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Abstract: Coronaviruses such as SARS-CoV-2, which is responsible for COVID-19, depend on virus
spike protein binding to host cell receptors to cause infection. The SARS-CoV-2 spike protein
binds primarily to ACE2 on target cells and is then processed by membrane proteases, including
TMPRSS2, leading to viral internalisation or fusion with the plasma membrane. It has been suggested,
however, that receptors other than ACE2 may be involved in virus binding. We have investigated the
interactions of recombinant versions of the spike protein with human epithelial cell lines that express
low/very low levels of ACE2 and TMPRSS2 in a proxy assay for interaction with host cells. A tagged
form of the spike protein containing the S1 and S2 regions bound in a temperature-dependent manner
to all cell lines, whereas the S1 region alone and the receptor-binding domain (RBD) interacted only
weakly. Spike protein associated with cells independently of ACE2 and TMPRSS2, while RBD
required the presence of high levels of ACE2 for interaction. As the spike protein has previously
been shown to bind heparin, a soluble glycosaminoglycan, we tested the effects of various heparins
on ACE2-independent spike protein interaction with cells. Unfractionated heparin inhibited spike
protein interaction with an IC50 value of <0.05 U/mL, whereas two low-molecular-weight heparins
were less effective. A mutant form of the spike protein, lacking the arginine-rich putative furin
cleavage site, interacted only weakly with cells and had a lower affinity for unfractionated and
low-molecular-weight heparin than the wild-type spike protein. This suggests that the furin cleavage
site might also be a heparin-binding site and potentially important for interactions with host cells.
The glycosaminoglycans heparan sulphate and dermatan sulphate, but not chondroitin sulphate,
also inhibited the binding of spike protein, indicating that it might bind to one or both of these
glycosaminoglycans on the surface of target cells.

Keywords: SARS-CoV-2; heparin; glycosaminoglycan; spike protein

1. Introduction

SARS-CoV-2, the causative agent of COVID-19, is thought to infect cells after binding
with high affinity to a host cell receptor, ACE2 [1]. The ACE2-binding domain is located
in the spike protein that consists of two regions: S1, which includes the high-affinity
receptor-binding domain (RBD) and S2, containing sequences necessary for fusion with the
host cell. S1 and S2 are linked by a sequence that has a putative furin cleavage site that
promotes the infection of human cells [2]. A host cell surface serine protease, TMPRSS2, is
also proposed to be involved in viral entry by cleaving S1 and S2, leading to activation of
the fusion machinery [1]. By analogy with SARS-CoV-1, it is expected that the virus can
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fuse with the plasma membrane or with endosomal membranes following internalisation
(reviewed in [3]).

Paradoxically, ACE2 is expressed at quite low levels by most cell types [4], leading
to suggestions that additional receptor sites may exist. One such additional site has
recently been identified as neuropilin-1 (NRP-1), a growth factor co-receptor [5]. Viruses,
such as herpes simplex and the β coronavirus family, are known to interact with host
glycosaminoglycans (GAG) [6,7]. A growing body of evidence suggests that SARS-CoV-
2 can bind GAGs such as heparan sulphate and heparin, dependent on their level of
sulphation [6,8–10] and that heparin can inhibit SARS-CoV-2 entry into host cells [11–13].
Initial binding to heparan sulphates is thought to keep the spike protein in an ‘open’
conformation, allowing for downstream binding and processing by ACE2 and TMPRSS2,
respectively [8].

Here, we show binding of SARS-CoV-2 spike protein to human epithelial cell lines
that differentially express ACE2 and TMPRSS2. The intact viral spike protein, but not the
isolated S1 or RBD subunits, exhibits a temperature-dependent cellular interaction that
allows rapid detection by flow cytometry. We have used this assay to confirm that heparin
can inhibit spike protein interactions with human cells and demonstrate that high-affinity
heparin binding might involve the putative furin cleavage site and the S2 region of the
viral spike protein but that it is largely independent of the S1 region.

2. Materials and Methods
2.1. Materials

Unfractionated heparin (Leo, 1000 U/mL), dalteparin (25,000 IU/mL) and enoxaparin
(10,000 IU/mL) were obtained from the Royal Hallamshire Hospital Pharmacy, Sheffield,
UK. Fondaparinux was purchased from Merck, Gillingham, UK. Goat anti-human ACE2 an-
tibody AF933 (Biotechne, Abingdon, UK), goat control IgG AB-108-C (Biotechne, Abingdon,
UK), rabbit anti-human TMPRSS2 (MBS9215011, Gentaur, Potters bar, UK), and rabbit IgG
control (Biolegend, San Diego, CA, USA) were used as per manufacturers’ instructions. Pro-
tamine sulphate was obtained from Royal Hallamshire Hospital Pharmacy, Sheffield, UK,
surfen hydrate from Merck, Gillingham, UK, camostat mesylate from Biotechne, Abingdon,
UK, GM6001 from Sigma, UK and glycosaminoglycans from Iduron, Alderley Edge, UK.
His6-tagged human complement fragment 5a des Arg was obtained from Hycult Biotech,
Uden, NL.

2.2. Cell Culture

The A549 lung carcinoma cell line (European Collection of Animal Cell Cultures Salis-
bury, UK), the human keratinocyte cell line, HaCaT (Cell Line Services GmbH, Eppelheim,
DE), the VERO E6/TMPRSS2 cell line (National Institute for Biological Standards Potters
Bar, UK), and the HEK293 cell line (American Tissue Type Collection (ATCC) Manassas,
VA, USA) were all routinely cultured in DMEM with 10% foetal calf serum (FCS). ACE2-
transfected ACE2HEK293 cells were kindly provided by Paul Bieniasz (The Rockefeller
University, USA), cultured as described for wild-type (wt)HEK293 cells including selection
with 5 ug/mL blasticidin. The RT4 human bladder cell line (ATCC, Manassas, VA, USA)
was cultured in McCoys 5A medium (Fisher Scientific, Loughborough, UK) supplemented
with 10% FCS. HCE2 corneal epithelial cell line (ATCC, Manassas, VA, USA) was cultured
in keratinocyte serum-free medium supplemented with bovine pituitary extract, insulin,
hydrocortisone and epidermal growth factor. The Caco2 colorectal adenocarcinoma cell
line was a gift from Dr. Michael Trikic (University of Sheffield, UK) and cultured in EMEM
supplemented with 10% FCS plus non-essential amino acids. Cell lines were routinely
sub-cultured by trypsinisation and maintained in sub-confluent cultures.

2.3. Real Time Quantitative PCR (RT-qPCR)

HaCaT, RT4, HCE2, A549, wtHEK293, ACE2HEK293 and Caco2 cell lines were cul-
tured for 48 h and harvested using trypsin/EDTA. Total RNA was extracted using the
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RNeasy Mini Kit (Qiagen, Manchester, UK) and quantified using a NanoPhotometer N60
Touch (Cole-Palmer UK, St Neots, UK). RNA samples were converted to cDNA using the
High-Capacity cDNA Reverse Transcription Kit (Fisher Scientific, Loughborough, UK).
Control samples containing no reverse transcriptase or no RNA template were included.
RT-qPCR was performed by SYBR Green assay using the PrecisionPLUS OneStep RT-qPCR
Master Mix (Primer Design, Chandler’s Ford, UK) and the QuantStudio 5 Real-Time PCR
system (Fisher Scientific, Loughborough, UK). Gene expression levels of ACE2 and TM-
PRSS2 were investigated by comparative CT experiments and GAPDH expression was
measured as an endogenous control. All primers were designed using PrimerBLAST (see
Table S1 for primer sequences). The wtHEK293 cell line has been used as a reference
for ACE2/TMPRSS2 gene expression and the data are presented as the mean relative
quantification (∆∆Cq).

2.4. Coronavirus Spike Proteins

Spike protein binding to cells was tested using four versions of the SARS-CoV-2
spike protein and one version of the SARS-CoV-1 spike protein. Wild-type SARS-CoV-1
spike protein (S1S2; Tor2 isolate M1-P1195, S577A) and SARS-CoV-2 spike protein (wtS1S2;
Val16-Pro1213; Stratech, Ely, UK) with His6 tags at the C-terminus were expressed in
baculovirus-insect cells, while S1-Fc (V16-R685; Stratech, Ely, UK) with a mouse IgG1
Fc region at the C-terminus was expressed in HEK293 cells. Mutant SARS-CoV-2 spike
protein (mS1S2) and the receptor-binding domain (RBD) cloned into a pCAGGS expression
vector were kindly provided by Florian Krammer (Mount Sinai, USA) [10]. For mS1S2, a
polybasic cleavage site, recognised by furin, was removed (682RRAR685 to A) in mS1S2 and
two stabilising mutations were added (K986P and V987P). A thrombin cleavage site, a T4
foldon sequence allowing trimerisation and a His6 tag were fused to the C-terminal amino
acid P1213. RBD was expressed using the natural signal peptide fused to RBD (R319-Q541)
and a His6 tag at the C terminus. Recombinant proteins were expressed and purified as
described previously [11].

2.5. Spike Protein Interaction Assay

Cells were harvested by brief trypsinisation and added to wells of a 96-well U-bottom
plate. After centrifugation at 300× g for 2 min and washing with HBSS containing divalent
cations and 0.1% BSA (assay buffer, AB), cells were incubated with potential inhibitors in
AB for 30 min at 37 ◦C. The supernatant was removed following centrifugation and AB con-
taining spike protein added before incubation at 4 or 37 ◦C for 60 min. Cells were washed
once and then incubated with the appropriate fluorescently labelled secondary antibody
(anti-mouse polyvalent Ig-FITC (Merck, Gillingham, UK) or anti-His6 HIS.H8 DyLight
488, (Fisher Scientific, Loughborough, UK) for 30 min at room temperature. Cells were
finally resuspended in AB containing propidium iodide and cell-associated fluorescence
measured using a flow cytometer. Live cells were gated as a propidium iodide negative
population and the median fluorescence (MFI) of at least 3000 cells recorded. MFI was
calculated after subtraction of cell-associated fluorescence of the secondary antibody alone.

2.6. Determination of Spike Protein Binding to Heparin by ELISA

Heparin-binding plates (Plasso EpranEx™), a gift from Dr David Buttle (University
of Sheffield, UK), were coated with 10 µg/mL of UFH or dalteparin diluted in phosphate
buffered saline (PBS) at room temperature overnight. Wells were washed twice with PBS
0.05% Tween (PBST), blocked with PBST with 1% BSA for 2 h at 37 ◦C before three further
washes with PBST. Various concentrations of His-tagged spike proteins in AB buffer (or
AB buffer control) were added to the wells and incubated at 37 ◦C for 2 h. For competition
assays, proteoglycans were added at the same time as the spike proteins. Wells were
washed three times as above then incubated at room temperature with biotin-labelled
rabbit monoclonal anti-His6 (Fisher Scientific, Loughborough, UK) diluted to 1/1000 in
AB for 1 h, washed 3 times with PBST and incubated for 30 min with streptavidin-HRP
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(Fisher Scientific, Loughborough, UK) diluted 1/200 in AB. After washing 3 times with
PBST and twice with dH2O, TMB substrate solution (Fisher Scientific, Loughborough, UK)
was added followed by 1M HCl to quench the reaction. Absorbance was measured at
OD450 nm with non-specific spike protein binding to uncoated wells subtracted.

3. Results
3.1. ACE2 and TMPRSS2 mRNA Expression within Human Cell Lines

We investigated the binding of SARS spike proteins to human epithelial cell lines
with a range of low levels of ACE2 and TMPRSS2 expression. The mRNA for ACE2
and TMPRSS2 in a variety of human cell lines was measured by quantitative PCR and
compared to levels in the commonly used human embryonic kidney 293 cell line (HEK293),
reported to have very low ACE2 mRNA levels [14,15]. ACE2-transfected HEK293 cells
expressed 357-fold higher ACE2 than wild-type (wt)HEK293 but had similar TMPRSS2
levels (Figure 1). HaCaT skin keratinocytes had the highest native ACE2 mRNA expression
(2.3-fold higher than wtHEK293) but there was very low expression of TMPRSS2 (Figure 1).
HCE-2 corneal epithelial cells were also investigated due to the proposed role of the ocular
surface as a route of infection [16] but little or no ACE2 or TMPRSS2 expression was
detected. The urinary bladder epithelial cell line, RT4 [15], had ACE2 and TMPRSS2
expression 0.5-fold lower and 52-fold higher, respectively, than in wtHEK293 cells. In
contrast, the Caco2 colorectal adenocarcinoma cell line, used in several infection studies
of SARS-CoV and SARS-CoV-2 [17], has 0.47-fold lower and 56-fold higher mRNA for
ACE2 and TMPRSS2, respectively, compared to wtHEK293 cells. Finally, the human
lung adenocarcinoma alveolar basal epithelial cell line A549 expresses very low levels
of both ACE2 and TMPRSS2, perhaps explaining why this cell line does not support
infection by SARS-CoV-2 viral particles [17]. As RT4 cells seemed to have low ACE2 and
TMPRSS2 expression levels representative of other epithelial cell types and are also known
to express ADAM17 [14,15], a metalloprotease known to be involved in the processing of
ACE2 [18], these cells were chosen to investigate possible ACE2-independent binding to
epithelial cells.

Figure 1. ACE2 and TMPRSS2 mRNA expression in human epithelial cell lines. Total RNA was
isolated from the cell lines, converted to cDNA and ACE2 and TMPRSS2 mRNA levels determined
by RT-qPCR. The data are shown relative to expression in wild-type (wt) HEK293 cells (=1) and are
the means from at least 2 independent experiments.
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3.2. SARS-CoV-2 Spike Protein Interaction with Human Cells Is Temperature Dependent

To detect spike protein interactions with cells, we used recombinant S1 tagged with
mouse Fc; His6-tagged RBD or intact wtS1S2 proteins, and the appropriate fluorescently
labelled secondary antibodies to stain RT4 cells for flow cytometry. At 4 ◦C, only a very
low level of wtS1S2 binding was detected, while S1 and RBD binding was undetectable
(Figure 2), with similar results at 21 ◦C (data not shown). Surprisingly, interaction of
wtS1S2 at 37 ◦C was much stronger than at 4 ◦C, whereas S1 and RBD protein association
was still very low (Figure 2). A His6-tagged human complement fragment 5a des Arg was
used to test the specificity of the wtS1S2 interaction at 330 nM; no binding was detected at
either 4 or 37 ◦C (data not shown). The temperature dependency of the cellular interaction
with wtS1S2 suggests that the protein might undergo a conformational change, perhaps as a
result of proteolytic processing at the cell surface, which allows binding to occur. However,
neither the TMPRSS2 inhibitor camostat mesylate nor the ADAM17 inhibitor GM6001 had
any effect on wtS1S2 binding at concentrations up to 100 µM (data not shown).

Figure 2. S1S2 interaction with human cells is temperature dependent. Attachment of S1, RBD and
wtS1S2 (black, red and blue lines, respectively) compared to secondary-only control (solid grey),
at 4 ◦C (Top panels) or 37 ◦C (Lower panels). RT4 cells were incubated with 330 nM S1-Fc, 10 µM
RBD or 330 nM S1S2-His6 protein for 60 min at either 4 or 37 ◦C, before staining with anti-mouse Ig
labelled with FITC or anti-His6 secondary antibody labelled with Dylight 488 for 30 min at 21 ◦C.
Cell-associated fluorescence was measured by flow cytometry. Results are representative of at least
3 separate experiments.

3.3. wtS1S2 Can Interact with a Range of Human Cells Independent of ACE2 Expression

We next investigated the interaction of wtS1S2 to epithelial cells with varying degrees
of ACE2 expression at 37 ◦C. A 100 nM wtS1S2 was able to attach to all cells tested, with
higher ACE2-expressing cells having only slightly higher levels of interaction (relative to
background RT4-1.80 ± 0.32; Caco2-1.75 ± 0.40; HaCaT-1.66 ± 0.16; Figure 3A). Despite
high mRNA expression by ACE2-transfected HEK293 cells, attachment of wtS1S2 is com-
parable between wtHEK293 cells (1.44 ± 0.27) and ACE2HEK293T cells (1.60 ± 0.28). A549
cells, which have no detectable levels of ACE2, were also able to associate with wtS1S2
(1.33 ± 0.20), suggesting a largely ACE2-independent interaction with all of these cell types.
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Figure 3. ACE2 is not required for wtS1S2 attachment to cells. (A) A549, wtHEK293, ACE2HEK293,
Caco2, HaCaT, HCE2 and RT4 cells were incubated with 100 nM wtS1S2 for 60 min, before staining
with anti-His6 secondary antibody labelled with Dylight 488. Binding of S1S2 attachment to various
human cells. Data are calculated relative to the median fluorescence of secondary antibody alone
(=1), means ± SEM from 5 separate experiments performed in duplicate. (B) Attachment of different
concentrations of wtS1S2 (squares) or RBD (triangles) to wtHEK cells (open symbols) or ACE2HEK
cells (filled symbols). Data are shown as a percentage of 10 µM RBD binding to ACE2HEK cells,
means ± SEM from 3 independent experiments performed in duplicate.

As we observed wtS1S2 interaction with cells expressing little or no ACE2, we
sought to further investigate the role of spike protein interaction with ACE2 by assess-
ing the concentration dependence of wtS1S2 and RBD attachment to wtHEK293 and
ACE2HEK293 cells. wtS1S2 and RBD interacted with 293TACE2 cells with similar affinities
(EC50 = 137.7 nM and 49.1 nM, respectively) (Figure 3B). In contrast, wtS1S2 also associated
with wtHEK293 cells expressing very low levels of endogenous ACE2, albeit at a slightly
lower affinity (EC50 = 784.6 nM), while the interaction of RBD with these cells was not
above background. This confirms that a major component of the interaction of wtS1S2 with
cells is independent of ACE2, perhaps via an alternative receptor, whereas interaction of
the RBD alone requires high levels of cell surface ACE2.

The dependence of RBD binding on ACE2 was confirmed using VERO E6/TPMRSS2
cells that express levels of endogenous African Green Monkey ACE2 high enough to
support SARS-CoV-2 entry [19]. These cells bound significant levels of RBD at 1000 nM,
whereas binding to RT4 was much lower (Figure 4). Due to the possibility that the treatment
of cells with trypsin might interfere with RBD binding, A549 cells, harvested with either
trypsin/EDTA (TE) or non-enzymatic cell dissociation solution (CDS) were tested. RBD
binding was undetectable under both conditions (Figure 4), confirming the role of ACE2 in
the binding of RBD.

3.4. wtS1S2 Interactions May Require a Putative Furin-Binding Site

The polybasic site between the S1 and S2 regions (681PRRARSV687) is a putative furin
cleavage site that promotes the infection of human cells [2] but is not essential [20]. The
spike protein from SARS-CoV-1 does not contain this site [21]. We compared the binding
of wtS1S2 from SARS-CoV-1 and SARS-CoV-2 to RT4, A549 and VERO E6/TMPRSS2 cells.
At all concentrations tested, SARS-CoV-1 wtS1S2 bound to these cells more weakly than
SARS-CoV-2 wtS1S2 (Figure 5). Interestingly, harvesting A549 cells with CDS rather than
trypsin increased the binding of both wtS1S2 proteins (Figure 5), in contrast to RBD binding,
which was still undetectable (Figure 4).
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Figure 4. RBD can bind to VERO E6 cells that express high levels of endogenous ACE2 but not
to RT4 cells. VERO E6/TMPRSS2, A549 and RT4 cells were harvested by either trypsin/EDTA or
non-enzymatic cell dissociation solution (CDS) and then incubated with 1000 nM RBD for 60 min,
before staining with anti-His6 secondary antibody labelled with Dylight 488. The data are shown
as a percentage of the binding of 100 nM wtS1S2 and are the means ± SEM from 5–6 independent
experiments performed in duplicate. The significance of the difference from 0 was assessed by a
one-sample t test; * p < 0.05; ** p < 0.001.

Figure 5. wtS1S2 from SARS-CoV-1 binds more weakly to cells than SARS-CoV-2 wtS1S2. A549,
RT4 and VERO E6/TMPRSS2 cells were harvested by either trypsin/EDTA (TE; filled symbols) or
non-enzymatic cell dissociation solution (CDS; open symbols) and then incubated with the stated
concentrations of wtS1S2 from SARS-CoV-1 (squares) or SARS-CoV-2 (circles) for 60 min, before
staining with anti-His6 secondary antibody labelled with Dylight 488. The data are shown relative to
100 nM SARS-CoV-2 wtS1S2 and are the means ± SEM from 3–4 independent experiments performed
in duplicate.

A mutant spike protein (mS1S2) protein lacking the putative furin cleavage site also
demonstrated dramatically reduced interaction with RT4 cells compared to wtS1S2, similar
to the S1 RBD alone (Figure 6A,B). This might be explained by the lack of proteolytic
processing of the spike protein during viral association with the cell, although we cannot
rule out the importance of a pair of stabilising modifications, 300 amino acids C-terminal
of the polybasic cleavage. We were unable to determine the affinity of the interaction due
to limited availability of recombinant wtS1S2 but association was still increasing even at
330 nM (Figure 6A), suggesting the limiting step is a relatively low-affinity interaction.
This is in contrast to the affinity of RBD or S1 for ACE2HEK293 cells shown here (Figure 3)
and in previously published reports [18].



Cells 2021, 10, 1419 8 of 16

Figure 6. S1S2 interaction may require the furin cleavage site. (A) Dose–response curve for wtS1S2,
mS1S2 or RBD to RT4 cells. RT4 cells were incubated with wtS1S2, mS1S2 or RBD at the stated
concentrations for 60 min at 37 ◦C, before staining with anti-His6 secondary antibody labelled with
Dylight 488. The data are the means ± SEM of 3 - 6 independent experiments performed in duplicate.
(B) Representative histogram of 100 nM wild-type S1S2 (wtS1S2) or mutant S1S2) attachment to
RT4 cells.

3.5. Unfractionated Heparin Inhibits wtS1S2 Binding to RT4 Cells

Having developed an assay that mimics some aspects of the interaction of SARS-CoV-2
with epithelial cells, we used it to test potential inhibitors. Although an anti-ACE2 antibody
has previously been reported to block viral binding to host cells [1], preincubating RT4
cells with the same antibody caused a small but significant increase in wtS1S2 interaction
(54.25% above untreated cells, p = 0.0025) (Figure S1). Antibody-mediated cross-linking of
the low levels of ACE2 at the cell surface may allow more rapid attachment of the spike
protein due to receptor clustering. Heparin has been reported to bind directly to S1 and to
interfere with SARS-CoV-2 infection [7] and so we tested the effects of pre-incubating RT4
cells with heparin on the wtS1S2 attachment at 37 ◦C. Unfractionated heparin (UFH) at
10 U/mL inhibited 80% of 330 nM wtS1S2 interaction with the cells (Figure S2) and was
significantly reduced compared to untreated controls.

Using 100 nM wtS1S2, the inhibition by UFH was complete with an IC50 of 0.033 U/mL
(95% confidence interval 0.016–0.07) (Figure 7). This is far below the target prophylactic
and therapeutic concentrations of UFH in serum, 0.1–0.4 U/mL and 0.3–0.7 U/mL, respec-
tively [19,20]. In contrast, two low-molecular-weight heparins (LMWH), dalteparin and
enoxaparin, only gave partial inhibition, and were less potent than UFH (IC50 values of
0.558 and 0.072 U/mL, respectively). Typical prophylactic and therapeutic serum concen-
trations of LMWH are 0.2–0.5 U/mL and 0.5–1.2 U/mL [21], respectively, suggesting that
dalteparin used prophylactically would be below the effective dose required for inhibition
of viral infection. The synthetic pentasaccharide heparinoid, fondaparinux, had no effect on
S1S2 interaction at concentrations up to 0.1 mg/mL, although its therapeutic concentration
is <2 µg/mL [22] (Figure 7).

Protamine sulphate is a highly cationic peptide that is used clinically to reverse
anti-coagulant activity [22] by dissociating heparin-antithrombin III complexes. Surfen
is a GAG-binding molecule that binds to heparin and also to the GAGs, dermatan (DS),
chondroitin (CS) and heparan sulphates (HS) [23]. Both of these compounds inhibited
wtS1S2 binding to RT4 cells in a dose-dependent manner, with IC50 values of 1.7 µg/mL
and 0.14 µg/mL for surfen and protamine, respectively (Figure 8). Interestingly, at higher
concentrations, both agents induced increased levels of wtS1S2 binding reaching control
values in the case of surfen, reached control values at 250 µg/mL (Figure 8). These data
indicate that cell surface proteoglycans such as HS may act as SARS-CoV-2-binding sites
on host cells. The reason for the increased binding of wtS1S2 at higher concentrations of
protamine and surfen is currently unclear.
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Figure 7. Concentration-dependent inhibition of S1S2 interaction by unfractionated heparin and
low-molecular-weight heparins, dalteparin and enoxaparin but not synthetic pentasaccharide, fon-
daparinux. RT4 cells were pre-incubated with the stated concentrations of unfractionated heparin,
enoxaparin, dalteparin and fondaparinux for 30 min at 37 ◦C, then with 100 nM wtS1S2 for a further
60 min at 37 ◦C before fluorescent secondary anti-His6 was added for a further 30 min at 21 ◦C.
Cell-associated fluorescence was measured by flow cytometry and is shown as a percentage of
the wtS1S2 attachment to untreated control cells. Data are the means ± SEM of 2–3 experiments
performed in duplicate.

Figure 8. Glycosaminoglycan-binding molecules surfen and protamine sulphate can inhibit wtS1S2
binding. RT4 cells were preincubated with the stated concentrations of surfen or protamine sulphate
for 30 min at 37 ◦C, then with 100 nM wtS1S2 for a further 60 min at 37 ◦C. Bound wtS1S2 was
detected using fluorescent secondary anti-His6, measured by flow cytometry. Data are shown as
a percentage of the wtS1S2 attachment to untreated control cells. Data are the means ± SEM of
3–4 experiments performed in duplicate.

3.6. wtS1S2 Lacking the Furin Cleavage Site Has a Lower Affinity for Heparin Than
Wild-Type S1S2

The polybasic site furin cleavage site in wtS1S2 is also suggested to be a heparin-
binding site [23], so we inferred that altered heparin binding by the mS1S2 might be linked
to its reduced association with RT4 cells. In ELISA, mS1S2 and RBD had a significantly
lower affinity for both UFH (mS1S2, EC50 = 217.8 nM; RBD, EC50 = 818.4 nM) and LMWH
(mS1S2, EC50 = 162.2 nM; RBD, EC50 = 288.3 nM) relative to wtS1S2 (EC50 = 6.8 nM and
9.3 nM, respectively) (Figure 9). It is likely that wtS1S2 contains multiple binding sites for
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heparin that confer high avidity including the polybasic furin cleavage site. Additional
sites may be present in S1 and RBD but these are of relatively lower affinity. Interestingly,
wtS1S2 bound to both UFH and dalteparin with similar affinities and so binding affinity for
immobilised heparins does not obviously explain the difference between UFH and LMWH
in the inhibition of cell binding.

Figure 9. Spike protein binding to heparin requires a polybasic furin cleavage site. Unfraction-
ated heparin (UFH) and low-molecular-weight heparin, dalteparin (Dalt) were immobilised on
96-well plates and used to detect the binding of wtS1S2, mS1S2 lacking the furin cleavage site
(mS1S2) or RBD using a biotinylated anti-His6 antibody and streptavidin-HRP. Data shown are the
means ± SD from 2–3 separate experiments performed in duplicate. Tables provide the EC50 values
for each protein.

3.7. Effects of Heparinases and Trypsinisation on wtS1S2 Binding

If HS acts as a major binding site for wtS1S2 on epithelial cells, wtS1S2 binding should
be inhibited by enzymatic cleavage of HS from the cell surface. Trypsin is known to rapidly
cleave membrane proteins that display GAGs [24] and wtS1S2 binding to A549 cells was
increased by cell harvesting in the absence of trypsin (Figure 5). We used different methods
of cell harvesting to investigate whether this could affect wtS1S2 binding to RT4 cells.
These cells were also treated with a mixture of heparinase I and III, known to cleave the
majority of HS and then harvested using CDS or TE. Harvesting by CDS caused a small,
non-significant increase in binding to RT4 cells relative to TE (Figure 10A). Heparinase
treatment of trypsinised cells caused only a small, non-significant reduction in wtS1S2
binding (Figure 10A) but there was a significant decrease following heparinase treatment
of non-enzymatically harvested cells (Figure 10A). Antibody 3G10, which recognises a
neo-epitope produced by heparinase cleavage of HS, bound strongly to non-enzymatically
harvested, heparinase-treated cells but only weakly to trypsinised cells (Figure 10B). This
indicates that trypsin can cleave membrane proteins that bear HS, removing most but
not all of the cell surface HS. wtS1S2 may still be able to bind to this small amount of
remaining HS and so binding is relatively insensitive to trypsin and heparinase treatment.
Alternatively, wtS1S2 may bind to GAGs other than HS. However, chondroitinase treatment
of RT4 cells prior to trypsinisation did not result in a loss of wtS1S2 binding (100.5 ± 2.5%
of the untreated control).
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Figure 10. Removal of heparan sulphates only partly inhibits wtS1S2 binding. (A) RT4 cells were
pretreated for 3 h with heparinase I/III mixture or control growth medium and then harvested by
either trypsin/EDTA (+) or non-enzymatic cell dissociation solution (−) and then incubated with
100 nM wtS1S2 at 37 ◦C before staining with anti-His6 secondary antibody labelled with Dylight
488. The data are shown relative to the non-trypsinised- and non-heparinase-treated control and
are the means ± SEM from 3–4 independent experiments performed in duplicate. Significance of
difference from the control was assessed by a one-sample t test. ns = not significant; ** p < 0.001.
(B) The effects of heparinase treatment was measured using antibody 3G10 that recognises the cleaved
stubs of heparan sulphates. RT4 cells were pre-treated for 3 h with heparinase I/III mixture or control
growth medium and then harvested by either trypsin/EDTA or non-enzymatic cell dissociation
solution and then incubated with 3G10. Bound antibody was detected by an FITC-labelled secondary
and cell-associated fluorescence was measured by flow cytometry. Data are the means ± SD from
2 separate experiments performed in duplicate.

3.8. Inhibition of wtS1S2 Binding by Different GAGs and Heparins

To investigate the relative effects of different GAGs and heparin analogues on binding,
we screened a large panel of heparin molecules with different chain lengths (4–16 dipolysac-
charide units), molecules with normal sulphation or lacking 2-O, 6-O or N-sulphation (2-O,
6-O and N, respectively), and different GAGs such as HS, CS and DS. HS inhibited wtS1S2
binding to RT4 cells strongly at 100 µg/mL, whereas DS caused moderate inhibition and
CS no inhibition at all. The chain length was critically important for the heparins, with
shorter, fully sulphated heparin failing to inhibit binding (Figure 11) and only moderate
inhibition by longer chain (dp12–16) heparins. Heparins lacking sulphates at 2-0, 6-O and
N sites were all unable to inhibit wtS1S2 binding (Figure 11).

We also investigated whether GAGs inhibited binding of wtS1S2 and RBD to immo-
bilised UFH in ELISA. For wtS1S2 (Figure 12), HS and DS both significantly inhibit binding
to UFH (p = 0.0045 and 0.006, respectively), whereas the RBD binding was not significantly
inhibited even by HS (Figure 12). The shorter-chain-length heparins did not significantly
inhibit the binding of either protein to UFH (Figure 12), except for dp10, which caused
moderate but significant inhibition of wtS1S2 binding (p = 0.027). Thus, it is possible that
S1S2 but not RBD can bind to HS and to other GAGs at the cell surface such as DS.
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Figure 11. Inhibition of wtS1S2 binding to RT4 cells by heparins and glycosaminoglycans. RT4 cells
were incubated with 100 µg/mL of heparin or glycosaminoglycan for 30 min at 37 ◦C, then with
33 nM wtS1S2 for a further 60 min at 37 ◦C and bound protein detected using fluorescent secondary
anti-His6. Cell-associated fluorescence was measured by flow cytometry and data are shown as a
percentage of wtS1S2 attachment to untreated control cells. Data are the means ± SEM of 4–6 separate
experiments performed in duplicate. Significance of difference from the control was assessed by a
one-sample t test: not significant unless otherwise stated; * p < 0.05; ** p < 0.001; **** p < 0.00001.

Figure 12. Dose–response curves for the inhibition of wtS1S2 and RBD binding to immobilised
unfractionated heparin by selected heparins and glycosaminoglycans. Unfractionated heparin (UFH)
was immobilised on 96-well plates and used to detect the binding of wtS1S2, mS1S2 and RBD in
the presence of increasing concentrations of heparins of increasing chain length (dp10–16, heparan
sulphate (HS) or dermatan sulphate (DS)), detected using a biotinylated anti-His6 antibody and
streptavidin-HRP. Data are shown as a percentage of binding to untreated control wells and are the
means ± SEM of 4 separate experiments performed in duplicate.
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4. Discussion

Using a flow cytometric assay, we have demonstrated that intact recombinant wtS1S2
spike protein associated with multiple human cell lines independently of ACE2 expression,
while the S1 or RBD region alone did not. However, SARS-CoV-2 RBD interacts strongly
with cell lines when ACE2 is expressed at high levels. Using this assay, we have further
shown that UFH and two low-molecular-weight heparins (LMWH) in clinical use inhibit
ACE2-independent wtS1S2 binding; these treatments have previously been shown to
reduce binding of both pseudovirus containing SARS-CoV-2 spike protein and SARS-CoV-
2 virus [11–13].

Whilst other studies have used African green monkey VERO E6 cells or human cells
overexpressing relevant SARS-CoV-2 receptors, we have focused on native human cell
lines. Although we demonstrate that ACE2 is involved in RBD binding, the intact spike
protein interacted with cells in the absence of detectable ACE2, suggesting the presence
of additional receptors. The ability of the SARS-CoV-2 spike protein to attach to various
GAGs provides a host of candidate proteins at the cell surface [6–9]. In support of this,
studies have suggested the importance of differing glycan sulphation states in different
tissues as an explanation for viral tropism. Recently, SARS-CoV-2 spike protein S1 has been
shown to bind HS with varying degrees of sulphation with differing affinities; chain length
and 6-O-sulphation were shown to be particularly important [8].

In contrast to a previous publication [25], we did not observe binding of RBD to A549
cells lacking ACE2. It is unclear why our ACE2-binding RBD did not interact with GAGs
on A549 cells but this may be due to differences in production methods.

We demonstrate that UFH and, to a lesser extent, LMWH are potent inhibitors of S1S2
interaction with human cells. Heparin has been demonstrated to interact with recombinant
S1 RBD and cause conformational changes, leading to the suggestion that SARS-CoV-2
might interact with host HS through the RBD during infection [7]. Our data significantly ex-
tend this observation, suggesting the presence of more than one heparin-binding site in the
intact spike protein, with one at the furin cleavage site and one other in the RBD although
our data do not indicate an independent HS-binding site in the RBD. As previously noted,
the presence of multiple polybasic sites within the spike protein will result in a higher
avidity of binding to heparin and heparan sulphates [9]. Interestingly, all the spike proteins
tested had similar affinities for UFH and LMWH and so the differing abilities of these forms
of heparin to inhibit S1S2 interactions with cells is not simply due to divergent affinities.
However, we cannot rule out the possibility of differing spike protein glycosylation states
affecting attachment of the recombinant proteins as their expression conditions varied.

Fondaparinux contains only the antithrombin III interaction site and cannot form a
ternary complex with thrombin, unlike UFH [22]. This suggests that efficient inhibition
of S1S2 binding may require an interaction between heparin and two different sites on
the spike protein. For example, SARS-CoV-2 spike protein optimally binds hexa- and
octasaccharides composed of IdoA2S-GlcNS6S, a motif abundantly present within heparin
but not heparan sulphates [9]. The LMWH may contain sufficient long polymer chains
to make this dual interaction but with lower efficacy than UFH. Finally, heparin could
also be inhibiting host proteases, such as Factor Xa, necessary to process the spike pro-
tein [26]. However, our data demonstrated no activity of fondaparinux and lower efficacy
of dalteparin despite the inhibitory nature of the two compounds on Factor Xa [12]. Fully
sulphated long-chain-length heparins are required to inhibit wtS1S2 interactions with
cells, again suggesting that multiple interactions between spike proteins and heparins is
required for optimal inhibitory activity. Agents that can bind GAGs, surfen and protamine
sulphate, can inhibit wtS1S2 binding at low concentrations and promote binding at higher
concentrations. Inhibition might occur due to blocking interactions with cell surface GAGs,
but higher concentrations might lead to clustering of proteoglycans, leading to increases
in binding. Paradoxically, removal of cell surface GAGs by either trypsin or heparinase
treatment does not fully inhibit wtS1S2 binding to cells. This suggests that GAGs other
than HS, such as DS, may also be involved. Alternatively, trypsinisation might expose
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new binding sites; trypsin has previously been observed to promote the entry of zoonotic
coronaviruses and SARS-CoV-1 into human cells, although the mechanism has not been
elucidated [27,28].

A role for the putative SARS-CoV-2 receptor, NRP-1, which is reported to bind to the
furin motif in the spike protein [29], cannot be ruled out although the RT4 cells used in
this study do not appear to express NRP-1 [14]. NRP-1 can be modified by GAGs [30],
indicating a possible link with the GAG dependence observed here. Finally, SARS-CoV-2
spike protein has been observed to cause activation of intracellular signalling pathways in
lung vascular cells [31] and our data suggest that this might be a consequence of wtS1S2
binding to cell surface proteoglycans.

5. Conclusions

Using a simple binding assay, we have characterised a temperature-dependent, ACE2-
independent binding of a recombinant form of SARS-CoV-2 S1S2 spike protein with a range
of human cells. A limitation of our study is that we have not explored the mechanism of
this temperature dependency, which might be different to conventional ligand/receptor or
antigen/antibody binding. Further experimentation would be required to elucidate the
mechanism and to rule out the possibility that longer incubations at lower temperatures
would increase S1S2 association with cells. Binding is completely inhibited by heparin but
appears to be only partly dependent on GAGs such as HS. This binding is distinct from
previously observed GAG-dependent binding of the spike protein RBD and S1 domains
and may involve the polybasic furin cleavage site located between the S1 and S2 domains.
S1S2 binding to different human cell types may be linked to the actions of SARS-CoV-2 on
many different organs.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10.3
390/cells10061419/s1, Figure S1: wtS1S2 binding to RT4 cells is not inhibited by anti-hACE2 antibody;
Figure S2: Unfractionated heparin inhibits wtS1S2 binding to RT4 cells; Table S1: Primer sequences.
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