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Abstract: Currently, the number of stem-cell based experimental therapies in neurological injuries
and neurodegenerative disorders has been massively increasing. Despite the fact that we still
have not obtained strong evidence of mesenchymal stem/stromal cells’ neurogenic effectiveness
in vivo, research may need to focus on more appropriate sources that result in more therapeutically
promising cell populations. In this study, we used dedifferentiated fat cells (DFAT) that are proven to
demonstrate more pluripotent abilities in comparison with standard adipose stromal cells (ASCs). We
used the ceiling culture method to establish DFAT cells and to optimize culture conditions with the
use of a physioxic environment (5% O2). We also performed neural differentiation tests and assessed
the neurogenic and neuroprotective capability of both DFAT cells and ASCs. Our results show that
DFAT cells may have a better ability to differentiate into oligodendrocytes, astrocytes, and neuron-like
cells, both in culture supplemented with N21 and in co-culture with oxygen–glucose-deprived (OGD)
hippocampal organotypic slice culture (OHC) in comparison with ASCs. Results also show that DFAT
cells have a different secretory profile than ASCs after contact with injured tissue. In conclusion,
DFAT cells constitute a distinct subpopulation and may be an alternative source in cell therapy for
the treatment of nervous system disorders.

Keywords: ASC; DFAT cells; neurotrophic factors; oxygen–glucose deprivation injury; neural dif-
ferentiation; neuroprotective potential; organotypic hippocampal slices; indirect co-culture; low
oxygen concentration

1. Introduction

The application of stem cell therapy in regenerative medicine of the nervous system
and neurodegenerative diseases gives much promise today, but its application is still in-
sufficiently proven. The ability to assume not only the phenotypic but also the functional
character of neural cells, such as the secretion of neurotrophic factors, is a fundamental de-
terminant of the quality and effectiveness of cell therapy. Obtaining such neuro-specialized
stem cells is currently a challenge. The ability of stem cells to differentiate into neuronal
cells has been demonstrated in many in vivo studies using induced pluripotent stem cells
(iPS) [1] and embryonic stem cells (ESC) [2], but in clinical use there are many obstacles to
overcome, and the risk may exceed the therapeutic benefit [3].

Due to the current use of liposuction, which is considered as a minimally invasive
method of tissue isolation, adipose tissue still remains the most promising source of
stem/stromal cells. After tissue isolation and collagenase digestion, the stromal vascular
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fraction (SVF) can be obtained. After plating the cells and cultivation, adipose-derived
stem/stromal cells are obtained. The two described cell populations derived from adipose
tissue have different compositions and properties and should not be equated with each
other [4,5]. Currently, nearly 500 clinical trials worldwide (including: SVF- stromal-vascular
fraction, ASC—adipose-derived stem/stromal cells) are assessing the therapeutic proper-
ties of adipose-derived regenerative cells in various diseases. Their main application is in
aesthetic medicine in the form of adipose tissue transplantation, in which the regenerative
effect could be enhanced by SVF. Additionally, ASCs are widely used in orthopedics as
a treatment of bone and musculoskeletal system defects as well as in oral surgery bone
reconstruction/regeneration. However, more and more studies are being based on ASC im-
munomodulatory and/or trophic properties, including Crohn’s disease and autoimmune
diseases regarding the nervous system [6]. Nevertheless, clear and credible evidence of
ASC efficacy in the treatment of neurological diseases has not been adequately confirmed,
especially ASCs’ capacity to differentiate toward neural cells. This ability is disputable and
explained by the presence of a sparse pluripotent-like cell subpopulation. ASCs are a highly
heterogenic population of cells, and their composition could depend on the individual
variability of donors, such as age, sex, or coexisting diseases, as well as on the isolation
technique, but the main reason could also be the origin of isolated fractions, which remains
unknown [7,8]. Therefore, one of the directions for further investigation is to look at the
distinction of the adipose-derived cell population and to select the one that will exhibit the
most pluripotent features or potential to differentiate toward neuronal cells.

Considering the basic processes underlying neuronal differentiation, attention should
be paid to the physiological epithelial–mesenchymal transition mechanism (EMT) dur-
ing the embryogenesis. In early vertebrate development, neural crest cells undergo an
epithelial–mesenchymal transition, delaminate, and migrate to form a variety of tissues
and cells throughout the body. They differentiate into neurons, glial cells, connective tissue,
melanocytes, and cartilages [9]. It is possible that about 2% of ASCs’ subpopulations of cells
isolated from the heterogeneous fraction of adipose tissue and that the origin is not fully
elucidated and may be a remnant of the epithelial–mesenchymal transition of nerve crest
cells. Thus, the neuro-ectoderm may be the origin of some subpopulations of cells found in
the adipose tissue stromal cell fraction (NCDASCs) [10]. Thus, the separated subpopulation
could be a promising candidate for cells with greater neuronal differentiation capacity, but
their ability to differentiate into functionally mature neurons was not observed [11].

One of the methods for obtaining an adipose tissue subpopulation with increased
pluripotent-like features was proposed by Yagi et al. He for the first time found and
characterized a novel pre-adipocyte cell subpopulation established from mature adipocytes
of adult mice [12]. These reports were also confirmed by Matsumoto et al., proving that
such a subpopulation has multilineage potential and can also be separated from human
adipose tissue derived from liposuction [13]. Cells that have a fibroblast-like phenotype
and maintain proliferation ability are referred to as dedifferentiated fat cells (DFAT). The
origin of DFAT cells is not fully understood; however, it is believed that mature adipocytes
are forced to dedifferentiate by a ceiling culture procedure and to revert to a more primitive
phenotype [14]. There are numerous promising reports of DFAT cell transplantation in
injured tissue areas in animals. Their positive therapeutic effect has been shown in the
promotion of recovery from spinal cord injury in rats [15], the regeneration of nerves
in an experimental rat facial nerve defect model [16], the alleviation of brain damage in
the neonatal hypoxic-ischemic encephalopathy model [17], and the neovascularization
in a mice hind-limb model of ischemia [14]. Those findings may suggest that DFAT cells
could be a promising substitute in regenerative stem-cell based therapies in neurological
injuries and could have a great ability for clinical application. Therefore, we decided to use
DFAT cells and to further define their neurogenic and neuroprotective properties in vitro.
We implemented several techniques to ultimately support these abilities, optimizing the
conditions previously used on ASCs culture.
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In this study, we investigated and compared the neuroprotective properties of both
populations of the stem/stromal cells derived from adipose tissue, related to their paracrine
activity as well as to their neurogenic capacity in response to the presence of intact or
injured nerve tissue due to oxygen–glucose deprivation (OGD) using an organotypic rat
hippocampal slice culture model (OHC). We believe that understanding the “stem/stromal
cell–neural tissue” interactions can provide insight on the restorative abilities of the CNS.

At present, we know that the profile of stem cell secretome, which originates from
different sources, varies in response to environmental changes [18–23]. In the adult hu-
man brain, neurogenesis depends on the presence of endogenous and exogenous sub-
stances responsible for proliferation, survival, and the ability to differentiate in stem cell
niches [24,25]. The transplantation of adipose-derived stem/stromal cells offers trophic
support for neural cells. Potential benefits of ASCs’ therapeutic use were previously
shown to be mainly due to their secretive abilities by promoting the survival of the en-
dogenous cells and suppressing the inflammatory response [26]. Moreover, ASCs can
activate and support endogenous neurogenesis by secreting numerous growth factors. The
results of in vitro and ex vivo experiments showed that ASCs increased the secretion of
brain-derived neurotrophic factor (BDNF), glial cell-derived neurotrophic factor (GDNF),
vascular endothelial growth factor-A (VEGF-A), basic fibroblast growth factor (bFGF),
leukemia inhibitory factor (LIF), and insulin-like growth factor (IGF) [27,28]. Other neu-
rotrophic factors that were reported to be secreted by those cells include epidermal growth
factor (EGF), nerve growth factor (NGF), and hepatocyte growth factor (HGF) [24,29–31].
The correlation between processes and described factors is presented in the Figure 1. We
analyzed the concentration levels of each of those factors in the media from the basic
ASCs/DFAT cell culture, the co-culture of ASCs/DFAT cells with OHC, and with OHC
after OGD.

Figure 1. The correlation between processes (orange circles) and factors (blue circles) chosen for the
analysis in this study. Created with Biovista Vizit (https://www.biovista.com/vizit/, accessed date:
17 November 2020).

As the ability for the neuro-restoration is still the domain of the future, current priori-
ties refer to the selection of the appropriate environmental conditions of the stem/stromal
cells culture that is conducive to their neural differentiation [32]. Therefore, our goal
was to determine the culture conditions stimulating the neural differentiation that can
simultaneously allow the maintenance of the cells’ high proliferation rate.

https://www.biovista.com/vizit/
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Despite the initial doubts about the ability of those cells to differentiate into non-
mesodermal cells, several research studies indicate that the cells’ neural differentiation
properties in vitro is in response to the presence of specific factors [33–35]. Such stimulating
factors are neurotrophins, hormones, and growth factors. In our experiments, we decided
to use basic fibroblast growth factor (bFGF), which during recent years of studies was
shown to stimulate neural differentiation. There are single reports demonstrating the
beneficial effect of bFGF on ASCs’ differentiation into early neural progenitors [36–40].
Another treatment that we chose for inducing neural differentiation in our experiments
was the inhibitor of the Wnt pathway, retinoic acid (RA). Similar to bFGF, RA has been
reported to be an effective stimulator of ASCs’ neural differentiation in combination with
other factors and as a single component of the differentiating medium [38,41–43].

The alternative to the single factors presented above is suggested by several protocols
that propose the use of chemical compound “cocktails”. There are attempts to use mixes
containing factors stimulating neuronal differentiation, such as forskolin, insulin, hydro-
cortisone, and valproic acid in the media [25,44], ongoing both with the maintenance of
the cells’ high proliferation rate. In this study, we analyzed the impact of one of them that
was not previously used in ASCs’ differentiation, commercially available supplement N21.
Interestingly, we found the results of this culture variant to be the most satisfying; thus, we
applied it in the following studies assessing the potential of neurogenic DFAT cells.

A general overview of the study steps is presented in the Figure 2.

Figure 2. General overview of our study experimental steps. After isolation, ASCs were used to
optimize the best conditions for neural differentiation, which were applied in further investigation of
ASCs/DFAT cells’ proliferative, neurogenic, and neuroprotective potential. The figure was created in
BioRender (https://biorender.com/, accessed date: 10 January 2021).

2. Materials and Methods
2.1. Cell Isolation

Adipose tissue was collected during the liposuction procedure from 4 patients (2 males,
2 females, 44−74 years old ± SD) of the Plastic Surgery Department at Orlowski’s Clinical
Hospital in Warsaw. The study was conducted according to the guidelines of the Declara-
tion of Helsinki, and approved by the Bioethical Committee at the Centre of Postgraduate
Medical Education (No. 62/PB/2016) on 14 September 2016. All patients (participants
of the study) signed an informed consent to participate in the study. The subcutaneous
abdominal fat tissue was filled in 50 mL Falcon tubes (Beckton Dickinson, Franklin Lakes,
NJ, USA) and digested with type VI GMP Grade collagenase (Serva, Heidelberg, Ger-
many). After a series of centrifugations, supernatant collections, and washing with PBS

https://biorender.com/
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(Macopharma, Tourcoing, France), the SVF and digested fat tissue were used in the next
step of the procedure (Figure 3).

Figure 3. Steps of ASCs and DFATs cell isolation procedure. ASCs cultured as a standard monolayer
and DFAT cells cultured using ceiling method. After one week, DFAT cells were reverted and treated
with the same culture conditions (5% O2, 5% CO2, 37 ◦C) as ASCs.

Stromal cells fraction was collected and suspended with 5 mL of basic growth medium
and next transferred into 25 cm2 flasks (Nunc, Thermo Fischer Scientific, Waltham, MA,
USA) to perform standard ASCs culture.

In order to obtain DFAT cells, a respective floating layer, which was a mature adipocyte
layer, was transferred into 25 cm2 flasks (Nunc, Thermo Fischer Scientific) filled completely
with basic growth medium. Such prepared cell culture was carried out using the ceiling
method for one week, then the obtained DFAT cells were processed with the same methods
as ADSC.

2.2. Cell Culture

The obtained cells were cultured in basic growth medium: MEM-alpha (Macopharma,
Tourcoing, France), human platelet lysate (10%, Macopharma, Tourcoing, France), peni-
cillin/streptomycin (1%, Gibco, Thermo Fisher Scientific, Waltham, MA, USA), and heparin
(0,1%, Sigma-Aldrich, Saint Louis, MO, USA) in humidified incubators under 21% O2 and
5% CO2 at 37 ◦C. The culture medium was replaced every 2/3 days, when cell culture was
subconfluent; cells were detached from the dishes with accutase (Accutase Cell Detachment
Solution, Beckton Dickinson, Franklin Lakes, NJ, USA).

2.3. Flow Cytometry Analysis

The expression of specific surface markers was analyzed with Human MSC Analysis
Kit (Beckton Dickinson). According to manufacturer’s protocol, the cells were detached
with accutase (Beckton Dickinson) and suspended in BD Pharmigen Stain Buffer (Beckton
Dickinson), then the specific fluorochrome-conjugated antibodies against mesenchymal
stem cells positive markers (CD90, CD73, CD105) and negative markers (CD34, CD11b,
CD19, CD45, HLA-DR) were added. Samples were incubated in the dark at room tempera-
ture for 30 min. After the incubation, cells were centrifuged, washed, and suspended in a
buffer according to the protocol. The samples were analyzed immediately using FACSDiva
software (Beckton Dickinson). The results are presented as histograms.

2.4. Mesodermal Lineage Differentiation

The cells’ osteogenesis, adipogenesis, and chondrogenesis abilities were investigated
using the cells (at 3rd passage) that were seeded on 24-well plates (Nunc, Thermo Fischer
Scientific) in 104 cells/cm2 density and cultured in commercial differentiation medium
(Gibco, Thermo Fisher Scientific, Waltham, MA, USA). After 14 days of adipogenic and
chondrogenic differentiation and 21 days of osteogenic differentiation, the cells were fixed
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in 4% PFA, stained as listed in Table 1, and closed with Fluorescent Mounting Medium
(Sigma-Aldrich). The results were analyzed with Axio Vert.A1 (Carl Zeiss, Oberkochen,
Germany) inverted microscope and ZEN software (Carl Zeiss, Oberkochen, Germany).

Table 1. Histochemical dyes (Sigma-Aldrich) used in differentiation analysis.

Differentiation
Lineage Used Stain Visualized

Compound

Time of
Incubation
(Minutes)

Concentration

Adipogenesis Oil Red O Oil Red 5 0.5%
Osteogenesis Alizarin Red S Calcium deposits 3 2%

Chondrogenesis Alcian blue Mucopolysaccharides 30 1%

2.5. Cell Proliferation Analysis

Long-term cell proliferation analysis was performed by indication of the population
doubling time (PDT), which is based on the total cell number at each passage. To calculate
PDT, the following formula was used: PDT = (t − t0) × log 2/(log N−log N0), where: t − t0
is the duration of passage (days), N is the number of cells from passage/1 cm2, and N0 is
the number of harvested cells/1 cm2.

2.6. Senescence Assay

The cells at 3rd and 8th passage were seeded at a density of 3000 cells/cm2 on
6-well plates (Nunc, Thermo Fischer Scientific) and cultivated in standard condition due
to subconfluency. Then, senescence analysis was performed with a Senescence Cells
Histochemical Staining Kit (Sigma-Aldrich) according to the manufacturer’s protocol.
Shortly thereafter, the cells were washed with PBS (Macopharma), fixed with fixation
buffer, and stained with staining mixture. Then, the cells were incubated in 37 ◦C and
1% CO2 concentration overnight. On the following day, the cells were fixed with 4%
PFA (Sigma-Aldrich) and counted. The percentage of positive β-galactosidase cells was
calculated based on the number of stained cells and total number of cells.

2.7. CFU-F Assay

The cells at 3rd and 8th passage were seeded on 6-well plates (Nunc, Thermo Fischer
Scientific) at a density of 10 cells/well and cultured in basic growth medium for 10 days.
Then cells were fixed with 4% PFA for 15 min and stained with 0.5% toluidine blue (Sigma-
Aldrich) for 20 min, rinsed once with distilled water, and the number of stained colonies
(with more than 50 cells) was counted. CFU frequency was calculated as the number of
colonies per number of seeded cells.

2.8. Neural Lineage Differentiation

Cells’ capability of neural lineage differentiation was evaluated in two ways. Firstly,
neurogenesis was induced with modification of medium composition. The cells at the
3rd passage were seeded at a density of 3000 cells/well on 24-well dishes (Nunc, Thermo
Fischer Scientific) and cultured in humidified conditions under 21% O2, 5% CO2 at 37 ◦C
in medium that consisted of:

• cell growth medium with Human Platelet Lysate concentration decreased to 5% and
with the addition of bFGF (0.1%; Gibco) for 21 days,

• cell growth medium with Human Platelet Lysate concentration decreased to 5% and
with the addition of bFGF (0.1%; Gibco) for 10 days, then with the addition of retinoic
acid (RA; Sigma-Aldrich) for the next 15 days,

• cell growth medium with the addition of N21 supplement (1:49; Sigma-Aldrich) for
21 days.

The second method of assessing ASC/DFAT ability to neural lineage differentiation
was their co-culturing with neural tissue (organotypic hippocampal culture, OHC) or
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damaged neural tissue (OHC after oxygen–glucose-deprived, OGD). During this procedure,
the cells at the 3rd passage were seeded on round glasses that were placed earlier in
24-well plates (Nunc, Thermo Fischer Scientific). After overnight incubation in humidified
conditions under 5% O2, 5% CO2 at 37 ◦C, when the cells were adherent, glasses were placed
under the membranes with hippocampal slices or damaged with OGD hippocampal slices.
The ASC/DFAT were co-cultured with neural tissue in both variants of the experiment up to
7 days, then the cells and the hippocampal slices were analyzed with immunocytochemical
methods or molecular biology.

2.9. Organotypic Hippocampal Slices Culture (OHC)

For this experiment 7-day-old Wistar rats from the Mossakowski Medicine Research
Centre Animal Breeding House were used.

All procedures were made on ice. The previously described Stoppini’s method for
obtaining organotypic hippocampal slices was modified in our lab [15]. After decapitation,
brains were extracted, and hippocampi were isolated. Subsequently, the hippocampi
were sliced for 400 µm slices with McIllwain’s tissue chopper (Ted Pella, Poznan, Poland)
and were transferred on the membranes for organotypic culture (Millipore, Concord
Road Billerica, MA, USA). The membranes were placed in 6-well dishes (Nunc, Thermo
Fischer Scientific) (Figure 4); every well was filled with 960 µL of medium consisting of
Neurobasal-A a(Gibco), 25% HBSS (Gibco), HEPES (Gibco), 5 mg/mL glucose (Sigma-
Aldrich), 2 mmol/L L-glutamine (Gibco), B-27 supplement (Thermo Fisher Scientific) and
antibiotic-antimycotic solution (Gibco). The medium was changed every 2/3 days and the
cultures were carried out in 34 ◦C, 5% O2, 5% CO2.

Figure 4. Steps of performed ex vivo experiments. The scheme was made in Biorender (https:
//biorender.com/, accessed date: 10 January 2021).

2.10. Oxygen-Glucose-Deprivation (OGD)

On the 7th day of culture, the OHC was stained with propidium iodide (PI; Thermo
Fisher Scientific). Labelled with PI (Sigma-Aldrich), damaged in cornu ammonis (CA)-
region hippocampal slices were discarded. Then, after replacement of the medium with

https://biorender.com/
https://biorender.com/
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deoxygenated Ringer’s solution (Sigma-Aldrich) with mannitol (Sigma-Aldrich), the hip-
pocampal slices (on the membranes) were transferred into an anaerobic chamber. The incu-
bation was performed for 40 min. Then, the membranes were rinsed in PBS (Macopharma)
3 times and used to assess ASCs/DFAT cells’ neurogenic or neuroprotective potential.

Twenty-four hours after the OGD procedure, the hippocampal slices derived from the
co-culture with the cells were stained with PI (Macopharma) for thirty minutes. Next, cell
death quantification was performed. Images of hippocampal slices were acquired using a
laser scanner microscope LSM 510 (Zeiss).

Relative cell death was calculated from each standardized CA region according to the
following formula:

% of dead cells = (experimental fluorescent intensity (FI) − background FI)/(maximal FI − background FI) × 100. (1)

2.11. Immunocytochemistry

For immunocytochemical analysis, the cells at 3rd or 4th passage were seeded on
24-well plates (Nunc, Thermo Fischer Scientific) at 2.5 × 103 cells/cm2 density. At 70%
confluence, the cells were washed carefully in PBS (Macopharma), fixed with 4% PFA
(Sigma-Aldrich) for 15 min at room temperature and washed in PBS (Sigma-Aldrich) again.
An amount 0.2% Triton X-100 (Sigma-Aldrich) was used to permeabilize cell membranes in
case of detecting intracellular target antigen. To block nonspecific binding, a mixture of
10% goat serum (Gibco) and 1% bovine serum albumin (Sigma-Aldrich) was applied for
one hour. Subsequently, cultures were washed with PBS (Sigma-Aldrich) and incubated
with primary antibodies (Table 2) for 24 h at 4 ◦C. For every variant of staining, negative
control was performed to analyze the specificity of the reaction. On the following day, the
cells were washed in PBS (Sigma-Aldrich), and the secondary antibodies (Table 3) were
added in darkness for one hour. After the cells were washed with PBS (Sigma-Aldrich)
again, the nuclei were stained with Hoeschst 33342 (Sigma-Aldrich) for 15 min.

Table 2. Primary antibodies used in immunocytochemistry analysis.

Antibody Catalogue Number Source Isotype Dilution Manufacturer

anti-β-Tubulin III T8660 Mouse monoclonal IgG2b 1:1000 Sigma-Aldrich
anti-GFAP Z0334 Rabbit polyclonal IgG 1:400 Dako
anti-Ki67 AB15580 Rabbit polyclonal IgG 1:200 Abcam

anti-Nestin MAB5326 Mouse monoclonal IgG1 1:500 Millipore
anti-Fibronectin F3648 Mouse monoclonal IgG 1:400 Sigma-Aldrich
anti-Vimentin AB1620 Mouse monoclonal IgG1 1:200 Abcam

anti-NeuN MAB377 Mouse monoclonal IgG1 1:50 Millipore
anti-A2B5 MAB312R Mouse monoclonal IgM 1:200 Millipore
anti-NG2 AB5320 Rabbit polyclonal IgG 1:150 Millipore

anti-S100 beta AB52642 Rabbit polyclonal IgG 1:100 Abcam

Table 3. Secondary antibodies used in immunocytochemistry analysis.

Antibody Fluorochrome Catalogue Number Isotype Dilution Manufacturer

Alexa Fluor Goat
(anti-rabbit) Alexa 546 A11035 IgG 1:1000 Life Technologies

Alexa FluorGoat
(anti-mouse) Alexa 546 A21123 IgG1 1:1000 Thermo Fisher Scientific

Alexa Fluor Goat
(anti-mouse) Alexa 488 A21121 IgG1 1:1000 Life Technologies

Alexa Fluor Goat
(anti-mouse) Alexa 488 A21141 IgG2b 1:1000 Life Technologies

Alexa Fluor Goat
(anti-mouse) Alexa 546 A21045 IgM 1:1000 Life Technologies
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The samples were analyzed with LSM 780 confocal laser scanning system and ZEN
software (Carl Zeiss). Quantitative analysis was performed as a relation of positive cells to
all cells (50 cells in one repetition). Each variant had 3 repetitions.

2.12. Three Germ Layer Differentiation Potential

The cells’ three-germ-layer differentiation potential was determined using compo-
nents of a Human Pluripotent Stem Cell Functional Identification Kit (R&D Systems,
Minneapolis, MN, USA), which is dedicated to the examination of iPSC. For DFAT cells
assessment; glasses were coated by poly-L-lysine and media were compound with αMem
(Macopharma) and bFGF (Gibco). After the 5th day of culture, cells were fixed using 4%
PFA (Sigma-Aldrich). The results of differentiation were estimated based on immunocy-
tochemical staining (according to the manufacturers protocol) and evaluation of OTX2,
Brachyury, and SOX17 gene expression with RT-PCR in comparison with undifferentiated
cells cultured without differentiating supplements as a control group.

2.13. Quantitative RT-PCR Analysis

The mRNA probes were isolated by fenozol according to the protocol instructions
(A&A Biotechnology, Gdansk, Poland). The purity of each sample was measured by Nan-
oDrop ND-1000 (Thermo Scientific, Thermo Fischer Scientific), then reverse transcription
was conducted using a High-Capacity RNA-to-cDNA Kit (Applied Biosystems, Thermo
Fischer Scientific). Quantitative RT-PCR reaction was performed by Fast 7500 Thermocycler
(Applied Biosystems) with 10 ng of cDNA in 15 µL reaction mixture containing 3-color RT
HS-PCR Mix SYBR® (A&A Biotechnology), and 0.25 µM/µL for each specific primer. For
stemness-related transcriptional factors, NANOG, SOX2, OCT3/4, and REX1 expression
was estimated. For three-germ-layer differentiation, SOX17, OTX2, and Brachyury gene
expressions were measured, and for OGD, GFAP, nestin, MAP2, S100beta, B-tubulin III,
and NG2 gene expressions were measured (Table 4). Final gene expressions were calculated
by the 2-∆∆Ct method with β-actin as a reference gene.

Table 4. Primer sequences used in qRT-PCR analysis.

Gene NCBI Reference Sequence Product Size Primer Sequence (5e -> 3-)

β-Actin NM_001101.5 250 bp F: CATGTACGTTGCTATCCAGGC
R: CTCCTTAATGTCACGCACGAT

Nanog NM_024865.4 103 bp F: GAACCTCAGCTACAAACAGG
R: CGTCACACCATTGCTATTCT

Sox2 NM_003106.4 93 bp F: GTGGAAACTTTTGTCGGAGA
R: TTATAATCCGGGTGCTCCTT

Oct3/4 NM_001285986.2 331 bp F: CCTGAAGCAGAAGAGGATCACC
R: AAAGCGGCAGATGGTCGTTTGG

Rex1 NM_001304358.2 107 bp F: GCTCCCTTGAATGTTCTTTG
R: GCCTGTCATGTACTCAGAAT

Oxt2 NM_001270523.2 98 bp F: TTCATGCGAGAGGAGGTGGCA
R: TGCTGTTGTTGGCGGCACTT

Sox17 NM_022454.4 110 bp F:AACTATCCTGACGTGTGACA
R:CAAAAACCCAGGAGTCTGAG

Brachyury NM_001379200.1 104 bp F:ACGGCCACATTATTCTGAAT
R:GAAGTTCTCCTCGGCATATT

Nestin NM_006617.2 64 bp F: GGGAAGAGGTGATGGAACCA
R: AAGCCCTGAACCCTCTTTGC

GFAP NM_001363846.2 100 bp F: CCGACAGCAGGTCCATGT
R: GTTGCTGGACGCCATTG

MAP-2 NM_001375545.1 99 bp F: TTGGTGCCGAGTGAGAAGA
R: GTCTGGCAGTGGTTGGTTAA

β-Tubulin III NM_001197181.2 126 bp F: GGAAGAGGGCGAGATGTACG
R: GGGTTTAGACACTGCTGGCT

S100beta NM_006272.3 91 bp F: AGCGCTCCTGGAAAAAGCAA
R: TTGAATCGCATGGGTCACGG

NG2 NM_001897.5 118 bp F: GTCTACACCATCGAGCAGCC
R: TGTGTGAGAACAGCACGAGC

2.14. Cytokine and Chemokine Assays with Luminex Kit

Eight-plex Human Magnetic Luminex Assays (R&D Systems, cat. no. LXSAHM-08)
were used to measure the cytokine or protein concentration in medium samples. There were
three variants of the medium collected: ASC/DFAT co-culture with OHC, ADSC/DFAT co-
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culture with OHC after OGD, and ASC/DFAT culture without OHC. Moreover, the basal
medium without any cells was analyzed. The concentration of BDNF, FGF, HGF, beta-NGF,
EGF, GDNF, LIF, and VEGF were analyzed using a Luminex-based platform and Luminex
200 IS V2.1 Software (Bio-Rad, Hercules, CA, USA). Standard curves were generated from
the reference cytokine gradient concentrations. All samples were prepared in this same way;
after the medium collection, samples were liquated and stored at −80 ◦C. All procedures of
the media analysis were conducted on the ice. Each sample was frozen/thawed only once.

2.15. Statistical Analysis

The statistical analysis of the raw data was performed using GraphPad Prism 7 soft-
ware. Data are presented as the mean and standard deviation. One-way analysis of variance
(ANOVA test) was used to conduct multi-group comparisons, followed by Tukey test as
post hoc statistical analysis for each group. The values were considered significant with
p < 0.05.

3. Results
3.1. Multipotent Properties of Mesenchymal Stem Cells

After ASCs and DFAT cells’ isolation, phenotypic differences were observed. On the
3rd day of culture, both ASCs and DFAT cells showed the typical fibroblast-like phenotype,
but ASCs were growing evenly on the plastic surface (Figure 5c), and the DFAT cells
were grown as a rosette form with small oil vacuoles inside the cell’s matrix (Figure 5e).
The release of lipid droplets was observed during the next couple of days of standard
adherent culture. To assess the multipotent properties of cells, the ability of the cells to
differentiate into adipocytes, chondrocytes, and osteocytes was tested. Mesodermal lineage
differentiation potential was analyzed by culturing the cells with the addition of standard
adipogenic, chondrogenic, and osteogenic medium supplements. Our results showed that
DFAT cells can redifferentiate into adipose cells. The accumulation of lipid drops inside
the cell’s matrix was observed, as evidenced by oil red staining after two weeks of culture.
Cultivation of DFAT cells with the addition of osteogenic-induced supplement showed
the presence of azalin red-stained calcium deposits after two weeks of culture. DFAT cells
growing in the presence of chondrogenic differentiation induction medium took the shape
of micromass pellets with positive alcain blue staining that suggests the accumulation of
cartilage proteoglycans after 21 days of differentiation (Figure 5b). To assess the multipotent
properties of cells, a standard flow cytometry analysis of surface antigen profiles was also
performed. Both ASCs and DFAT cells showed high expression of mesenchymal cell
surface antigens at 2nd passage of culture. Both populations were uniformly positive in
CD73, CD105, and CD90 and negative in CD34, CD11b, CD19, CD45, and HLA-DR, with
no significant differences between populations (Figure 5d,f). The long-term proliferation
analysis was conducted by performing the population doubling time (PDT) analysis up to
the 9th passage. The positive effect on the rate of cell proliferation remained at a similar
level in both ASCs and DFAT cells and was approximately the same for eight passages. The
number of population doubling did not differ significantly between populations except
for 1, 6, and 8 passages, in which a longer population doubling time was observed in
DFAT cells (Figure 5g). A clonogenity analysis was performed at the 3rd and 8th passage.
Our results show that initially the clonogenity for both populations—ASCs and DFAT
cells—were comparable; however, at passage 8 we observed significantly decreased values
in ASCs from 30% ± 2 to 15% ± 6 and in DFAT cells from 28% ± 2 to 9% ± 1 (Figure 5h).
The senescence analysis was also carried out at two time points: 3rd and 8th passage by
using the β-galactosidase assessment. Our analysis showed the highest enzyme activity at
the 8th passage in comparison with the 3rd passage. In ASCs, we observed a significantly
higher percentage of β-galactosidase positive cells, which amounted 2% ± 2.5 at the 3rd
passage in comparison with 8% ± 1 at the 8th passage. Moreover, in DFAT cells, a similar
data dependency was demonstrated. We showed increased values of senescence positive
cells from 1.3% ± 1 to 7.5% ± 4. (Figure 5i).
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Figure 5. Multipotent properties of mesenchymal stem cells. (a)ASCs’ Differentiation into adipocytes, chondrocytes and
osteoblasts at 2nd passage of culture in 21% O2 conditions; (b)DFAT cells differentiation into adipocytes, chondrocytes and
osteoblasts at 2nd passage of coulture, in 21% O2 conditions; (c) Morphology of ASCs in 3rd day of culture, scale bar- 100 µm;
(d) Flow cytometry analysis of ASCs’mesenchymal markers presence: CD73, CD90, CD105 and absence: CD34, CD11b,
CD19, CD45 and HLA-DR at 2nd passage of culture; (e) Morphology of DFAT cells in 3rd day of culture, scale bar—100
µm; (f) Flow cytometry analysis of DFAT cells; mesenchymal markers presence: CD73, CD90, CD105 and absence: CD34,
CD11b, CD19, CD45 and HLA-DR at 2nd passage of culture; (g) Population Doubling Time analysis from 1 to 9 passage;
(h) Colony Formation Unit Frequency analysis at 3rd and 8th passage; (i) Senescence evaluation at 3rd and 8th passage.
Cells cultured conditions: 5% O2, 5% CO2, 37 ◦C. The results are presented as mean values of three experiments ± SEM.
The differences were considered statistically significant when p-value < 0.05. Statistical significance level * for 0.01 < p < 0.05;
** for 0.001 < p < 0.01; *** for 0.0001 < p < 0.001; **** for p < 0.0001.

3.2. Pluripotent Properties of ASCs and DFATs

To examine the pluripotent properties of the cells, differentiation into three germ
layers was evaluated. To confirm the ability to differentiate, immunocytochemical staining
and qRT-PCR analysis of the specific markers’ expression was performed at the fifth day of
cells differentiation. We assessed Otx2 gene expression as an ectodermal marker, Sox17 as
an endoderm, and Brachyury as a mesoderm. Immunocytochemical staining confirmed
the differentiative potential of both DFAT cells and ASCs because of the presence of nuclear
antibody light signal (Figure 6a). Quantitative real-time PCR showed a different tendency
and revealed highly significant increased values of the relative expression levels of the
Otx2 gene in DFAT cells, which were detected in the level of 3.5 ± 1 compared with the
ASCs’ levels of 0.2 ± 0.1. We also showed a significant high level of Brachyury gene expres-
sion, which was 11 ± 1 in ASCs in comparison with a significantly lower 0.4 ± 0.4 level
of Brachyury expression in DFAT cells. Moreover, the Sox17 gene expression values were
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significantly higher during ASCs’ differentiation in endoderm 1.3 ± 0.4 in comparison with
DFAT ability 0.1 ± 0. (Figure 6b). Our results suggest that DFAT cells have significantly
greater abilities to differentiate into ectoderm cells than ASCs. Our findings also clearly
demonstrate the advantage of ASCs in mesodermal and endodermal differentiation in
comparison with DFAT cells’ abilities. To more accurately assess the pluripotent abilities of
ASCs and DFAT cells, the expression of stemness-related transcriptional factors (SRTF) was
assessed by the qRT-PCR technique. We assessed the expression level of the Nanog, Sox2,
Oct 3/4, and Rex1 genes, which are important markers of pluripotency and are involved
in the maintenance of pluripotent abilities such as ESCs. We observed that DFAT cells
showed significantly higher values of the relative expression of all factors mentioned above
and that expression values were approximately 2- to 5-fold higher compared with the
expression levels in ASC. The Nanog gene relative expression was detected as 2.5 ± 0.4 and
was significantly higher than ASCs Nanog expression values. A similar data dependency
was observed when detecting the expression of the Sox2 gene, whose level was 3.4 ± 1.2,
Oct 3

4 , where the relative expression was 4.6 ± 0.8, and Rex1, where the detected expression
was 1.9 ± 0.5 compared with the expression of these genes in ASCs. (Figure 6c.).

Figure 6. Pluripotent properties of ASCs and DFAT cells: (a) Immunocytochemical analysis of
differentiation into ectoderm (Otx2), endoderm (Sox17), and mesoderm (Brachyury) at 2nd passage
of culture. Scale bar = 100µm; (b) qRT-PCR analysis of 3-germ-layer gene expression: Otx2, Sox17,
and Brachyury in 2nd passage with undifferentiated cells as a control group; (c) qRT-PCR analysis
of stemness-related transcriptional factors (SRTF) at the 2nd passage of culture with ASCs as a
control group. Cells cultured conditions: 5% O2, 5% CO2, 37 ◦C. The results are presented as mean
values of three experiments ± SEM. The differences were considered statistically significant when
p-value <0.05. Statistical significance level * 0.01 < p < 0.05; ** 0.001 < p < 0.01; *** 0.0001 < p < 0.001;
**** p < 0.0001.

3.3. Optimization of ASCs Capacity for Neural Lineage Differentiation

To optimize the conditions for the highest neurogenic ASCs’ potential, a quantitative
analysis of the selected neural markers and a marker of proliferation presence was per-
formed. The results of immunofluorescence staining showed significantly higher levels
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of B-tubulin III and NG2-positive cells among the ASCs cultured with stimulating fac-
tors (Figure 7). The highest percentage of neural marker B-tubulin III+ cells was found
in the population grown in bFGF medium, oscillating to 82 ± 9. In both RA- and N21-
supplemented medium culture variants, the percentage of oligodendrocytic marker NG2+
cells was high and oscillated to 81% ± 3. The GFAP astrocytic marker showed its highest
level for the cells in RA-supplemented medium (77% ± 8). These results were signifi-
cantly different from ASCs grown in standard control medium, where its value was about
58% ± 6. Immunofluorescent staining pictures are presented in Supplementary Materials
(Figure S1). The number of nestin+ cells was comparable in every variant. The high marker
of proliferation Ki-67 presence was maintained during N21- and bFGF-supplemented ASCs
cultures. Although the results obtained from differentiation performed with N21 and
bFGF supplementation in the aspect of oligodendrocytic and proliferation quantitative
marker analysis was similar, we observed morphological differences in the culture. As a
result of ASCs differentiation with N21 supplement, the spindle shape was maintained
throughout the whole experiment. After 10 days of cultivation, the presence of small cells
was still observed, but elongated, spindle-shaped cells prevailed. During cultivation in the
medium supplemented with bFGF, the cells firstly did not elongate but kept the unchanged
spindle shape. However, after 10 days, the cells began to expand, lengthen, and flatten
more intensively. The change of their shape could have been related to a higher rate of
senescence; thus, we decided to use N21 supplement in further studies. The assessment of
the most efficient conditions inducing neural differentiation, including the high presence
of selected neural markers and proliferation potential, suggested that N21 supplemented
ASCs’ culture variant as the most beneficial in comparison with other variants. Follow-
ing these results, the population doubling time, colony forming unit, and the number of
senescent cells in N21 supplemented ASCs culture were analyzed. There was no significant
influence between these variant results and the control culture of ASCs throughout the
passages (Figures 5 and 7).

3.4. Comparison of ASCs and DFAT Cells Neural Differentiation Capacity

Immunocytochemical and gene expression analysis of early neural markers demon-
strated the valid impact of neural tissue presence on ASCs and DFAT cells’ neural dif-
ferentiation capacity, especially after damage (Figure 8). The level of nestin+ cells was
significantly increased in two types of the examined cells co-cultured with OHC after
the OGD procedure in comparison with the culture lead in control conditions, reaching
90% ± 4 for ASCs and 81% ± 1 for DFAT cells. Interestingly, the gene expression analysis
indicated the converse results, where DFAT cells showed stronger expression of early
neural markers in both ex vivo variants in comparison with the ASCs. After the in vitro
culture, by immunofluorescence analysis, we also confirmed that N21 supplement was
significantly increasing the level of B-tubulin III- and nestin-positive cells for both cell
types, although a greater effect in the case of nestin marker presence was observed in ASCs
culture. B-tubulin III marker levels were comparable in both ASCs and DFAT cells culture
lead with N21 supplement and in OHC after OGD co-culture.

Regarding the assessment of differentiation into astrocytes’ ability, after the immuno-
cytochemical staining, we estimated a comparable high percentage of S100beta and GFAP
positive cells in every ASC and DFAT culture variant (Figure 9). However, in ASCs culture,
we determined a significant difference in S100beta+ cells between the ASCs co-cultured
with OHC and with OHC after OGD, which was greater and similar to ASCs supplemented
with N21, which oscillated to 87% ± 3. Astrocytic gene expression in ex vivo culture indi-
cated a very strong expression of S100beta in DFAT supplemented with N21 in comparison
with other variants, whereas GFAP was conversely strongly expressed by ASCs after OHC
after OGD co-culture.
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Figure 7. Optimization of ASCs’ capacity for neural lineage differentiation. (a) Quantitative analysis of neural (B-tubulin III, Nestin, GFAP, NG2) and proliferation (Ki67) markers presence
in ASC culture in inducive of neurogenesis medium (with addition of FGF, N2, N21); (b) Estimation of Population Doubling Time of ASC culture in medium with N21 supplement;
(c) Colony Forming Unit at early (3rd) and late (8th) passage of ASC culture supplemented with N21. (d) Percentage of senescent cells counted from early (3rd) and late (8th) passage of
ASC supplemented with N21. The results are presented as mean values of three experiments ± SEM. The differences were considered statistically significant when p-value <0.05. Statistical
significance level * for 0.01 < p < 0.05; ** for 0.001 < p < 0.01; *** for 0.0001 < p < 0.001; **** for p < 0.0001.
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Figure 8. Neural differentiation of ASCs/DFAT cells. B-tubulin III, Nestin immunocytochemical/expression analysis.
(a) Immunofluorescent images of ASCs/DFAT cells B-tubulin III staining; (b) Quantitative analysis of neural markers
presence in different culture conditions; (c) Neural markers (B-tubulin III and Nestin) expression. The results are presented
as mean values of three experiments ±SEM. The differences were considered statistically significant when p-value < 0.05.
Statistical significance level * for 0.01 < p < 0.05; ** for 0.001 < p < 0.01; *** for 0.0001 < p < 0.001; **** for p < 0.0001.
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Figure 9. Astrocytic differentiation of ASCs/DFAT cells. S100beta, GFAP immunocytochemical/expression analysis.
(a) Immunofluorescent images of ASCs/DFAT cells S100beta staining; (b) Quantitative analysis of astrocytic markers (GFAP,
S100beta) presence in different culture conditions. (c) Astrocytic markers expression. The results are presented as mean
values of three experiments ± SEM. The differences were considered statistically significant when p-value <0.05. Statistical
significance level * for 0.01 < p < 0.05; ** for 0.001 < p < 0.01; *** for 0.0001 < p < 0.001; **** for p < 0.0001.
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Moreover, we applied immunocytochemistry to examine the percentage of oligoden-
drocytic markers, A2B5 and NG2-positive cells (Figure 10). The results showed a similarly
high impact of N21 supplement and OHC after OGD co-culture on the amount of A2B5+
ASCs. Strong significant differences were observed for NG2 marker presence, which was
strongly increased for both ASCs and DFAT cells’ N21-supplemented and ex vivo culture
variants in relation to the control, reaching around 2 times higher values, more than 80%.
On the molecular level, DFAT cells displayed a stronger expression of the NG2 marker
than ASCs in both ex vivo variants.

Finally, we examined the neuronal differentiation ability of the cells using immunocy-
tochemical analysis of NeuN marker and the expression of MAP2 (Figure 11). Immunoflu-
orescent images confirmed the high level of NeuN in each cell variant. It was significantly
increased in DFAT cells after N21 supplementation and OHC after OGD co-culture than in
that of the control and after OHC co-culture. In the ex vivo model, MAP2 expression was
relatively high in DFAT cells, especially after co-culture with OHC after OGD procedure.

3.5. Neuroprotective Abilities of ASCs and DFAT Cells in the Ex Vivo Model

In this study, we assessed the impact of ASCs/DFAT cells’ indirect co-culture with
organotypic hippocampal slices after OGD on their neuroprotective properties (Figure 12).
The survival of hippocampal cells in the CA1 region after OGD was evaluated after the
analysis of PI (propidium iodide, a marker of dead cells) incorporation. We observed signifi-
cantly lower mortality of hippocampal cells after the co-culture with both ASCs/DFAT cells.
However, the neuroprotective effect induced by DFAT cells was significantly increased
in comparison with ASCs, with the dead cells of hippocampi approximately reaching
36.4% ± 11.8. Moreover, the levels of the examined neutrophic factors were significantly
higher in DFAT cells than in ASCs culture in the case of BDNF, FGF, and EGF, especially
after co-culture with OHC after OGD. In the case of LIF, a decreased level was seen for
both types of cells after co-culture.



Cells 2021, 10, 1475 18 of 27

Figure 10. Oligodendrocytic differentiation of ASCs/DFAT cells. A2B5,NG2 immunocytochemical/expression analysis.
(a) Immunofluorescent images of ASCs/DFAT cells A2B5 staining; (b) Quantitative analysis of oligodendrocytic markers
(A2B5, NG2) presence in different culture conditions; (c) Oligodendrocytic marker NG2 expression. The results are presented
as mean values of three experiments ± SEM. The differences were considered statistically significant when p-value <0.05.
Statistical significance level * for 0.01 < p < 0.05; ** for 0.001 < p < 0.01; *** for 0.0001 < p < 0.001; **** for p < 0.0001.
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Figure 11. Neuronal differentiation of ASCs/DFAT cells. NeuN, MAP2 immunocytochemical/expression analysis. (a) Im-
munofluorescent images of ASCs/DFAT cells NeuN staining; (b) Quantitative analysis of neuronal marker NeuN presence
in different culture conditions; (c) Neuronal marker MAP2 expression. The results are presented as mean values of three
experiments ± SEM. The differences were considered statistically significant when p-value <0.05. Statistical significance
level * for 0.01 < p <0.05; ** for 0.001 < p < 0.01; *** for 0.0001 < p < 0.001; **** for p < 0.0001.
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Figure 12. ASCs/DFAT cells neuroprotective and neurogenic potential assessment. (a) PI incorporation into the CA1 region
of the hippocampal slices (the region is marked red); (b) Quantitative analysis of dead cells after OGD in all culture
variants.; (c) Immunocytochemical analysis of live (green—stained with Calcein) and dead (red—stained with PI) cells of the
hippocampal slice; (d) The characteristic rosette made by ASCs after the co-culture with OHC; (e) Cytokines concentration
in medium collected in three culture variants—from cell culture (control), after co-culture with organotypic hippocampal
slices (OHC) and with OHC after oxygen-glucose deprivation (OHC+OGD).The results of all presented above experiments
are expressed as mean values of three experiments ± SEM. The differences were considered statistically significant
when p-value < 0.05. Statistical significance level * for 0.01 < p < 0.05; ** for 0.001 < p < 0.01; *** for 0.0001 < p < 0.001;
**** for p < 0.0001.
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4. Discussion

In this study, we mainly focused on the characterization of the neurogenic and neuro-
protective abilities of the cell subpopulation isolated from adipose tissue—dedifferentiated
adipocyte-derived progeny cells (DFAT cells). We performed the effective isolation us-
ing the ceiling culture and determined the basic parameters and properties of the cells
compared with the standard ASCs.

Our results regarding the essential characteristics of DFAT cells are in line with pre-
vious reports [15]. We showed that DFAT cells present the same cell surface antigens
profile as ASCs. There were no significant differences between the population doubling
time, proliferation capacity, clonogenity, or senescence properties in a long-term culture.
The multilineage potential and differentiation into adipocytes, chondrocytes, and osteo-
cytes in both fractions also remained similar, whereas the expression of stemness-related
transcriptional factors (SRTF)—Sox2, Nanog, Oct3/4, and Rex1—testified to the higher
pluripotent capacity in DFAT cells, which is consistent with previous several independent
studies [45–47]. Studies by Jumabay et al. confirmed the expression of pluripotent markers
Oct3/4, SOX2, Nanog, c-Myc, and Klf4 and the ability to create clusters in addition express-
ing of markers characteristic of embryonic stem cells SSEA-1 and SSEA-3. All these features
were much more strongly expressed in DFAT cells than ASCs; interestingly, the highest
expression of pluripotent genes was noted in the fifth day of culture (5 DIV) using the
membrane method and then decreased up to 20 days of cultivation. These results indicate
the transient pluripotent nature of DFAT cells. We analyzed the cells in passage 2 (about
5–7 DIV, starting from day 0, which was the day ceiling cultivation ended).

Except for the expression of SRTF genes, the distinct pluripotent properties could also
be indicated by the cell ability to differentiate toward the three germ layers: mesoderm,
ectoderm, and endoderm.

After 5 days of culture ASCs has been shown to significantly higher express Brachyury
gene, which is a marker of mesodermal differentiation, than DFAT cells. On the other
hand, DFAT cells demonstrated stronger expression of the Otx2 gene, which is proved to be
related to ectodermal differentiation. Our results differ from those published so far [45], as
our findings show that DFAT cells do not have the ability to differentiate into all three types
of germ layer cells but only into ectoderm. These discrepancies may be associated with the
cell migration during epithelial–mesodermal transition (EMT) that was described earlier So
far, the neural crest origin of a certain fraction of ASCs has been found, while in the case of
DFAT cells such reports do not exist [10]. Our results may therefore suggest that the origin
of the DFAT cell fraction may be related to neural crest migration, which may confirm their
pluripotent nature, but that further studies for this purpose should be conducted.

Another possibility is that adipose tissue, similar to bone marrow themselves, contain
an infinitesimal number of pluripotent cells and that the ceiling culture technique (as
the stress factor) allows the isolation of that subpopulation. The technique of ceiling
culture was described as a way of obtaining a more homogeneous and a less contaminated
population of cells without, e.g., smooth muscle cells or fibroblasts compared with ASC [13].
It should be noted that the technique, with membrane filter and one-day incubation of
adipocytes in suspension, allows an analysis to additionally exclude contamination with
other cells, the adhesion of which is forced in the ceiling culture [45]. The conclusion is that
subsequent modifications of the method for isolating DFAT cells allows the fraction of cells
with stronger pluripotent properties to be obtained as well as providing the potential to
differentiate cells into germ layers other than mesoderm [48]. Perhaps hypothetically, the
isolation method used to obtain DFAT allows the fraction of cells derived from the neural
crest and settled in the adipose tissue to be obtain.

Nevertheless, demonstrating the origin and the pluripotent nature of DFAT cells
in vitro depends on many variables; therefore, determining an efficient method for obtain-
ing these cells and for determining the conditions and time of culture requires separate
and broader studies.
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Mesenchymal stem/stromal cells mostly require additional environmental factors
to differentiate into the neural direction. The selection of proper stimulating factors or
even a mix of factors for supplementing the culture medium seems to be one of the
most important components. Our study confirmed the beneficial effect of bFGF, RA, and
N21 supplement presented in the medium on the ability of ASCs to differentiate into the
neural direction. Naïve ASCs, without any additional pretreatment, were described to
express nestin. We observed similar levels of nestin regardless of the current differentiating
factor. The cells after bFGF treatment showed a significant high level of B-tubulin III, which
is early neural marker, also considered by several authors as a marker of neurons [49–51].
Moreover, bFGF-treated ASCs indicated a high percentage of Ki-67-positive cells, a marker
of proliferation. These observations are similar to those in the literature, conducted on the
mouse bone marrow stromal cells [52]. ASCs not only expressed early neural markers but
also astrocytic and oligodendrocytic markers after both RA and N21 treatment. It has been
shown that the pre-activation of retinoid signaling by RA improves neuronal differentiation.
However, the function of RA is also linked with the regulation of the proliferation—RA
halts proliferation. What is more, it has been shown that the loss of RA signaling is linked
with dedifferentiation and tumorigenesis [43]. The last cited study’s data are consistent
with our findings. Although we observed a relatively high presence of neural and glial
markers after RA treatment, there was a significant decrease of the percentage of Ki-67+
cells in comparison with other culture variants. To keep the high proliferative potential the
additional factors should possibly be added, e.g., EGF and bFGF [53].

After N21 supplementation, we observed an unequivocally positive effect enhancing
the neurogenic and proliferative potential of ASC; therefore, for further experiments with
DFAT neurogenic differentiation, we choose that supplementation. The N21 supplement is
described as the re-defined and modified supplement B27, for use in neuronal cultures [54].
DFAT cells responded to that supplementation, keeping their proliferative potential and
expressing neural markers (neuronal, astroglial, and oligoglial). We have proved that DFAT
cells have high potential for differentiating into neuronal-like cells in the presence of N21.
The neural differentiation abilities of DFAT cells were also examined by Ohta et al. In the
mentioned study, DFAT cell expression and protein levels of neural (β-tubulin III, nestin)
and glial (GFAP) markers were confirmed [15].

Another question we wanted to answer was regarding the fate of DFAT in the pres-
ence of intact or injured neural tissue and without any additional exogenous stimulants.
Previous studies have shown that ASCs have the ability to differentiate into the neural
lineage (expression of neuronal markers) under the influence of organotypic hippocampal
slices co-culture. Our observations regarding DFAT cells and ASCs differentiation are
consistent with the results described by Sarnowska et al., who demonstrated the induction
of neural differentiation of MSC in the absence of any additional chemical compounds
or growth factors—differentiation that was only induced by co-culture with the neural
tissue [55]. In our study, we observed significantly higher expression of early neural, astro-
cytic, oligodendrocytic, and neuronal genes in DFAT cells, especially after co-culture with
the injured, OGD-treated hippocampal slices. Whereas, it was more strongly expressed by
ASCs only regarding the expression of the GFAP astrocytic marker.

The therapeutic effect of MSC, however, is mainly related to its adjuvant properties.
The secretory properties of ASCs may be enhanced and/or modulated by environmental
factors, e.g., in response to the tissue injured or affected by a disease. Our field of interest is
in the treatment of CNS diseases, where the therapeutic effect could be potentially related
to the secretion of neuroprotective factors that could lower the scale of damage by reducing
cell death [35,56]. The secretory properties of MSC may be enhanced and/or modulated by
environmental factors, e.g., in response to injured tissue.

In our experiments, we observed an increased level of BDNF secretion, especially by
DFAT cells co-cultured with OHC after OGD injury. BDNF is demonstrated as a candidate
for defense candidate against ischemic brain injury [57–62]. It was shown, using animal
model, that ASCs stimulate regeneration by secreting BDNF [63]. Moreover, the results
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indicated significantly stronger secretion regarding DFAT cells cultured with OHC and/or
OHC after OGD than for other neurotrophic factors—FGF, EGF, and GDNF, previously de-
scribed by several authors regarding ASCs’ secretome [64]. Our results showed a significant
increase in the secretion of HGF and VEGF. Interesting differences were observed according
to bNGF level changes, which were opposite those observed in ASCs in comparison with
DFAT cells. Regarding ASCs, our findings were consistent with Sarnowska et al., who ob-
served a significant increase of NGF expression by BM-MSC after co-culture with rat OHC
after OGD [65]. Furthermore, the authors underlined the importance of culture conditions’
influence on cell neuroprotective abilities. The results obtained by Tan and co-workers
showed the presence of NGF in ASCs’ cultured media and suggest that in addition to its
neuroprotective properties, the medium mediates damaged tissue repair through the in-
duction of neurogenesis via activation of NGF-induced AMP-activated kinase (AMPK) [66].
Accordingly, it was evaluated that human adipose mesenchymal stem cells can protect
against glutamate-induced injury in P12 cells via the secretion of VEGF, HGF, BDNF, and
NGF, both under normoxic and hypoxic conditions [67]. We also observed a significant
decrease of LIF secretion in both populations of cells co-cultured with intact or injured
hippocampal slices. This observation could be related to the progressive differentiation
of the cells in the presence of neural tissue. Our observations regarding differences in cell
secretion within different cell subpopulations in restricted culture conditions are consistent
with those of Crigler and coworkers [68]. Their findings demonstrated that transcripts
expressed by MSCs for BDNF and bNGF are strictly correlated with specific subpopu-
lations, encoding axon guidance, neurite-inducing, and neural-cell-adhesion molecules.
Interestingly, the researchers presumed that MSC-induced effects express factors other than
neurotrophins, contributing to the above-mentioned activities. Moreover, the factor subset
is co-expressed with BDNF in MSC subclones. In addition, the expression levels of BDNF
are linked with the ability of cell populations/subclones to promote neuronal cell survival
and neuritogenesis. It was also shown that MSCs promote neurite outgrowth within dorsal
root ganglion explants despite secreting a 25-fold lower level of bNGF, which is required to
produce similar effects exogenously. The secretion of several factors by ASCs and DFAT
cells is influenced by the injured neural tissue. Moreover, in the case of both cell types as
well as both co-culture variants that we presented in this study, treatment not only led to
induced neuroprotection according to significantly increased secretory properties of the
cells but also led to our observation of a reduced number of dead cells in the damaged
nervous tissue after indirect co-culture, thus confirming the paracrine neuroprotective
effect of both ASCs and DFAT cells, similar to results described previously for WJ-MSC
and for BM-MSC [65,69].

The cells have a protective effect on the injured tissue, and conversely, the injured
tissue affects the cells’ differentiation ability [34]. These dependencies complement each
other and help to illuminate the phenomenon of MSCs’ therapeutic effectiveness, indicating
the great importance of the attempts to use these cells in the regeneration of ischemically
injured nerve tissue.

The impact of the damaged nerve tissue and transplanted cells is bilateral. In addition
to secreted cytokines and growth factors, the affected tissue also secretes factors stimulating
the cells to proliferate and differentiate into neural lineage. The pro-neurogenic properties
of these factors lead to the activation and enhancement of endogenous neurogenesis, and
thus may lead to the creation of an effective therapy for neurological disorders.

In conclusion, our results indicate that DFAT, the next subpopulation of stem/stromal
derived from adipose tissue, is more homogenous, has slightly different secretory prop-
erties in relation to SVF and ASCs, and expresses some pluripotent-like features and
strong neuroprotective properties. Moreover, in the presence of neural tissue, these cells
differentiate toward neural direction without any additional stimulants.

As far as we know, this is the first paper presenting an analysis of the neurogenic and
neuroprotective potential of both ASCs and DFAT cells.
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