous in vivo findings on EV cell
internalization in experimental Thy1.1 glomerulonephritis [38]. In selected experiments,
we pre-incubated EVs with specific blocking antibodies (Ab), observing that Ab directed
to L-selectin significantly inhibited EV internalization in both cell lines by approximately
50% (GECs positive control: 78.3 ± 3.3%, GECs L-selectin: 39.4 ± 1.5%; podocytes positive
control: 58.9 ± 1.8%, podocytes L-selectin: 25.8 ± 2.2%; Figure 1C). By contrast, Abs
directed to α4, α6, β1, and αVβ3 integrins affected less significantly EV internalization
in GECs (αVβ3-integrin 64.7 ± 1.5%, β1-integrin 63.6 ± 1.7%, α6-integrin 71.2 ± 1.4%,
α4-integrin 62.1 ± 1.7%, Figure 1C) and podocytes (αVβ3-integrin 37.2± 3.3%, β1-integrin
39.5 ± 2.5%, α6-integrin 51.4 ± 2.1%, α4-integrin 34.5 ± 1.5%, Figure 1C). The characteri-
zation of GECs and podocytes confirmed the importance of L-selectin in the internalization
process. Both cell lines expressed L-selectin ligands in vitro. In particular, GECs ex-
pressed CD34, podocalyxin and fucosylated residues recognized by UEA-I lectin, whereas
podocytes only expressed podocalyxin (Figure A1, Appendix B).

3.2. Effects of RNase Pre-Treatment of EPC-Derived EVs on Internalization in GECs and Podocytes

We compared the biological effects of EVs pre-treated with RNase with untreated
EVs. We first observed that RNase did not change EV concentration. However, there
was a significant reduction in size among the largest particles (Figure 2A,B). Of note, pre-
treatment of EVs with RNase caused total RNA degradation (Figure 2C,D). In contrast,
RNAse did not affect protein expression of EPC-derived EVs: L-selectin (EV: 52.9 ± 6.1%;
EV RNase: 51.6 ± 6.7%), α4 (EV: 21.1 ± 6.1%; EV RNase: 20.4 ± 7.5%), α6 (EV: 18.6 ± 2.4%;
EV RNase: 18.4 ± 4.5%), β1 (EV: 15.9 ± 3.9%; EV RNase: 16.6 ± 4.6%), αVβ3 integrin (EV:
23.8 ± 5.2%; EV RNase: 23.1 ± 4.5%), are comparably expressed in untreated and RNase
pre-treated EVs (Figure 2E). Treatment with RNase did not affect the internalization of
EPC-derived EVs in both GECs (EV: 80.5 ± 2.4%, EV RNase 81.3 ± 2.9%, Figure 2F) and
podocytes (EV: 57.8 ± 2.9%, EV RNase 58.6 ± 4.4%, Figure 2F).

3.3. EPC-Derived EVs Triggered GEC Angiogenesis

In comparison to vehicle alone, EPC-derived EVs significantly enhanced (four-fold
increase) the formation of capillary-like structures on Matrigel-coated plates (EV: 46.5 ± 8.8
capillary-like structures/field; vehicle: 11.6± 4.2 capillary-like structures/field; Figure 3A,B),
promoted proliferation (EV: 1.042 ± 0.061 O.D. intensity; vehicle: 0.501 ± 0.103 O.D.
intensity; Figure 3C), and migration by about tripling the speed of GECs in vitro (3 h
EV: 14.2 ± 4.1 mm/hour; 3 h vehicle: 6.5 ± 1.8 mm/hour, Figure 2D) comparable to the
positive control (FBS: 51.3 ± 5.2 capillary-like structures/field, 1.181 ± 0.184 O.D. intensity,
17.3 ± 2.9 mm/hour at 3 h). Pre-treatment of EPC-derived EVs with RNase abrogated
all these effects (EV RNase: 13.8 ± 3. capillary-like structures/field, 0.467 ± 0.081 O.D.
intensity, 5.9 ± 1.9 mm/hour at 3 h, Figure 3).
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Figure 1. Internalization of EPC-derived EVs in human kidney glomerular cells in vitro.
(A) Representative confocal microscopy micrographs showing the internalization of 25 µg/mL
(25*109 particles/mL) PKH26 red dye-labelled EPC derived EVs in human GECs and podocytes.
Nuclei were counterstained in blue by 2.5 µg/mL Hoechst (magnification x400, scale bar 50 µm).
(B) Representative FACS analysis of dose-response PKH26-labelled EV internalization in human
GECs and podocytes. (C) graph showing FACS analysis of PKH26-labelled EV internalization in
GECs and podocytes. We expressed results as the mean percentage of positive cells ± 1 SD. ANOVA
performed statistical analysis with Newmann–Keuls’s multiple comparison test and the Kolmogorov–
Smirnov test. Pre-incubation of all cell lines with PKH26-labelled EVs with 1 µg/mL blocking
mAb directed to L-selectin significantly inhibited EV internalization compared to a positive control
(* p < 0.05 L-selectin vs. Positive Control). The inhibition of internalization was not modulated
when PKH26-labeled EVs were pre-incubated with blocking mAbs directed to α4, β1, αVβ3 integrin
(§ p < 0.05 α4, β1 or αVβ3 vs. L-selectin; * p < 0.05 α4, β1 or αvβ3 vs. Positive Control), in particular
with the mAb directed to α6 integrin (# p < 0.05 α6 vs. α4, β1 or αVβ3; § p < 0.05 α6 vs. L-selectin;
* p < 0.05 α6 vs. Positive Control). We performed three experiments with similar results.
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Figure 2. Characterization and internalization of EPC-derived EVs EVs pre-treated or not with 1 U/mL RNase.
(A,B) Nanosight analysis of purified EVs (A) and EVs pre-treated with RNase (B); the open curve shows the relationship
between particle number distributions (left Y-axis) and particle size (X-axis). The curve has a red border because it takes into
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account the analyzes of 3 samples. No statistical differences are observed after RNase treatment in terms of mode
size (EV 144.4 ± 4.8 nm vs. EV RNase 143.8 ± 4.7 nm), and 10th percentile size (D10, EV 127.0 ± 3.5 nm vs. EV
RNase 127.3 ± 3.6 nm), median size (D50, EV 175.1 ± 8.0 nm vs. EV RNase 164.7 ± 4.3 nm) particle concentration
(EV 8.28 × 108 ± 3.34 × 107 particles/mL vs. EV RNase 8.65 × 108 ± 3.06 × 107 particles/mL). We observed statistical dif-
ference of mean size (* p < 0.05, EV 205.0± 3.1 nm vs. EV RNase 185.1± 4.6 nm) and 90th percentile size (D90, * p < 0.05, EV
346.3 ± 4.7 nm vs. EV RNase 259.9 ± 6.5 nm). Results are expressed as Average number ± 1 SD. (C,D) Representative bioan-
alyzer micrographs showing the total RNA (C) and small RNA (D) content of EVs treated with vehicle alone or with 1 U/mL
RNase. In C we can see an RNA content mainly small RNAs in the EVs, peaked at 25 nucleotides in size, RNA Concentration
(1.165 pg/µL) and RNA Integrity Number (RIN) is 2.6; in the sample of EVs pre-treated with RNAse, RNA is degraded
as shown by the representative curve, the reduced concentration value on the y axis and RIN is undetermined. In (D),
small RNAs profiling in EVs is reported: small RNA Concentration (6848,3 pg/µL), miRNA Concentration (2974,4 pg/µL),
miRNA/Small RNA Ratio (43%). In the sample of EVs pre-treated with 1 U/mL RNAse, RNA is degraded as shown by
the representative curve and inability to calculate any value and index of integrity and concentration. (E) GUAVA FACS
showing protein expression in EVs and EVs pre-treated with 1 U/mL RNase. There are no statistically significant differences
between untreated (white columns) and RNase pre-treated EVs (black columns) in terms of L-selectin, α4, α6, β1, αVβ3
integrin expression. We expressed results as the mean of the percentage of fluorescent-positive microparticles ± 1 SD. (F)
Internalization of untreated and 1 U/mL RNase pre-treated EVs human kidney glomerular cells. Graph showing FACS
analysis of PKH26-labelled untreated (white columns) and PKH26-labelled 1 U/mL RNase pre-treated EV (black columns)
internalization in GECs and podocytes. We expressed results as the mean of the percentage of positive cells ± 1 SD. We
performed three experiments and the statistical analysis by ANOVA with Newmann–Keuls’s multiple comparison test and
the Kolmogorov–Smirnov test.

As demonstrated by PCR array, EPC-derived EVs modulated the expression of dif-
ferent genes involved in GEC angiogenesis (Figure 4). In particular, EPC-derived EVs
increased the expression of the following genes: ANGPT1, ANPEP, CDH5, COL18A1,
CXCL10, CXCL9, EFNA3, ENG, EREG, FGFR3, FLT1, HAND2, HGF, ID1, IFNA1, IFNB1,
IFNG, IGF1, IL1B, ITGB3, JAG1, KDR, LECT1, LEP, MMP9, NOTCH4, PDGFA, PECAM1,
PF4, PGF, PLAU, TGF-β1. We also observed 16 genes involved in GEC angiogenesis down-
regulated by EVs: ANGPTL3, BAI1, COL4A3, CXCL1, CXCL6, S1PR1, EPHB4, FGF1, FGF2,
FIGF, HPSE, ITGAV, LAMA5, NRP2, TGF-β2, THBS1. The significance of this data at the
PCR array was confirmed by qRT-PCR analysis (Figure A2, Appendix B). In particular,
gene expression increased four-fold for FLT1, HAND2, HGF, IGF1, KDR, LEP, MMP9, in
the presence of EVs. Instead, the genes that are reduced by three times are ANGPTL3,
S1PR1, FIGF, and THBS1.

Next, we analyzed the potential interacting miRNAs with these inhibited genes
through the miRNet bioinformatic platform. Among the different suggested miRNAs, we
confirmed the presence of 16 miRNAs carried by EPC-derived EVs that we had previously-
identified [36]: miR-137; miR-142-3p; miR-142-5p; miR-17-3p; miR-17-5p; miR-18a; miR-19a;
miR-30a-3p; miR-30e-3p; miR-30a-5p; miR-30e-5p; miR-324-5p; miR-425-5p; miR-484; miR-
650 (Figure 5A). These molecules interact with one or more target genes downregulated by
EPC-derived EVs (Figure 5B).
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Figure 3. EPC-derived EVs induced GEC angiogenesis by stimulating proliferation and migration. (A,B) Representative light
microscopy images (A) and count (B) of GECs cultured on Matrigel in vitro in different experimental conditions. Original
magnification ×100; scale bar 50 µm. We expressed data as the average number of capillary-like structures/field ± 1 SD.
(C,D) Analysis of GEC proliferation by BrdU assay (C) and migration test on six-well plates after 3, 6, 9, and 12 h (D). For the
BrdU assay, we expressed data as average O.D. intensity ± 1 SD; for migration test, we express the data like average speed
(mm/hour) ± 1 SD. We performed three experiments with similar results; we performed the statistical analysis by ANOVA
with Newmann–Keuls multiple comparison tests and Student’s t-test. In comparison to standard culture conditions with
fetal bovine serum (FBS), serum deprivation (vehicle) inhibited the formation of the number of capillary-like structures per
field (B), proliferation (C), migration (D, * p < 0.05 vehicle vs. FBS). EPC-derived EVs significantly increased these effects
(§ p < 0.05 EV vs. vehicle), that were abrogated by RNase pre-treatment of EVs (# p < 0.05 EV RNase vs. EV). We performed
the statistical analysis by ANOVA with Newman–Keuls multiple comparison test and Student’s t-test.

Immunofluorescence studies (Figure 6A) and FACS analysis (Figure 6B) showed
that EPC-derived EVs significantly up-regulated GEC expression of PECAM-1 and
VEGF-A in comparison to the vehicle (EV PECAM-1 68.3 ± 6.4 arbitrary units, vehicle:
PECAM-1 43.5 ± 8.2 arbitrary units; EV VEGF-A 84 ± 7 arbitrary units, vehicle VEGF-
A 42 ± 3 arbitrary units); moreover, EPC-derived EVs induced a five-fold increase of
VEGF-A (vehicle: 331 ± 81 pg/mL; EV: 1635 ± 219 pg/mL, Figure 6C) and HGF (ve-
hicle: 121 ± 41 pg/mL; EV: 674 ± 163 pg/mL Figure 6D) release in GEC supernatants
as detected by ELISA. These effects were abrogated after incubation of GECs with
EPC-derived EVs pre-treated with RNase (EV RNase: PECAM-1 40.5 ± 10.7 arbitrary
units, VEGF-A 41 ± 4 arbitrary units, VEGF-A 359 ± 70 pg/mL, HGF 138 ± 52 pg/mL,
Figure 6).
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Figure 4. Intracellular pathways involved in glomerular endothelial cells (GEC) angiogenesis induced
by Endothelial Progenitor Cells (EPC)-derived extracellular vesicles (EVs). RT-PCR array analysis of
GEC incubated with EPC-derived EV vs. vehicle alone (angiogenesis-related genes). The graph shows



Cells 2021, 10, 1675 13 of 30

the fold variation of expression of angiogenesis-related genes in GECs stimulated with EVs compared
to GECs treated with vehicle alone. We normalized samples for the signals found in housekeeping
genes (actin β, Hypoxanthine phosphoribosyltransferase 1, Ribosomal protein, large P0, GAPDH, β2-
microglobulin). We performed three different experiments with similar results. Gene table: ANGPT1:
angiopoietin 1; ANGPTL3: Angiopoietin-like 3; ANPEP: Alanyl (membrane) aminopeptidase; BAI1:
Brain-specific angiogenesis inhibitor 1; CDH5: Cadherin 5, type 2 (vascular endothelium); COL18A1:
Collagen, type XVIII, α1; COL4A3: Collagen, type IV, α3 (Goodpasture antigen); CXCL1: Chemokine
(C-X-C motif) ligand 1 (melanoma growth stimulating activity, α); CXCL10: Chemokine (C-X-C motif)
ligand 10; CXCL6: Chemokine (C-X-C motif) ligand 6; CXCL9: Chemokine (C–X–C motif) ligand 9;
S1PR1: Sphingosine-1-phosphate receptor 1; EFNA3: Ephrin-A1; ENG: endoglin/CD105; EPHB4:
EPH receptor B4; EREG: Epiregulin; FGF1: Fibroblast growth factor 1 (acidic); FGF2: Fibroblast
growth factor 2 (basic); FGFR3: Fibroblast growth factor receptor 3; FIGF: C-fos induced growth factor
(vascular endothelial growth factor D); FLT1: vascular endothelial growth factor type 1/vascular
permeability factor receptor; HAND2: hearth and neural crest derivatives expressed; HGF: hepatocyte
growth factor; HPSE: Heparanase; ID1: Inhibitor of DNA binding 1, dominant negative helix-loop-
helix protein; IFNA1: Interferon, α1; IFNB1: Interferon, β1; IFNG: Interferon, γ; IGF1: Insulin-like
growth factor 1 (somatomedin C); IL1B: Interleukin, 1β; ITGAV: Integrin, αV (vitronectin receptor, α
polypeptide, antigen CD51); ITGB3: Integrin, β3 (platelet glycoprotein IIIa, antigen CD61); JAG1:
Jagged 1; KDR: (FLK-1) vascular endothelial growth factor receptor type 2; LAMA5: Laminin Subunit
α5; LECT1: Leukocyte cell derived chemotaxin 1; LEP: Leptin; MMP9: matrix-metal protease 9;
NOTCH4; NRP2: Neuropilin 2; PDGFA: Platelet-derived growth factor α polypeptide; PECAM1:
platelet/endothelial cell adhesion molecule (CD31 antigen); PF4: Platelet factor 4; PGF: placental
growth factor; PLAU: Plasminogen activator, urokinase; TGFB1: Transforming growth factor, β1;
TGFB2: Transforming growth factor, β2; THBS1: Thrombospondin 1.

Figure 5. Cont.
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Figure 5. Network of predicted miRNAs-target genes interaction. (A) We observed 1038 potential
interactions between the miRNAs (blue spots) predicted by miRNet to inhibit the expression of genes
(orange spots). Between the miRNAs we observed that 16 of them, there were 16 miRNAs carried by
EPC-derived EVs (green spots): miR-137; miR-142-3p; miR-142-5p; miR-17-3p; miR-17-5p; miR-18a;
miR-19a; miR-30a-3p; miR-30e-3p; miR-30a-5p; miR-30e-5p; miR-324-3p; miR-425-5p; miR-484; miR-
485-3p, miR-650. (B) Table showing the miRNAs present in EPC-derived EVs and their target genes.
ANGPTL3: Angiopoietin-like 3; COL4A3: Collagen, type IV, α3 (Goodpasture antigen); CXCL1:
Chemokine (C–X–C motif) ligand 1 (melanoma growth stimulating activity, α); CXCL6: Chemokine
(C–X–C motif) ligand 6; S1PR1: Sphingosine-1-phosphate receptor 1; EPHB4: EPH receptor B4; FGF1:
Fibroblast growth factor 1 (acidic); FGF2: Fibroblast growth factor 2 (basic); HPSE: Heparanase;
ITGAV: Integrin, αV (vitronectin receptor, α polypeptide, antigen CD51); LAMA5: Laminin Subunit
α5; NRP2: Neuropilin 2; TGFB2: Transforming growth factor, β2; THBS1: Thrombospondin 1.

3.4. EPC-Derived EVs Protect GECs and Podocytes from Complement- and Cytokine-Mediated Injury

We evaluated the optimal stimulus timing of GECs and podocytes with pro-inflammatory
cytokines 20 ng/mL TNF -α, 2.5 ng/mL IL-6, plus 50 ng/mL human recombinant C5a
protein (CK). We considered 24 h as the optimal timing as there was a highly signifi-
cant difference between the cells treated with CK and those treated with vehicle alone
(Figure A3A,B, Appendix B).

Stimulation with CK has a cytotoxic (CK: 0.22± 0.25 O.D. intensity, vehicle: 1.12 ± 0.16
O.D. intensity, Figure 7A), pro-apoptotic (CK: 36.1 ± 12.6 apoptotic cells/field, vehicle:
4.7 ± 3.2 apoptotic cells/field, Figure 7B) and reactive oxygen species (ROS) production
stimulating effects (CK: 91.4 ± 3.6% of ROS-positive cells, vehicle: 38.6 ± 6.1% of ROS-
positive cells, Figure 7C,D) in comparison to vehicle alone. Then, we evaluated the ideal
dose for stimulating GECs and podocytes with EPC-derived EVs in vitro in detrimental cul-
ture condition (CK) for 24 h (Figure A3C,D, Appendix B). The concentration of 25 µg/mL
(109 microparticles/mL) effectively protected both GECs and podocytes from CK-mediated
cell damage (Figure A3C,D, Appendix B).
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Figure 6. EPC-derived EVs induced GEC angiogenesis through the release of pro-angiogenic factors. (A,B) Representative
immunofluorescence micrographs (A) and quantification on fluorescence intensity of platelet/endothelial cell adhesion
molecule (PECAM-1) and vascular endothelial growth factor (VEGF-A) expression (B, green staining) in GECs. Nuclei
were counterstained with 1 µg/mL propidium iodide; original magnification x100; scale bar: 50 µm. We expressed data
as mean arbitrary units ± 1 SD of three different experiments for quantification on fluorescence intensity. We performed
three experiments with similar results; we performed the statistical analysis by ANOVA with Newmann–Keuls multiple
comparison tests and Student’s t-test. Compared to normal culture conditions with fetal bovine serum (FBS), serum
deprivation (vehicle) inhibited PECAM-1 and VEGF-A expression. EPC-derived EVs significantly increased both protein
expression (§ p < 0.05 EV vs. vehicle), which was abrogated by RNase pre-treatment of EVs (# p < 0.05 EV RNase vs.
EV). (C,D) ELISA for VEGF-A (C) and HGF (D) on supernatants of GECs incubated with different culture conditions. We
expressed results as mean pg/mL ± 1 SD of three different experiments. We performed statistical analysis was performed
by ANOVA with Newman–Keuls multiple comparison test and Student’s t-test. EPC-derived EVs significantly increased
the release of both growth factors by GECs (* p < 0.05 EV vs. vehicle). By contrast, RNase pre-treatment of EVs abrogated
the release of VEGF-A and HGF (§ p < 0.05 EV RNase vs. EV).
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Figure 7. EPC-derived EVs protected GECs from complement- and cytokine-induced damage (A,B). Graphs showing GEC
cytotoxicity by XTT assay (A) and apoptosis by TUNEL assay (B). For XTT assays, data are expressed as average OD intensity
± 1 SD, whereas we expressed TUNEL assays data as the average number of green fluorescent apoptotic cells ± 1 SD. We
performed three experiments with similar results for all the assays and the statistical analysis by ANOVA with Newmann–
Keuls multiple comparison test and Student’s t-test. (C,D) FACS analysis (C) and representative micrographs (D) of ROS
expression of GEC (green staining) by confocal microscopy studies (magnification ×400, scale bar 50 µm). Nuclei were
counterstained in blue by 2.5 µg/mL Hoechst. We performed three experiments with similar results for all the assays, and
we performed the statistical analysis by ANOVA with Newmann–Keuls multiple comparison test and the Kolmogorov–
Smirnov test. Incubation with cytokines 20 ng/mL TNF -α, 2.5 ng/mL IL-6, plus 50 ng/mL human recombinant C5a
protein CKs significantly increased GEC vitality (A), inhibited resistance to apoptosis (B), and increased oxidative stress (C)
in comparison to treatment with vehicle alone (vehicle, * p < 0.05 CK vs. vehicle). EV stimulation significantly inhibited
these effects (§ p < 0.05 CK + EV vs. CK), but not EV were pre-treated with 1 U/mL RNase (# p < 0.05 CK + EV RNase vs.
CK + EV).

Incubation of GECs with EPC-derived EVs significantly maintained viability (0.85 ± 0.25
O.D. intensity, Figure 7A), resistance to apoptosis (10± 4.5 apoptotic cells/field, Figure 7B),
and inhibited ROS production in comparison to cells treated CKs (43.5 ± 10.1% of ROS-
positive cells Figure 7C,D). Pre-treatment of EVs by RNase abrogated the protective effects
in terms of viability (0.35 ± 0.15 O.D. intensity), resistance to apoptosis (32.5 ± 11.2 apop-
totic cells/field, Figure 7B) and limitation of ROS production (86.8 ± 10.6% of ROS-positive
cells Figure 7C,D).

In selected experiments, we evaluated leukocyte adhesion to GEC monolayer after
incubation in different culture conditions. After 24 h, GEC monolayers were washed and
incubated for 2 h with FITC-labelled PBMC or PMN and then samples were evaluated
under a UV light microscope.

CK stimulation doubled the number of PBMCs (vehicle: 12.2± 2.0; CK: 22.2 ± 3.1 adher-
ent PBMCs/field) and quadrupled the number of PMNs (vehicle: 7.6 ± 2.2; CK: 30.8 ± 10.9
adherent PMNs/field) adhering to GEC monolayers (Figure 8A,B).
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Figure 8. EPC-derived EVs inhibited leukocyte adhesion to GECs. (A) Representative images and (B) graphs showing
the count of adherent PBMCs (black columns) and PMNs (white columns) to GECs. After 24 h of incubation in different
culture conditions, GEC monolayers were washed and incubated for 2 h with FITC-labelled PBMC or PMN. We counted
adherent FITC-leukocytes in 10 fields/well at x200 magnification under a UV light microscope after fixation (scale bar
50 µm). Data are representative of the average number of adherent cells/field ± 1 SD. We performed three experiments
with similar results and statistical analysis by ANOVA with Newmann–Keuls multiple comparison test and Student’s t-test.
In comparison to vehicle alone, CKs increased the number of adherent FITC-labelled PBMCs or PMNs significantly to GEC
monolayers (* p < 0.05 CK vs. vehicle). The addiction of 25 µg/mL EVs to medium with CKs, decreased the number of
adherent PBMs and PMNs to GECs (§ p < 0.05 CK + EV vs. CK) Pre-treatment of EPC-derived EVs with 1 U/mL RNase
abrogated this effect (# p < 0.05 CK + EV RNase vs. CK + EV). (C) FACS analysis of ICAM-1, VCAM-1, and E-selectin
in GECs. We expressed the results as the mean of the percentage of positive cells ± 1 SD. We performed the statistical
analysis by ANOVA with Newman–Keuls multiple comparison test and Kolmogorov–Smirnov test. In comparison to
serum deprivation (vehicle), CKs induced a significant increase in ICAM-1, VCAM-1, and E-selectin expression in GECs
(D, * p < 0.05 CK vs. vehicle). EVs significantly decreased the expression on the GEC surface of ICAM-1, VCAM-1, and
E-selectin (D, § p < 0.05 CK + EV vs. CK). By contrast, RNase treatment abrogated these effects induced by EVs (# p < 0.05
CK + EV RNase vs. CK + EV). We performed the statistical analysis by ANOVA with Newman–Keuls multiple comparison
test and Student’s t-test.

EPC-derived EVs inhibited PBMC (10.6 ± 3.2 adherent PBMCs/field) and PMN
(7.6 ± 2.2 adherent PMNs/field, Figure 8A,B) adhesion to GEC monolayers cultured in an
inflammatory micro-environment.

At the same time, compared to the treatment with vehicle alone, we observed a 3-fold
increase in the percentage of positive GECs for ICAM-1, VCAM-1, E-selectin after 24 h of
treatment with CKs.

The addition of EPC-derived EVs significantly down-regulated ICAM-1, VCAM-1,
and E-selectin expression in GECs (Figure 8C). Again, the pre-treatment of EVs with RNase
had no biological effects on adhesion molecule expression (Figure 8C).
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We observed similar results on podocytes: in comparison to vehicle alone, cells treated
with pro-inflammatory C5a and CKs showed a significant decrease of cell viability (vehicle:
1.25 ± 0.11, CK:0.57 ± 0.13 O.D. intensity, Figure 9A), and resistance to apoptosis (vehicle:
3.4± 2.2, CK:28.5± 5.8 apoptotic cells/field, Figure 9B). When podocytes were treated with
EPC-derived EVs, viability (1.10 ± 0.16 O.D. intensity, Figure 9A) and resistance to apopto-
sis (13.2± 2.1 apoptotic cells/field, Figure 9B) were maintained. However, RNase treatment
of EPC-derived EVs did not preserve viability (0.52 ± 0.20 O.D. intensity, Figure 9A) and
resistance to apoptosis of podocytes (30.3 ± 4.7 apoptotic cells/field Figure 9B).

Figure 9. EPC-derived EVs protected podocytes from complement- and cytokine-mediated damage (A,B). Analysis of
podocyte cytotoxicity by XTT assay (A) and apoptosis by TUNEL assay (B). We performed three experiments with similar
results for all the assays and the statistical analysis by ANOVA with Newmann–Keuls multiple comparison test and
Student’s t-test. For XTT assays, data are expressed as average OD intensity ± 1 S; whereas for TUNEL assays, we report
data as the average number of green fluorescent apoptotic cells ± 1 SD. Incubation with CKs significantly increased
podocyte apoptosis and inhibited cell viability compared to treatment with vehicle alone (* p < 0.05 CK vs. vehicle). EV
stimulation significantly inhibited these effects (§ p < 0.05 CK + EV vs. CK), but not EV were pre-treated with 1 U/mL
RNase (# p < 0.05 CK + EV RNase vs. CK + EV). (C) Representative micrographs of nephrin expression in podocytes through
immunofluorescence studies (IF) and FACS analysis (FACS). We stained nephrin in green for microscope analysis, and
we counterstained nuclei with 1 µg/mL propidium iodide; magnification ×400; scale bar 50 µm. For FACS analysis, we
compared the staining of nephrin (blue-filled curves) to internal control (green-line curve) represented by appropriate
secondary isotype incubation. Stimulation with CKs for 1 h significantly decreased nephrin expression on the cell surface
compared to incubation with the vehicle. Podocytes cultured with EPC-derived EVs maintained nephrin expression
by inhibiting shedding; RNase pre-treatment of EVs abrogated this effect. For FACS experiments, we performed the
Kolmogorov–Smirnov statistical analysis.
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We also evaluated the ability of EPC-derived EVs to protect podocytes from nephrin
shedding induced by CK. For this purpose, we incubated podocytes for 24 h with EVs,
RNAse pre-treated EVs or vehicle alone. At the end of incubation, we stimulated podocytes
with CK for 1 h, and we observed a halving of nephrin expression on the cell surface
(Figure 9C). EPC-derived EVs, but not RNase-pre-treated EVs, prevented nephrin shedding
from podocytes (Figure 9).

3.5. Protective Role of EPC-Derived EVs in a GEC-Podocyte Co-Culture Model Mimicking GFB

We simulated an in vitro co-culture model of GFB by culturing GECs for 24 h under
different experimental conditions. At the end of this stimulus, we left GECs in a new
medium in contact with a transwell with a monolayer of podocytes inside. Over the next
24 h, we studied the effect of factors released by GECs on podocytes (Figure 10A).

Figure 10. Co-culture model of GECs and podocytes (A). Analysis of podocytes cultivated in transwells over GECs in a
co-culture model of cytotoxicity by XTT assay (B), cell polarity by Trans-Epithelial Electrical Resistance (C, TEER), and
permeability to Trypan blue-albumin (D). We express the data XTT assays as average optical density (OD) intensity ± 1 SD,
for TEER results as average ohm/cm2 ± 1 SD, and permeability to Trypan blue-albumin as average arbitrary units ± 1 SD.
We performed the statistical analysis by ANOVA with Newmann–Keuls multiple comparison test and Student’s t-test. If
GECs were pre-treated with CKs, podocytes cultivated in transwells in contact with GEC supernatants showed significant
loss of vitality (B), loss of cell polarity (C), and become permeability to Trypan blue-albumin (D, * p < 0.05 CK vs. vehicle).
The addition of 25 µg/mL EPC-derived EVs to GECs significantly protected podocytes from these detrimental effects
induced by CKs (§ p < 0.05 CK + EV vs. CK). We observed no protective effect of EPC-derived EVs pre-treated with 1 U/mL
RNase (# p < 0.05 CK + EV RNase vs. CK + EV). We performed three experiments for all the assays with similar results.

The treatment of GECs with CKs induced on podocytes a significant decrease of
viability (vehicle: 1.86 ± 0.61 O.D. intensity, CK: 1.03 ± 0.18 O.D. intensity, Figure 10B),
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induced functional alterations such as loss of cell polarity assessed by TEER (vehicle:
837 ± 234 ohm/cm2, CK: 97 ± 43 ohm/cm2, Figure 10C) and increased permeability to
albumin (vehicle: 0.49 ± 0.19 arbitrary units, CK: 0.90 ± 0.26 arbitrary units, Figure 10D)
in comparison to controls. These effects on podocytes were significantly decreased by treat-
ment of GECs with EPC-derived EVs (CK+ EV: 2.01± 0.32 O.D. intensity, 774 ± 293 ohm/cm2,
0.53 ± 0.17 arbitrary units, Figure 10) but not with RNase-treated EVs (CK+ EV RNase:
1.05 ± 0.29 O.D. intensity, 109 ± 58 ohm/cm2, 0.85 ± 0.31 arbitrary units, Figure 10).
These results suggest a potential positive effect of EPC-derived EVs in the mechanisms of
GEC-podocyte interaction in a GFB model.

4. Discussion

In the course of glomerulonephritis, inflammatory cytokines and activation of the
complement cascade are key factors for the development of acute alterations of typical
glomerular architecture and function and for the progression toward glomerulosclerosis
and chronic kidney disease (CKD) [44–49]. Rarefaction of glomerular capillaries consequent
to endothelial injury and alterations of podocyte functions, such as the loss of expression
of the slit diaphragm protein, nephrin has been shown to contribute to these detrimental
biological processes [50,51].

Recently, extracellular vesicles (EVs) have been described as paracrine mediators
released by resident glomerular cells [5]. EVs are a heterogeneous population of micro-
organoid bodies that include exosomes and microvesicles that present different size, anti-
genic composition, and functional properties for the cargo of proteins and RNA subsets [35].
Of interest, stem cell-derived EVs have the property of repairing damaged tissues [52]:
indeed, the regenerative properties of stem cells are mediated by the release of paracrine
factors such as growth factors and EVs, rather than by replacing cells lost after tissue injury.

EPCs are bone marrow-derived stem cells circulating in the peripheral blood that can
localize within endothelial injury sites [27]. EPCs can trigger a regenerative program by
revascularizing damaged tissues favoring angiogenesis by secreting growth factors and
other paracrine mediators, such as EVs [33,53,54].

The first aim of this study was to evaluate the biological activities of EPC-derived EVs
on human renal glomerular cells in vitro. We observed that EPC-derived EVs internalized
efficiently in human GECs, and podocytes through a mechanism mainly mediated by
L-selectin, confirming the data previously observed in other experimental models [38]:
indeed, antibodies directed to several integrins (α4, α6, β1, and αVβ3 inhibited less
efficiently the internalization of EPC-derived EVs. These results suggest that L-selectin is
the key molecule expressed on the EPC surface essential for homing on sites of vascular
injury [28] and for the internalization of EPC-derived EV in human renal glomerular cells.
Furthermore, we herein demonstrated that both GECs and podocytes express L-selectin
ligands in vitro: podocytes express podocalyxin [30], and GECs also express CD34 and
fucosylated residues recognized by UEA-I [28].

Since we have previously demonstrated that EVs released from EPCs triggered an
angiogenic program in quiescent endothelial cells by a horizontal transfer of mRNA [34]
and protected the kidney from acute ischemic injury by delivering their RNA content
inducing hypoxic-resident renal cells to a regenerative program [37], the second purpose of
the present study was to investigate whether EPC-derived EVs induced specific biological
effects also on human GECs. We observed that EVs triggered angiogenesis in GECs by
increasing the formation of capillary-like structures, proliferation, and migration in vitro.
These effects were abrogated by pre-treatment of EVs with RNase, suggesting that horizon-
tal RNA transfer is fundamental for EV-induced biological activity. These data confirmed
previous findings found on endothelial cells of different tissue origin [34,37,55]. We also
investigated whether RNase treatment only degraded RNA or had other effects on EV
function. We found that RNase treatment degraded all RNA subsets within EVs, but not
surface proteins without affecting EV internalization in target glomerular cells. These
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results further suggest the relevance of RNA transfer from EPC EVs to injured glomerular
cells to induce their regenerative program.

The relevance of angiogenesis in the glomerular filtration barrier damage in the course
of inflammatory diseases such as glomerulonephritis has been demonstrated in different
experimental models [56,57]: moreover, a potential role of angiogenesis has been recently
described also in human glomerular diseases [58,59]. Several mediators, including Vascular
Endothelial Growth Factor (VEGF-A) and nitric oxide (NO) have been shown to play a
pivotal role in glomerular capillary repair during inflammatory diseases [60,61]. Further-
more, the expression of angiopoietins in the glomerulus suggested a mechanism for the
maintenance of the glomerular endothelium and modulation of the actions of glomerular
VEGF in inflammatory diseases as well as in the recovery from them [62]. The lack of the
matricellular protein thrombospondin-2 (TSP-2) in mice is known to accelerate renal injury:
TSP2 is a major endogenous antiangiogenic and matrix metalloproteinase 2-regulating
factor in renal diseases [63]. Last, the inhibition of another anti-angiogenic factor such
as Endoglin has been shown to promote intussusceptive angiogenesis in experimental
nephritis [64]. Of interest, the administration of bone marrow-derived angiogenic cells
has been previously shown to reduce endothelial injury and mesangial activation in anti-
Thy1.1 glomerulonephritis: the incorporation into the glomerular endothelial lining and
production of angiogenic factors contributed to these protective effects [32]. Another study
showed that bone marrow-derived progenitor cells participate in glomerular endothelial
and mesangial cell turnover and contribute to microvascular repair [65]. For all these
reasons, we investigated the angiogenic pathways induced by EPC-derived EVs in GECs.
EVs increased mRNA expression of endothelial cell receptors endoglin (ENG/CD105),
platelet/endothelial cell adhesion molecule (PECAM-1), and vascular endothelial growth
factor receptor type 2 (VEGFR-2): these data were confirmed at the protein level. Further-
more, EVs up-regulated adhesion molecules involved in endothelium integrity such as
CDH5, but down-regulated ITGAV and integrin β3 gene expression. We also observed an
increased expression of pro-angiogenetic genes involved in glomerular cell crosstalk [5,6]:
angiopoietin-1, FLT1, HGF, PDGF-α, TGF-β1. To confirm intraglomerular pathways modu-
lated by EPC-derived EVs, we found that GECs released high levels of HGF and VEGF-A
in supernatants. EVs also increased other growth factors such as IGF1, PGF, EREG, but de-
creased FGF-1 and FGF-2 and FIGF gene expression. Moreover, we found the up-regulation
of genes of trans-membrane receptors such as NOTCH4, FGFR3, and the down-regulation
of NRP2, EPHB4, S1PR1. LEP, a molecule associated with endothelial cell differentiation
during angiogenesis [14], was increased in GECs after EV treatment. EPC-derived EVs
also decreased anti-angiogenic genes such as THBS1, BAI1, and pro-fibrotic genes [66],
including TGF-β2. EVs modulated the gene expression of glomerular basement membrane
proteins by up-regulating MMP9, COL4A3, and down-regulating LAMA5 and COL18A1.
Moreover, the expression of other exoenzymes involved in angiogenesis was modulated by
EVs (PLAU, ANPEP, and HPSE).

Interestingly, EVs inhibited GEC expression of angiopoietin-like 3, a molecule that
increases endothelial cell barrier permeability in glomeruli [10] and PF4, a negative regula-
tor of mesangial cell proliferation [67], thus suggesting other further potential protective
mechanisms on GFB integrity. Moreover, we found in GECs an increased mRNA expression
of EFNA3, ID1, and JAG1, all genes involved in proliferation and migration of endothelial
cells [68] as well as EPCs [69,70]. The most EV-induced gene was HAND2, a molecule that
belongs to the Twist family, involved in the development of different organs [71]: however,
its biological function in kidney glomerulus is still unknown. Another inexplicable up-
regulated gene by EPC-derived EVs was LECT1, a protein known to promote chondrocyte
growth, inhibit angiogenesis, but with an unknown function in the kidney.

In previous studies, we identified more than 150 miRNAs carried by EPC-derived
EVs [37]. We have herein identified 16 microRNAs among those carried by EVs able to
down-regulate anti-angiogenic genes. In fact, 12 of these miRNAs interact with THBS1,
an important negative regulator of angiogenesis. Interestingly, miR-17-5p is potentially
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able to bind other 6 mRNAs in addition to THBS1: COL4A3, EPHB4, ITGAV, NRP2, S1PR1,
TGF-β2. In addition, 12 further miRNAs can potentially interact with two or more target
mRNAs: on this basis, we could speculate that EV-induced GEC angiogenesis is mediated
by the concomitant action of different miRNAs able to interact with several mRNAs within
target cells.

Another relevant aim of this study was to evaluate whether EPC-derived EVs could
protect renal glomerular cells cultured in detrimental inflammatory conditions. For this
purpose, we decided to re-create an inflammatory microenvironment (CK) by using a mix
of cytokines (TNF-α, IL-6) and the complement fraction C5a on glomerular cells in vitro
and to study the effect of EPC-derived EVs in this setting. CKs induced activation in GECs
of a pro-inflammatory phenotype, increasing the expression of adhesion molecules such as
ICAM-1, VCAM-1, and E-selectin [17,20,21] and leading to the enhanced recruitment of
PBMCs and PMNs. All these events are mediated by a reactive oxygen species (ROS) [16]
that, in the presence of prolonged inflammatory stimuli, increase GEC cytotoxicity and
death by apoptosis [16].

On podocytes, CKs induced cell injury and triggered apoptosis like on GECs, but
the early observed effects are the rapid loss of nephrin expression by shedding [9,22,23].
Nephrin is a protein located at the podocyte slit diaphragm essential for the preserva-
tion of glomerular permeselectivity. Nephrin is down-regulated by drugs (REF mTOR
Biancone) and by inflammatory mediators leading to the development and worsening of
proteinuria [72].

EPC-derived EV inhibited all these effects of GECs and podocytes treated with CK.
By acting on different mechanisms, such as inflammation or the activation of regenerative
mechanisms on glomerular cells, EVs are one of the potential treatments for redoubtable
and unpredictable diseases such as glomerulonephritis.

We have previously described that EVs derived from EPC exert a protective effect in
Thy1.1 glomerulonephritis on rats by inhibiting antibody- and complement-mediated injury
of mesangial cells [38]. EVs protected glomeruli by fibrotic processes that lead inexorably to
chronic renal failure. Moreover, in the same experimental model, EV treatment preserved
endothelial- (RECA-1) and podocyte-markers (synaptopodin) expression suggesting a role
of EVs in protecting these glomerular cells. In the light of the data herein described, we
could speculate that EPC-derived EVs can not only antagonize complement cascade, but
also inflammatory injury mediated by CKs.

On this basis, we set up a co-culture model of GECs and podocytes to mimic GFB
in vitro and to evaluate the potential crosstalk between the two cell types. Of interest,
we observed that pre-stimulation of GECs with EPC-derived EVs maintained podocyte
viability, trans-epithelial electrical resistance, and inhibited loss of permeability to albumin,
all established markers of GFB integrity. All these effects on podocytes might be related to
the pre-angiogenic phenotype induced by EPC-derived EV on GECs and mediated by the
release of growth factors such as HGF and VEGF-A.

We also confirmed in this GEC-podocyte co-culture model that RNase pre-treatment
abrogated all the effects mediated by EPC-derived EVs, suggesting that mRNA and mi-
croRNA transfer plays a critical role in these biological effects as previously described in
other experimental models [34,37,38,55].

5. Conclusions

EPC-derived EVs may preserve GFB integrity from complement- and cytokine-induced
damage: this protective effect on glomerular cells seems to be mainly ascribed to RNA
transfer from progenitor-derived EVs to injured GECs and podocytes. Based on previously-
published data in experimental glomerulonephritis models and on the results of the present
study, EPC-derived EV could represent an attractive alternative in patients resistant to
classical therapeutic agents. Moreover, EVs can induce immunomodulation and glomerular
healing without the potential adverse effects of stem cell therapy, including maldifferentia-
tion and tumorigenesis.
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Appendix A. Materials and Methods

Appendix A.1. FACS Analysis

Glomerular Endothelial Cells (GECs) and podocytes were detached by EDTA from on
six-well plates and stained for 30 min at 4 ◦C with FITC-conjugated antibodies directed
to bind CD34 (Becton Dickinson, Franklin Lakes, NJ, USA), Podocalyxin (Biolegend, San
Diego, CA, USA) or stained with FITC-Ulex europaeus agglutinin-1 (UEA-I, Sigma-Aldrich,
St. Louis, MO, USA). As a negative control, we used cells incubated with FITC-conjugated
isotype antibodies (Becton Dickinson).

After washing with a saline solution (Sigma Aldrich), fixation with paraformaldehyde
4% for 15 min at 4 ◦C was performed.

Cells were then newly washed, and FACS analysis was performed by FACSCalibur
(Becton Dickinson). Finally, we performed the Kolmogorov–Smirnov statistical analysis.

Appendix A.2. Quantitative RT-PCR

Total RNA was extracted by GECs using the mirVana RNA isolation kit (Life Tech-
nologies). The NanoDrop1000 spectrophotometer detected RNA concentration and purity.
Next, we evaluated mRNA expression using a High cDNA Reverse Transcription Kit
(Applied Biosystems, Foster City, CA, USA) and the Power SYBR Green PCR Master Mix
on a 96-well StepOnePlus Real-Time System (Applied Biosystems). Actin-β was used as
the housekeeping gene. Fold change in RNA expression was calculated as 2−∆∆Ct using the
geometric mean in Ct values as normalizer. All the primers were purchased by (Eurofins
Genomics Germany GmbH, Germany). Finally, we performed the Student’s t-test statistical
analysis.

Appendix A.3. Cytotoxicity Assay

The 5 × 104 GECs or podocytes were cultured on 24-well plates and incubated in
different experimental conditions; at the end of the stimulation, we incubated cells with
XTT (Trevigen, Gaithersburg, MD, USA) in a medium lacking phenol red. After 1 h, we
analyzed samples in an automatized spectrophotometer at a wavelength of 450 nm.

Appendix A.4. Apoptosis

The 2 × 104 GECs or podocytes were cultured on 96-well plates, incubated for 24 h
with different stimuli, and then subjected to TUNEL assay following the manufacturer’s
instructions (Apop-Tag; Oncor, Gaithersburg, MD, USA). Samples were analyzed under a
fluorescence microscope, counting green-stained apoptotic cells in 10 different microscopic
fields at ×100 magnification for each experimental point.

Appendix B. Results

Appendix B.1. Human Glomerular Cells Express L-Selectin Ligands In Vitro

We characterized both human cell lines of Glomerular Endothelial Cells (GECs) and
podocytes in vitro. By FACS analysis, we demonstrated that GECs significantly express lig-
ands for L-selectin, CD34, podocalyxin and fucosylated residues as demonstrated by UEA-I
labelling (Figure A1). Instead, podocytes express only podocalyxin and not CD34 and
fucosylated residues (Figure A1). On the other hand, podocytes in in culture significantly
express podocalyxin only.
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Figure A1. Representative micrographs of L-selectin ligands on Glomerular Endothelial Cells (GECs) and podocytes
through FACS analysis. We compared the staining of CD34, Podocalyxin and UEA-I (blue-filled curves) to internal control
(green-line curve) represented by appropriate secondary isotype incubation. GECs express CD34, Podocalyxin and the
fucosylated residues bound by UEA-I. Podocytes effectively express podocalyxin. We performed three experiments and the
Kolmogorov–Smirnov statistical analysis. The significance level for all tests was set at p < 0.05.

Appendix B.2. EPC-Derived EVs Trigger Angiogenesis by Modulating Gene Expression in Human
Glomerular Endothelial Cells

As demonstrated by quantitative real-time PCR, EPC-derived EVs modulated the
expression of different genes involved in GEC angiogenesis (Figure A2). In particular,
EPC-derived EVs increased significantly (p < 0.05) the expression of the following genes:
ANGPT1, ANPEP, CDH5, COL18A1, CXCL10, CXCL9, EFNA3, ENG, EREG, FGFR3, FLT1,
HAND2, HGF, ID1, IFNA1, IFNB1, IFNG, IGF1, IL1B, ITGB3, JAG1, KDR, LECT1, LEP,
MMP9, NOTCH4, PDGFA, PECAM1, PF4, PGF, PLAU, TGF-β1. We also observed 16 genes
involved in GEC angiogenesis significantly down-regulated by EVs (p < 0.05): ANGPTL3,
BAI1, COL4A3, CXCL1, CXCL6, S1PR1, EPHB4, FGF1, FGF2, FIGF, HPSE, ITGAV, LAMA5,
NRP2, TGF-β2, THBS1.
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Figure A2. Quantitative analysis by RT-PCR of genes expressed in GECs treated with vehicle alone or with EVs. All
analyzed genes are indicated by Unigene, GeneBank, Symbol, Description and Gene Name. We divided the genes into
upregulated and downregulated by EVs. Student’s t-test between the vehicle group and EV group. We performed three
experiments. The significance level for all tests was set at p < 0.05. EV vs. vehicle.

Appendix B.3. Time- and Dose-Dependent Functional Assays on Glomerular Endothelial Cells and
Podocytes In Vitro

To evaluate the cytotoxic effect of CK in time, we incubated human GECs (Figure A3A)
and podocytes (Figure A3B) with a medium containing 20 ng/mL TNF-α, 2.5 ng/mL IL-6,
and 50 ng/mL human recombinant C5a protein or vehicle alone at different time-points
(12, 18, 24, 36, 48 h). GECs, but not podocytes, treated with CK had a significant decrease
in viability compared to control cells (vehicle) at 12 h. However, at all the other time points
considered (18, 24, 36, 48 h), both GECs and podocytes significantly decreased viability if
treated with CK with XTT values more than halved at 24 h.

To evaluate the significant protective dose of EPC-derived EVs from CK-mediated
injury, we performed cytotoxicity tests by XTT (Figure A3C) and apoptosis by TUNEL
assay (Figure A3D) on GECs and podocytes.

Adding 1 µg/mL EPC-derived EVs to cells did not significantly protect from CK-
mediated damage. GECs incubated with 10 mg/mL increased resistance to apoptosis. By
contrast, 25 or 50 µg/mL of EPC-derived EVs to cells incubated with CK significantly
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reduced cell damage at the level of GECs and podocyte, reducing the number of apoptotic
cells by three times and increasing the formation of XTT colored substrate.

Figure A3. Time- and dose-dependent cytotoxicity and apoptosis assays on Glomerular Endothelial Cells (GECs) and
Podocytes. GECs. Time-dependent XTT citotoxity assay on GECs (A) and podocytes (B) incubated with a medium
containing CK (20 ng/mL TNF-α, 2.5 ng/mL IL-6, and 50 ng/mL human recombinant C5a protein) or vehicle alone at
different time-points (12, 18, 24, 36, 48 h) Significant differences in viability were observed on both GECs and podocytes
at 18, 24, 36, and 48 h (* p < 0.05, CK vs. vehicle). At 12 h, only the GECs (A) had different viability between treated (CK)
and control cells (vehicle, * p < 0.05, CK vs. vehicle). Cytotoxicity tests by XTT (C) and apoptosis by TUNEL assay (D),
evaluating the protective dose of EPC-derived EVs on GECs (black columns) and podocytes (white columns) after 24 h.
Incubation with CK alone was effective in inducing cytotoxic (C) and apoptotic damage (D) in both cell types (* p < 0.05,
CK vs. vehicle). Adding 1 or 10 µg/mL EPC-derived EVs to cells incubated with CK did not significantly reduce cell
damage (* p < 0.05, CK + 1 µg/mL EV and CK + 10 µg/mL EV vs. vehicle), except with GEC incubated with 10 µg/mL
EV in TUNEL assay (§ CK + 10 µg/mL EV vs. CK). In contrast, the adding of 25 or 50 µg/mL EPC-derived EVs to cells
incubated with CK significantly reduced cell damage at the level of GECs and podocytes (§ p < 0.05, CK + 25 µg/mL EV and
CK + 50 µg/mL EV vs. CK). XTT assays are reported as average optical density (O.D.) intensity ± 1SD. For TUNEL assays,
data are expressed as the average number of green fluorescent apoptotic cells ± 1 SD. We performed three experiments for
each test and the statistical analysis by ANOVA with Newmann–Keuls multiple comparison test.
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