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Abstract: Osteoarthritis (OA) is a chronic degenerative disorder of the joint and its prevalence and
severity is increasing owing to ageing of the population. Osteoarthritis is characterized by the degra-
dation of articular cartilage and remodeling of the underlying bone. There is little understanding of
the cellular and molecular processes involved in pathophysiology of OA. Currently the treatment for
OA is limited to painkillers and anti-inflammatory drugs, which only treat the symptoms. Some pa-
tients may also undergo surgical procedures to replace the damaged joints. Extracellular vesicles
(EV) play an important role in intercellular communications and their concentration is elevated in
the joints of OA patients, although their mechanism is unclear. Extracellular vesicles are naturally
released by cells and they carry their origin cell information to be delivered to target cells. On the
other hand, mesenchymal stem cells (MSCs) are highly proliferative and have a great potential in
cartilage regeneration. In this review, we provide an overview of the current OA treatments and
their limitations. We also discuss the role of EV in OA pathophysiology. Finally, we highlight the
therapeutic potential of MSC-derived EV in OA and their challenges.

Keywords: extracellular vesicles; exosomes; mesenchymal stem cells; osteoarthritis; chondrocytes

1. Introduction

Osteoarthritis (OA) is a common degenerative disorder of the joints that affects the
knee, hands, hip, spine and feet. Osteoarthritis represents a large and increasing health
burden, causing patients’ function deterioration as well as extending public health costs
to deal with an increasing OA prevalence worldwide. According to data from the United
States Center for Disease Control and Prevention, OA affected 52.5 million people in the
US in 2012 and is expected to affect 78 million people by 2040 [1]. In 2017, OA accounts for
approximately 7.1% of the musculoskeletal disorders burden and showed a statistically
significant increase in comparison to 31.4% in 2007 (95% CI:30.7,32.1) [2,3]. Meanwhile,
between 1990 to 2019, the number of people affected globally by OA increased by 48% [4].

The prevalence of OA is increasing due to obesity and lifestyle. Patients with OA
have limited daily activities and a greater risk of mortality [5]. Age is the main factor
for OA due to ageing, muscle weakness and thinning of cartilage. Meanwhile, obesity is
strongly associated with knee OA [6]. Apart from that, genetics and diet also influence the
risk of OA. To date, the treatment for OA involves pain management using non-steroid
anti-inflammatory drugs (NSAIDs) and pain killer to relive the symptoms [7] and surgical
therapy for end-stage OA patients [8]. However, surgical therapy is costly and may lead to
tissue hypertrophy. Therefore, appropriate therapeutic strategies are crucial to overcome
existing problems. Recently, mesenchymal stem cells (MSCs)-derived extracellular vesicles
(EV) therapy has been suggested as a potential therapeutic strategy for OA in an attempt
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to replace invasive treatments. MSC-derived EV is safe and a promising therapy due to
their unique properties including a small size, stable culture, low immunogenicity, specific
targeting and carrying biologically active components which make them a potential natural
therapeutic delivery agent [9]. The small size of MSC-derived EV permits them to pass
through cell barriers easily, thus increasing their capability in delivering genetic materials
directly into the cytoplasm of the recipient cells [10,11].

This review highlights information regarding OA, MSCs and EV. In particular, this re-
view focuses on the recent findings of potential therapeutic effects of EV derived from
MSCs for OA treatment.

2. Pathophysiology of OA

Osteoarthritis is a progressive chronic condition that represents a pathological imbal-
ance of degradative and reparative processes involving the entire joint and its component
parts, with secondary inflammatory changes, particularly in the synovium as well as
in the articular cartilage [12]. This complex process of disease involves biomechanical
changes in joint composition, inflammation of the joints and metabolic changes which
consequently lead to abnormal equilibrium of the synovial joint [13]. The definition and
terminology of OA have long been a debatable subject centered on articular cartilage
that loses its integrity [14]. Osteoarthritis is an active dynamic alteration arising from an
imbalance between degradation and regeneration of diarthrodial joint tissues involving
hyaline articular cartilage, subchondral bone, cruciate and collateral ligaments, capsule
membrane and synovial membrane [15,16]. The key pathophysiological mechanisms in
OA involve pro-inflammatory cytokines (interleukins (IL)-1, IL-6, IL-8 and tumor necrosis
factor (TNF)-α) and pro-catabolic mediators through their signaling pathway and the
well-characterized effect of nuclear factor κB (NFκB) and mitogen-activated protein kinase
(MAPK) signaling responses and reprogramming are switching pathways in transcriptional
networks (Figure 1) [17].

Figure 1. Pathophysiology of osteoarthritis (OA) at the knee joint. Inflammation and degradation of
cartilage at the joint are common features of OA which resulted from the release of proinflammatory
cytokines including interleukin (IL)-1, IL-6, IL-8 and TNF-α, pro-catabolic mediators such as matrix
metalloproteinases (MMPs) and a disintegrin and metalloproteinase with thrombospondin motifs
(ADAMTS), biomechanical changes and metabolic changes.

Cartilage consists of chondrocytes that produce a large amount of extracellular ma-
trix. Chondrocytes in a healthy articular cartilage resist proliferation and differentiation,
while chondrocytes in diseased cartilage proliferate and develop hypertrophy. The in-
flammatory mediators, mechanical and oxidative stress compromise the function and
viability of chondrocytes, reprogramming them to undergo hypertrophic differentiation
and early senescence, making them even more sensitive to the effects of pro-inflammatory



Cells 2021, 10, 1287 3 of 22

and pro-catabolic mediators [18]. Products that are released from the cartilage matrix and
chondrocytes in response to adverse mechanical forces and other factors induce the release
of products that deregulate chondrocyte function via paracrine and autocrine mechanisms.

3. Treatment of OA
3.1. Osteoarthritis Management and Current Therapy

In view of the complexity of OA mechanism, a comprehensive plan for management
of OA in different patients may include awareness in terms of educational plan, behavioral,
psychosocial and physical interventions, as well as pharmacological treatment such as the
use of topical, oral and intra-articular injection and also surgical treatment [19]. The prin-
ciple of treatment should be addressed according to the degree of severity as well as the
patient’s medical status to ensure that a personalized management strategy is tailored to
their needs. The goals are to reduce symptoms and ultimately slow the disease progression,
which may in turn improve quality of life and consequently reduce the health cost burden.

3.2. Pharmacological and Non-Pharmacological Therapy

A multidisciplinary, patient-centered combination of education, self-management,
exercise, weight loss with realistic goals, encouragement and regular reassessment is
recommended for individuals with OA [20]. Commonly, topical NSAIDs, oral NSAIDs
and tramadol are used to treat OA. However, inconclusive evidence has been shown
for acetaminophen, non-tramadol opioids and intra articular injections of corticosteroids,
hyaluronic acid (HA) and platelets rich plasma (PRP) [21]. Clinical trials of intra articular
glucocorticoid injections have demonstrated a short-term efficacy in knee OA as well as
for hand OA [19]. However, a recent report raised the possibility that specific steroid
preparations or a certain frequency of steroid injections may contribute to cartilage loss;
however, the clinical significance of this finding was uncertain, particularly since change
in cartilage thickness was not associated with a worsening in pain, function or other
radiographic features [22].

Surgical intervention is indicated in end stage OA when all previous treatment meth-
ods have failed, a significant loss in quality of life and when the patient is severely symp-
tomatic. Surgery is an effective treatment option; however, the long-term success rate is
not clear and may fail depending on the longevity of the implant. Surgical techniques may
include osteotomy around the knee, unicondylar arthroplasty (partial knee replacement)
or total knee arthroplasty based on the patients’ condition and degree of deformity or joint
destruction [23].

4. Mesenchymal Stem Cells
4.1. The Source of Mesenchymal Stem Cells, Isolation and Characterization

Mesenchymal stem cells (MSCs) were first discovered in 1966 from the bone mar-
row [24] and hold the concept from postnatal progenitor [25]. They are also known as
multipotent mesenchymal stromal cells which possess two major features, including the
ability to differentiate into multiple lineages and the capacity of self-renewal. According
to the International Society for Cellular Therapy (ISCT), MSCs must meet three minimal
criteria [26]. Firstly, MSCs must exhibit plastic-adherence when grown in vitro. Secondly,
MSCs must express the surface antigens CD73, CD90 and CD105 while lacking expression
of CD45, CD34, CD14 or CD11b, CD79α or CD19 and HLA-DR. Thirdly, MSCs must be able
to differentiate into mesodermal cell types (i.e., adipocytes, chondrocytes and osteoblasts)
when cultured under specific conditions.

Mesenchymal stem cells can be isolated from various tissues and are not restricted to
mesodermal origin-type of cells such as bone marrow, adipose, muscle or bone. They were
originally found in the bone marrow [24], but later studies identified MSCs in other tissues
such as in the peripheral blood, brain, spleen, liver, kidney, lung, thymus, placental, umbili-
cal cord and pancreas. Mesenchymal stem cells share a similar characteristic phenotype [26]
despite their presence in different tissue sources, albeit with some additional features that



Cells 2021, 10, 1287 4 of 22

represent their tissue origin [27]. Although MSCs can be isolated from almost every type of
connective tissues [28], studies have shown that bone marrow represents the major source
of MSCs [29–31].

4.2. Mesenchymal Stem Cell-Based Therapy

Mesenchymal stem cells have become a popular cell source for therapeutic purposes
due to their immunomodulation and regenerative properties [32–38]. Mesenchymal stem
cells possess the capacity to migrate to injured sites in response to other cells and environ-
mental signals and also promote tissue regeneration orchestrated by the paracrine secretion
of a broad repertoire of growth factors, chemokines and cytokines [39]. Through interaction
with the host niche, MSCs were able to secrete bioactive mediators, such as growth factors,
cytokines and EV that exert immunosuppressive, anti-apoptotic, anti-fibrotic, angiogenic
and anti-inflammatory effects [40,41]. In addition, MSCs exhibited immunomodulatory
functions by preventing immune cells’ activation or proliferation [42]. The immunomodu-
latory function of MSCs make them a good option for cell-based therapy, as the possibility
for cell rejection is reduced.

The ability of MSCs to differentiate into various cell types enables their use as a tool
in regenerative medicine. Mesenchymal stem cells have been reported to be successfully
used as a therapy against many diseases and clinical conditions. At present, there are over
950 clinical trials worldwide that have used MSCs to treat various diseases [43], including
bone and cartilage repair, diabetes, cardiovascular diseases, liver disease, immune-related,
neurodegenerative diseases and spinal cord injuries. Mesenchymal stem cells have shown
promising results in the clinical application of cell-based therapy. The efficacy of MSCs
on bone regeneration in various orthopedic conditions has been widely demonstrated.
Several clinical trials at different phases (I, II or III) have been performed for bone fracture
repair using various sources of MSCs which were implanted either via direct injection
or incorporated with osteogenic matrix or scaffolds which promoted bone repair and
functions [44–46].

4.3. Mesenchymal Stem Cell-Based Therapy in Osteoarthritis Treatment

Regenerative medicine has become increasingly popular as a promising new approach
for OA since articular cartilage has a limited capacity for spontaneous intrinsic repair,
and may progress to OA, owing to the sparse distribution of highly differentiated chon-
drocytes, the low supply of progenitor cells and the lack of vascular supply [47]. This is
evidenced by wide availability in clinical practice and by publications of many case series
and clinical trials.

Cell-based therapy has been a promising option in OA because it is aimed at reversing
the symptoms and pathophysiology of OA [48]. The ability of MSCs to differentiate
between multiple lineages including musculoskeletal tissue supports the use of MSCs
as an excellent source for degenerative musculoskeletal conditions such as in OA [49].
The therapeutic potential of MSCs in the treatment of OA is aimed at cartilage repair and
restoration (Figure 2) [50].

The capability of MSCs to undergo chondrogenic differentiation assists in the regen-
eration of injured cartilage. In order to successfully enhance MSCs differentiation into
chondrocytes, MSCs require soluble factors to promote differentiation such as transform-
ing growth factor (TGF)-β, bone morphogenetic protein (BMP) and insulin growth factor
(IGF)-1 [51,52]. The combination of BPM2/TGF-β in pre-chondrogenic medium resulted in
high expression of chondrocytes specific genes such as collagen type II alpha 1 (COL2A1)
and aggrecan (ACAN) [53]. Mesenchymal stem cells proliferation could also be enhanced
by a low oxygen condition, which results in an increase of cartilage specific genes expression
(COL2A1 and SOX9) and proteoglycan synthesis during chondrogenic differentiation [54].
Besides being able to regenerate or restore injured cartilage, MSC-based therapy also
focuses on the inflammation attenuation. MSCs were shown to orchestrate immunomod-
ulatory function of inflammatory responses through paracrine activities [55]. Adipose
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tissue-derived MSCs co-cultured with chondrocytes or synoviocytes showed a decrease
in the expression of inflammatory factors such as IL-1β, TNF-α, IL-6 and CXCL8/IL-8
through the COX-2/PGE2 pathway as modulators, exerting anti-inflammatory effects in
OA condition [56].

Figure 2. Mesenchymal stem cells (MSCs) as an alternative cell-based therapy for osteoarthritis.
Mesenchymal stem cells dampen inflammatory activities in OA by reducing the releases of pro-
inflammatory cytokines and increasing anti-inflammatory cytokines. Additionally, their plasticity
characteristic allows differentiation of MSCs into chondrocytes, thus contributing to cartilage repair.

There were several strategies used by manipulating different MSCs sources and con-
ditions for potential OA treatment [57]. Different sources of MSCs contribute to different
outcomes in cartilage regeneration. For example, human skeletal stem cells (hSSCs) have
shown the ability to generate into multilineage ossicles containing bone, cartilage and
stroma, which have a potential for chondrogenic and osteogenic activities [58]. Apart from
selecting different sources of MSCs, manipulating the MSCs in an in vitro culture condi-
tion also enhances chondrogenesis. A co-culture of human chondrocytes and chondro-
progenitors (also known as cartilage cells) resulted in increased chondrogenic ability and
increased cytokines and growth factors compared to bone-marrow derived MSCs [59].
Furthermore, controlling the culture condition also contributes to better chondrogenic
differentiation such as culturing MSCs with TGF-β [60] or fibroblast growth factor (FGF)-2,
9 and 18 [61].

Direct intra articular injection of MSCs has been shown to improve the condition of
OA patients [62]. Several studies have reported the use of intra articular injection of au-
tologous bone-marrow-derived MSCs, which showed improvement in clinical symptoms
and resulted in higher arthroscopic and histological grades than the control group [63,64].
In another study, an intra articular injection of autologous MSCs showed significant growth
of cartilage and meniscus on magnetic resonance imaging (MRI), increased range of mo-
tion and modified visual analog scale (VAS) pain scores at 24-weeks post injection [65].
Intra articular injection of autologous bone marrow-derived MSCs showed significant
improvement in terms of knee pain and quality of life during the 6-month follow-up [66].

Articular cartilage tissue engineering is another aspect that can be manipulated by
using biomaterial constructs. Several biomaterials such as fibrin [67], biopolymer (chi-
tosan) [68], synthetic polymers [69] and hydrogel [70] were widely used for their ability to
degrade rapidly, their low immunogenicity and their ability to enhance MSCs proliferation
and chondrogenic differentiation.

Another strategy to achieve chondrogenic differentiation of MSCs is via extracellular
matrix (ECM) application by using synthetic or natural scaffolds. MSCs cultured in vitro in
serum free conditions or in hydrogel or scaffold materials such as polymers, alginate beads
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and collagen sponges will eventually promote the differentiation of MSCs into chondro-
cytes [71]. Early pre-clinical studies have showed promising chondrogenic differentiation
properties when MSCs were seeded on scaffolds [72,73]. Autologous transplantation of
rabbit MSCs with HA gel sponges showed a well-repaired cartilage tissue which resembles
the articular cartilage of the surrounding structure [73]. Another study has also used
intra-articular injection of autologous adipose MSCs combined with HA which suppressed
the OA progression and promoted cartilage regeneration [74]. The first autologous bone
marrow-derived MSCs transplant embedded in vitro in a collagen gel was reported in
2004. A year later, the use of the matrix-induced autologous chondrocyte implantation
(MACI) technique was reported by using a collagen bilayer seeded with chondrocytes [75].
Since then, many studies reported promising findings by using the MACI technique with
various types of scaffolds, especially collagen due to its natural presence in the ECM [76].
Articular cartilage regeneration using allogeneic human umbilical cord blood-derived
MSCs which were expanded in HA hydrogel demonstrated production of hyaline-like
cartilage after one year and the regenerated cartilage persisted after three years [77].

The use of MSCs for articular cartilage regeneration has several limitations. A tran-
scriptome analyses of human neonatal articular cartilage (hNAC) and MSC-derived carti-
lage has demonstrated that over 500 genes that are highly expressed in hNAC were not
expressed in MSC chondrogenesis [78]. This suggests that in vitro MSC-derived cartilage
may not represent the actual in vivo chondrocytes. In addition, in vitro cultured MSCs
displayed a hypertrophic phenotype, thus limiting their application in articular cartilage
tissue engineering [79]. Since MSCs are heterogenous, their numbers vary in tissues and
different MSC sources may not be equivalent in terms of function [79,80].

5. Extracellular Vesicles
5.1. Extracellular Vesicles Biogenesis

Extracellular vesicles consist of exosomes and microparticles (MP) [81]. The biogenesis
of EV varies depending on their subtypes (Figure 3). The generation of exosomes involves
three main stages, which are endosomes, multivesicular bodies (MVBs) and exosomes [82].
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During the endosomes stage, the formation of early endosomes is characterized by a
tube-like shape, which occurs when endocytic vessels are transferred and located closer to
outer edge of the cytoplasm. Subsequently, early endosomes further mature into spherical
late endosomes and are located near the nucleus. The second stage of exosomes formation



Cells 2021, 10, 1287 7 of 22

involves degradation of late endosomes (also known as MVBs) that carry intraluminal
vesicles upon fusion with lysosomes [83]. Exosomes are subsequently released from MVBs
into the extracellular space through exocytosis of plasma membrane [84]. In contrast,
MP are generated from outward blebbing of the plasma membrane through two main
steps, which are the rearrangement of cytoskeleton and externalization of phosphatidylser-
ine (PS) [85]. In response to cell activation, an increase of intracellular calcium activates
calcium-dependent enzymes such as kinase, calpain and gelsolin and also inhibits phos-
phatase [86] by facilitating the cleavage of cytoskeleton proteins [87]. Calcium influx also
leads to the activation of cytosolic enzymes such as flippase, floppase and scramblase [88]
that mediate the externalization of PS and phosphatidylethanolamine, while internalizing
phosphatidylcholine and sphingomyelin [89]. Thus, cytoskeleton proteolysis and phos-
pholipid imbalance favor the cellular blebbing, which ultimately leads to the shedding of
MP [90]. In OA patients, EV may be generated from articular cartilage, which is known
as articular cartilage vesicles due to the pathological process of OA [91], while EV in the
synovial fluid is possibly released from chondrocytes and synoviocytes [92].

5.2. Isolation and Characterization of Extracellular Vesicles

The choice of EV isolation method is crucial, as contaminants may attribute to alter-
ation of EV function [93]. Isolation of EV may be performed by using several protocols
including centrifugation, precipitation and chromatography (Table 1).

Table 1. Advantages and disadvantages of EV isolation methods.

Isolation Method Advantages Disadvantages Yield

Differential centrifuga-
tion/ultracentrifugation

EV subtypes isolation [94],
cost effective

Time consuming, less effective for
body fluid with high viscosity,

low purity
Intermediate

Precipitation High EV recovery
Low specificity, less accurate in

terms of size distribution, and low
purity

High

Size exclusion
chromatography Precise, structurally unaffected of EV Quantitatively inefficient,

and time consuming Intermediate

Ultrafiltration EV subtypes isolation based on size
[93], and cost effective

Low specificity, and time
consuming Low [95]

Field-flow fractionation (FFF) High specificity [96], accurate EV size
distribution and High EV integrity Small volume of sample Intermediate

Commercial kits (eg:
ExoQuick, ExoMir kit)

High EV integrity, convenient
procedure [97]

Costly, low purity and low
reproducibility Intermediate

Immunoprecipitation High purity [98], EV subtypes isolation
based on protein marker [99] Costly and time consuming [100] Intermediate

Immunoaffinity columns Fast and high reproducibility Low specificity [101] Intermediate

Differential centrifugation followed by ultracentrifugation is the most widely used
protocol to isolate EV [102] from OA patients. This technique allows the removal of cell
from the synovial fluids, since slow initial centrifugation results in cell precipitation. Mean-
while, ultracentrifugation at 20,000× g permits the recovery of MP without exosomes
contamination [103], while exosomes can be isolated from the synovial fluid with ultra-
centrifugation at 100,000 to 200,000× g [104]. However, the ultracentrifugation method
requires a large volume of synovial fluid, is time-consuming and is only effective for
body fluids with low viscosity [105]. Extracellular vesicles can also be isolated using
the precipitation method, in which synovial fluid is added into large polymers such as
polythrilenglycol and polyethylene glycol (PEG), followed by EV precipitation [105,106].
Although the concentration of purified EV using the precipitation method was high, the pu-
rity and accuracy in terms of size distribution of EV was low [107]. It has been shown
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that EV isolated by this method exerted similar effects in an ischemic stroke model and
their corresponding cells [106,108]. Additionally, size-exclusion chromatography isolates
EV from synovial fluid precisely based on size without affecting the structure of EV [105].
In fact, size-exclusion chromatography involves the penetration of particles through a
column, where larger particles will be eluted prior to the smaller particles [109].

The use of single isolation method usually results in low specificity; therefore, the com-
bination of techniques in order to achieve better specificity of EV isolation is recommended.
Apart from the techniques discussed, other techniques such as ultrafiltration, washing with
EV-free buffer [110] and two-step centrifugation are commonly used. In addition, isolation
of EV using combination methods of ultracentrifugation with ExoQuickTM precipitation
resulted in high recovery of EV, while combination of ultracentrifugation with density
gradient centrifugation permits isolation of EV with intact morphology [111].

Several techniques have been widely implemented for EV characterization based on
physical as well as chemical, biological and compositional analysis (Table 2).

Table 2. Different techniques for EV characterization.

Techniques Advantages Disadvantages

Physical

Electron microscopy (SEM
and TEM)

Allow assessment of EV
morphology

Time consuming, single parametric
phenotypic EV characterization

Nanoparticle tracking
(NTA)

Allows assessment of
individual EV in terms of size

and concentration of EV

Starting amount of EV and
contaminants may affect the accuracy

of results

Dynamic light scattering
(DLS)

Fast, small starting amount of
EV, provides size range of EV Limits the analysis of individual EV

Chemical, biological
and compositional

analysis

Flow cytometry (FCM)

Quantitative and qualitative
analysis, EV-subtypes analysis,

permits analysis of large
numbers of samples at a time

Occurrence of swarm detection,
overlapping background noise and

minimal detection limits

Western blotting Assess markers of EV as well as
internal proteins of EV

Limited in translational studies,
the quality of antibodies used may
compromise the specificity of the

analysis

Physical analysis of EV is commonly performed by using electron microscopy, includ-
ing scanning electron microscopy (SEM) [112] and transmission electron microscopy (TEM).
The use of electron microscopy assists in the visualization of EV morphology at a high
resolution image [109]. However, this technique limits multi-parametric phenotypic EV
characterization, and lengthy sample preparation. Apart from that, nanoparticle tracking
(NTA) is useful in EV characterization, as this technique provides qualitative analysis in
terms of size and concentration of EV [109,113]. NTA also allows appropriate resolution in
characterizing individual particles of EV. Another technique that allows physical characteri-
zation of EV is dynamic light scattering (DLS). In contrast to EM, DLS provides information
regarding the average of the size distribution of EV by determining collective mobility of
EV instead of a single EV [114,115].

Furthermore, characterization of EV could be performed by implementing chemical,
biological and compositional analysis. Flow cytometry (FCM) is the most widely used
technique to characterize EV. This method permits the analysis of large number of samples
in a short time [88] and also provides high resolution of quantitative and qualitative data
based on individual EV. Currently, the characterization of EV is ascertained by Western
blotting, which mainly assesses the markers expressed on EV; thus, this technique appears
as a conformational technique of EV [116]. Western blotting also enables the detection
of both surface proteins and internal proteins of EV [109]. However, the use of Western
blotting is limited in translational studies, as it requires EV in a large quantity [117];
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as additionally, the specificity and reproducibility of EV analysis may interfere with the
quality of the antibodies used [109].

5.3. Extracellular Vesicles in Osteoarthritis

Cells in tissue and leukocytes that infiltrated the joints affected with arthritis may
release EV into the extracellular space such as in the synovial fluid. It has been previously
reported that elevated levels of EV in synovial fluid from OA patients were capable
of triggering synoviocytes to secrete cytokines and chemokines [118]; thus, EV could
potentially act as a biomarker in OA. Previous study has shown the upregulation of
microRNA (miR)-16-2-3p and downregulation of miR-26a-5p, miR-146a-5p and miR-6821-
5p in synovial fluid-derived EV from female patients with OA compared to non-OA female
patients [119]. In contrast, down regulation of miR-6878-3p and upregulation of miR-210-5p
were observed in synovial fluid-derived EV from male OA patients compared to non-OA
male patients. These results suggest that EV may be used as potential OA biomarkers in a
gender-specific manner. However, further studies at the molecular level are necessary for a
better understanding of EV. The use of EV as potential biomarkers in other arthritis-related
diseases, particularly RA, has been previously reported. For instance, a significant increase
of four-fold of Hotair expression was reported in exosomes from RA patients compared
to non-RA patients [120]. Hotair is a long non coding RNA (IncRNA) that modulates the
migration of active macrophages to the site of inflammation. The expression of Hotair
was downregulated in EV derived from blood of a non-RA patient with a high C-reactive
protein (CRP). This suggests that EV may be used as a potential biomarker to diagnose
RA [120].

As EV can be released by various cell types, EV also carry genetic and cytosolic
components which are similar to their origin cells including cytosolic proteins, mRNA,
miRNA and small non-coding RNAs such as long non-coding RNA (lncRNA) and cir-
cular RNA (circRNA) [121]. These cargos of EV modulate gene expression, altering the
downstream functions and behavior of recipient cells as well as exerting physiological
and pathological effects [122]. In healthy individuals, EV derived from chondroblasts and
osteoblasts in the developmental phase were actively involved in the process of chondro-
genesis by accumulating calcium and inorganic phosphate from ECM, which results in
mineralization in the lumen and subsequently form hydroxyapatite crystals [91]. Several
proteins and growth factors such as BMP and vascular endothelial growth factor (VEGF)
have been reported to exist in EV [123]. This finding indicates that EV are also involved in
angiogenesis, a process of blood vessel formation as well as in chondrocytes and osteoblast
differentiation in growth plate. In addition, EV derived from normal human AC or AC
vesicles were responsible for the neutralization of adenosine triphosphate (ATP), calcium
and inhibition of phosphorylation, which may be deleterious to adjacent chondrocytes [91].

To date, the role of EV in the pathogenesis of OA has been poorly understood. How-
ever, previous study has reported that OA pathogenesis may be driven by interaction
between resident cells and immune cells, ECM of various tissues and also the synovial
fluid [124]. Meanwhile, EV derived from cells within the joints may mediate the patho-
genesis and progression of OA by assisting these cell-cell communications [125]. Previous
study has suggested that in OA pathogenesis, EV mediates the activation of fibroblast-like
synoviocytes by synovial macrophages and infiltrating leukocytes in the synovial mem-
brane [92]. In response to activation, synoviocytes further release cytokines and enzymes,
thus retaining joint inflammation. Additionally, EV may promote changes in subchondral
bone and matrix degradation. It has been demonstrated that EV derived from chondro-
cytes of OA patients engage with secretion of atypical protein and enable the transfer of
information between cells and pathological calcification in articular cartilage [126]. Treat-
ment of EV from OA on macrophages resulted in secretion of proinflammatory cytokines
and chemokines such as matrix metalloproteinases (MMP)-7, MMP-12, IL-1β, CXCL1,
CCL8, CCL15 and CCL20, which initiate cartilage degradation and inflammation in the
joints [107]. In articular chondrocytes, treatment of synovial fluid-derived EV from OA



Cells 2021, 10, 1287 10 of 22

decreases cell survival and downregulates anabolic genes expression including COL2A1
and ACAN, while increases catabolic and inflammatory gene expression including IL-6
and TNF-α [119]. The role of EV in communication between fibroblast-like synoviocytes
and chondrocytes was previously investigated. It was found that exosomes derived from
IL-1β-stimulated synovial fibroblasts resulted in OA-related gene expression in articular
chondrocytes such as ACAN and MMP-13 [127], which further leads to degradation of
ECM, thus promoting the progression of OA.

5.4. Therapeutic Potential of MSC-Drived EV in Osteoarthritis

The capability of cartilage to regenerate or self-recover in OA is limited. Mesenchymal
stem cells-derived EV offer a new therapeutic strategy for OA. The mechanism regulated
by MSC-derived EV in OA treatment may be mainly through their genetic components that
promoting paracrine action [128,129]. Mesenchymal stem cells-derived EV also possess im-
munomodulatory properties. A previous report demonstrated that MSC-derived EV were
responsible for suppressing pro-inflammatory cytokines and elevating anti-inflammatory
cytokine secretions [130]. This suggests that MSC-derived EV could potentially be used in
future OA treatment.

The potential of MSC-derived EV in OA treatment has been extensively studied
(Table 3). A previous study has demonstrated that MSC-derived EV protected a collagenase-
induced OA mice model from joint damage [131]. Such protection includes prevention
of bone and cartilage in OA, which could be due to upregulation of COL2A1 and ACAN,
downregulation of MMP-13, a disintegrin and metalloproteinase with thrombospondin
motifs (ADAMTS)-5 and inflammatory markers, as well as preventing apoptosis of chon-
drocytes and macrophage activation. Additionally, the injection of intra articular of EV
derived from human embryonic MSCs in femur resulted in regeneration and repair of
osteochondral defect, subchondral bone and cartilage, as well as deposition of normal
ECM in a rat OA model [132]. A comparativestudy between synovial membrane MSC-
derived EV (SMMSC-EV) and EV secreted from induced-pluripotent stem cell-derived
MSCs (iMSC-EV) found that both SMMSC-EV and iMSC-EV treatment stimulated the
proliferation and migration of chondrocytes and attenuated OA in a collagenase-induced
mouse model [133]. Similarly, treatment with EV from human bone marrow-derived
MSCs (hBMSC-EV) promoted cartilage repair by triggering the production of ECM by OA
chondrocytes and improving inflammatory response in vitro [134].
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Table 3. Therapeutic evidence of MSC-derived EV in OA treatment.

Type of EV Model Marker Time Point of Assay
Specific Characteristic
of In Vivo or In Vitro

Studies
Findings References

Exosome
derived from
human bone
marrow-derived
MSCs
(MCS-Exos and
MSC-miR92a-3p-
Exos)

i. Human bone
marrow MSCs
(normal and
OA)

ii. Mouse
(collagenese-
induced
OA)

i. MSCs: CD73,
CD90, CD105

ii. MSC-ExoS:
CD9, CD63,
CD81,
and HSP70

i. Proliferation assay.
MCS-Exos and MSC-
miR92a-3p-Exos
were incubated with
normal and OA
chondrocytes for 0–5
days

ii. Transfection. MSCs
were transfected
with miR-92a-3p
mimic or inhibitor
for 48 h (qRT-PCR)
and 72 h (western
blot)

iii. In vivo study.
MCS-Exos and MSC-
miR92a-3p-Exos
were injected into
collagenase-induced
OA mice after 7, 14
and 21 days
following OA
induction

i. Proliferation
assay. 200 µg
exosomes/mL
were used

ii. Transfection. 50
nM of
miR-92a-3p
mimic or
inhibitor were
used

iii. In vivo study.
500 µg/mL of
MSC-Exos and
MSC-miR-92a-
3p-Exos were
used

i. Both MSC-Exos and
MSC-miR92a-3p-Exos significantly
enhance chondocytes proliferation
compared to control group,
where MSC-miR92a-3p-Exos exert
a more potent effect compared to
MSC-Exos.

ii. MSC-miR92a-3p-Exos significantly
upregulated ACAN, COL2A1,
SOX9, while COL10A1, RUNX2,
MMP-13 and WNT5A were
significantly downregulated.
This indicates the capability of
MSC-miR92a-3p-Exos in enhancing
cartilage development.

iii. Both MSC-miR-92a-3p-Exos and
MSC-Exos prevented cartilage
matrix loss compared to the OA
group, where the level of COL2A1
and ACAN were significantly
better with the presence of
MSC-miR-92a-3p-Exos.

[135]
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Table 3. Cont.

Type of EV Model Marker Time Point of Assay Specific Characteristic of
In Vivo or In Vitro Studies Findings References

Exosomes and
microparticles
(MP) derived from
murine bone
marrow-derived
MSCs

i. Chondocytes
from C57BL/6
mice
(IL-1β-induced
OA-like
phenotype)

ii. Mouse
(collagenese-
induced
OA)

i. MP: CD29, CD44
and Sca-1

ii. Exosomes: CD9,
CD81

i. Cartilage restoration.
MP and exosomes were
incubated with
chondrocytes following
OA induction for 24h

ii. Apoptosis induction.
MPs or exosomes were
added into
chondrocytes-MSCs
cocultures for 6 h

iii. Monocytes activation.
MP and exosomes were
incubated with murine
spleen-derived
macrophage for 3 days

iv. In vivo study. MPs and
exosomes were injected
into mouse at day 7
after OA induction and
harvested at day 42

i. Cartilage
restoration. 12.5
ng; 125 ng or
1.25µg of MP and
exosomes were
used

ii. Apoptosis
induction. 125 ng
or 250 ng of MP
and exosomes were
used

iii. Monocytes
activation. 50 ng of
MPs or exos were
used

iv. In vivo study. 500
ng/5µL of MP or
250 ng/5µL of
exosomes were
used

i. Both MPs and exosomes significantly
upregulated ACAN, COL1 and COL2B
expression in a dose-dependent manner
and down-regulated MMP-13,
ADAMTS-5 and inflammatory iNOS,
thus indicating MP and exosomes
exhibited a condroprotective effect

ii. MPs and exosomes prevented apoptosis
and reduced the level of apoptotic
chondrocytes with significantly lower
doses than MSCs, where Exos exert a
more potent effect compared to MPs.

iii. MP and exosomes inhibiedt the
expression of CD86, MHCII or CD40 as
well as downregulated TNF-α and
upregulated IL-10, and thus possessed
an immunosuppresive effect

iv. MP and exosomes significantly
improved volume, cartilage degradation
(surface/volume ratio) and thickness of
articular cartilage, indicating protection
of cartilage degradation

[131]

Exosomes derived
from human
embryonic stem
cell
(HuECS)-derived
MSCs

Rat (osteochondral defect) Exosomes: CD81, TSG101

Intra-articular injections of
exosomes or PBS were weekly
administered at the site of
osteochondral defect for 12
weeks and harvested at weeks 6
and 12

100 µg exosomes was
administered

i. At 12 weeks, exosomes promoted almost
complete neotissue coverage with good
surface regularity and complete
integration with the adjacent cartilage.

ii. Histologically, exosomes enhanced the
formation of hyaline cartilage indicated
by uniform and intense staining of GAG
(>80%), high level of type II collagen,
and low level of type I collagen.
Meanwhile, almost all cells in the
repaired tissue injected with exosomes
appeared to be chondrocytic,
and displayed pericellular matrix
staining of type VI collagen. It also
showed good integration with adjacent
cartilage and subchondral bone.

[132]
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Table 3. Cont.

Type of EV Model Marker Time Point of Assay Specific Characteristic of
In Vivo or In Vitro Studies Findings References

Exosomes derived
from human
synovial
membrane-
derived MSCs
(SMMSC-Exos)
and induced
pluripotent stem
cell-derived MSCs
(iMSC-Exos)

Mouse
(collagenase-induced OA)

i. iMSCs: CD29,
CD44, CD73 and
CD90

ii. SMMSCs: CD44,
CD73, CD90 and
CD166

iii. iMSC-Exos and
SMMSC-Exos:
CD9, CD63,
and TSG101
proteins

i. In vivo study.
iMSC-Exos
SMMSC-Exos were
injected intra-articularly
at knee joints of normal
and OA mice on days 7,
14 and 21 following OA
induction

ii. Chondrocytes
migration assay.
iMSC-Exos or SMMSC
were incubated with
scratched monoclayer
chondrocytes,
and wound closure was
monitored at 0 h, 24 h
and 48 h

iii. Chondrocytes
prolifertaion assay.
iMSC-Exos or
SMMSC-Exos were
incubated with
chondrocytes for 5 days

i. In vivo study.
iMSC-Exos and
SMMSC-Exos in
PBS at
concentration of
1.0× 1010/mL were
used

ii. Chondrocytes
migration assay.
chondrocytes were
cultured in DMEM
F-12 medium
containing 108/ml
iMSC-Exos or
108/ml
SMMSC-Exos

iii. Chondrocytes
prolifertaion assay.
Chondrocytes were
seeded at 2× 103

cells/well and
cultured for 8h
before were
incubated with 107

exosomes/ml or
108 exosomes/ml
were added

i. iMSC-Exos enhance hyaline formation
features with a smooth cartilage surface,
regular cellular organization and normal
proteoglycan content,
while SMMSC-Exos showed a moderate
surface irregularity and superficial
fibrillation compared to OA group.
Meanwhile, iMSC-Exos were more
effective in inhibiting loss of
proteoglycan in cartilage compared to
SMMSC-Exos indicated by a reduction
in safranin O staining in the
SMMSC-Exos group compared to the
iMSC-Exos group

ii. Both iMSC-Exos and SMMSC-Exos
significantly enhanced chondrocytes
motility compared to OA group,
with iMSC-Exos significantly increased
chondrocytes motility at 24 h and 48 h
compared to SMMSC-Exos

iii. iMSC-Exos and SMMSC-Exos
stimulated chondrocyte proliferation at
108 exosomes/ml compared to the
control group, while iMSC-Exos
exhibited a more potent effect

[133]
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Table 3. Cont.

Type of EV Model Marker Time Point of Assay Specific Characteristic of
In Vivo or In Vitro Studies Findings References

EVs secreted from
human bone
marrow-derived
MSCs
(BMMSC-Evs)

Human knee cartilage of
OA patient (TNF- α
-induced inflammatory)

BMMSC-Evs: CD9 and
CD63

i. Inflammation
inhibition assay.
BMMSC-Evs were
incubated with TNF-α
treated OA
chondrocytes for 48 h

ii. Collagenase activity
assay. BMMSC-Evs
were incubated with
TNF-α treated OA
chondrocytes for 4 h

iii. Proliferation assay.
BMMSC-Evs were
incubated with TNF-α
treated OA
chondrocytes for 5 days
in the presence of
5-ethylnyl-2’-
deoxyuridine
(Edu)

iv. Cartilage regeneration.
cells were cultured in
fibrin constructs and
treated with
BMMSC-Evs every 5
days for 28 days

i. Collagenase
activity assay.
BMMSC-Evs were
incubated with OA
chondrocytes at an
ambient
temperature,
protected from light

ii. Proliferation assay.
BMMSC-Evs were
incubated with OA
chondrocytes in the
presence of 10 µM
5-ethylnyl-2’-
deoxyuridine.

i. BMMSC-EVs significantly
downregulated the expression of
TNF-alpha-induced COX2, IL-1 alpha,
IL-1 beta, IL-6, IL-8 and IL-17 in OA
chondrocytes, which suggests
anti-inflammatory potential of
BMMSC-Evs by inhibiting
phosphorylation of IκBα.

ii. BMMSC-Evs inhibited increasing
collagenase activity induced by TNF-α,
and also promoted OA chondrocytes
proliferation and revoked the inhibitory
effect of TNF-alpha

iii. BMMSC-EVs significantly promoted the
production of proteoglycans in the
newly formed tissue, induced the
expression of ACAN, COL2A1, SOX9
and WNT7A, downregulated RUNX2
and COL10A1 as well as enhanced type
II collagen production in OA
chondrocytes.

[134]
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Osteoarthritis treatment with EV from adipose tissue-derived MSCs has shown a
promising alternative therapy. It was demonstrated that infrapatellar pat pad MSC-derived
EV may prevent cartilage degradation and enhance the chondrocytes autophagy level by
inhibiting the rapamycin signaling pathway [136].

Since heterogenous cell entities of MSCs may give rise to different EVs with different
functions, whether they exert similar therapeutic effects on OA is still questionable. In addi-
tion, different EV preparations may also influence their therapeutic activities. Furthermore,
not all MSC sub-types are capable of mediating clinical impacts on OA, and neither are
their EVs. Therefore, further study on MSC-derived EVs is needed for better understanding
of their mechanism in OA treatments.

5.5. The Promise and Challenges of EV as a Therapeutic Delivery System

Recently, MSC-derived EVs have obtained interest from regenerative medicine due to
their high therapeutic efficiency. They have been suggested as a clinical effective delivery
agent in OA treatment, as they meet the focus of clinical therapy by exerting two important
therapeutic effects including cartilage protection and regeneration as well as an anti-
inflammatory effect. Additionally, MSC-derived EVs is a promising therapeutic agent with
high sustainability, a non-invasive collection process and highly reproducible and safe
characteristics [137], which is indicated by its low toxicity and low immunogenicity [138].
The use of MSC-derived EVs also confers a few other benefits such as the ability to cross
the biological barriers [139], as they are able to communicate directly with the target cells,
thus offering rapid clearance, lowering the risks, and reducing toxicity [140]. Moreover,
MSC-derived EVs may avoid immunogenic reactions such as immune rejection due to a
lack of MHC class I/II [141].

Despite the therapeutic potential of MSC-derived EVs, a number of challenges remain,
including exosome molecular diversity, a lack of exosomal targeting properties [142],
and excessive transfer of gene information [143]. A large-scale MSC-EV isolation process,
for example, may pose technical and experimental challenges. The existing EV generation
methods such as tissue culture methods in flask limits the large-scale production of EV,
thus hindering the use of EV in clinical therapeutic applications [144]. Although sustainable
quantities of EV may be harvested through the long-term passaging method, this method
may lead to differentiation of MSC [145]. Apart from that, reliable EV characterization
methods, rapid and precise methods for characterizing EV functional cargo, as well as the
pharmacokinetics and transfer mechanism of MSC-EVs remains unclear. MSC-EV has been
suggested to have a therapeutic effect via miRNA, but cytoplasmic and membrane proteins,
mRNA and small non-coding RNA, all of which can be passed to recipient cells [146] but
are not always evaluated.

6. Conclusions

In conclusion, both MSCs and EVs play a significant role in immunomodulation of OA.
Therefore, MSC-derived EV-based therapy has a potential role in enhancing damaged artic-
ular tissue repair. As MSC-derived EV are secreted under physiological and pathological
conditions, they may exert different effects via different pathways. The membrane as well
as cytosolic protein and lipids and genetic components including mRNAs siRNA, miRNAs
and ribosomal RNAs of EV are the main factors that allow them to facilitate cell-to-cell
interaction. MSC-derived EV therapy offers a potential safe approach for OA treatment.
Studying the potency assay of MSC-derived EVs is challenging.

Although previous findings have demonstrated a promising therapeutic effect of
MSC-derived EVs which was similar to MSC; however, several critical issues should be
considered in designing MSC-derived EV therapy, including the source of EV as distinct
MSC may give rise to different EV subtypes with different biological effects and standard
EV preparation protocols, since independent MSC-derived EVs preparation may differ in
regards to their therapeutic potentials, a safe and effective administration route with proper
targeted treatment sites as well as a sufficient dose and frequency of EV administration to
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inflict an optimal therapeutic effect on OA or arthritis-related disease generally. Therefore,
further functional testing of MSC-derived EVs, particularly for OA treatment, is necessary.
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