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Abstract: The neutrophils extracellular traps (NETs) are a meshwork of chromatin, histonic and
non-histonic proteins, and microbicidal agents spread outside the cell by a series of nuclear and cyto-
plasmic events, collectively called NETosis. NETosis, initially only considered a defensive/apoptotic
mechanism, is now considered an extreme defensive solution, which in particular situations induces
strong negative effects on tissue physiology, causing or exacerbating pathologies as recently shown in
NETs-mediated organ damage in COVID-19 patients. The positive effects of NETs on wound healing
have been linked to their antimicrobial activity, while the negative effects appear to be more common
in a plethora of pathological conditions (such as diabetes) and linked to a NETosis upregulation.
Recent evidence suggests there are other positive physiological NETs effects on wound healing that
are worthy of a broader research effort.
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1. Introduction

Neutrophils, also known as neutrophilic granulocytes or polymorphonuclear leuko-
cytes (PMNs), are the most abundant white blood cells in the human circulatory system.
They play a crucial role in the innate immune defense against bacteria, fungi, and viruses,
and they are potentially harmful to the host as well.

Neutrophils are recognized as highly versatile and sophisticated cells, able to greatly
extend their lifespan depending on their activation status, and cross-talk with other inflam-
matory cells. It is now thought that the circulatory half-life of neutrophils is longer than
previously estimated (several days as opposed to several hours) [1].

Their activation and microbicidal activity are strictly controlled by a plethora of
stimuli, and recent evidence suggests they are quite versatile and can perform previously
unsuspected functions, such as reverse transmigration, crosstalk, and regulation of other
leukocyte populations [1].

The antimicrobial and cytotoxic action mechanisms of neutrophils consist of phago-
cytosis, generation of reactive oxygen species (ROS), and the degranulation of several
microbicidal factors such as α-defensins, cathelicidin, elastase, cathepsin G, and lactoferrin.
Neutrophils also exhibit a remarkable de novo biosynthetic capacity for C-X-C and C-C
chemokines; proinflammatory, anti-inflammatory, and immunoregulatory cytokines; as
well as angiogenic and fibrogenic factors and matrix metalloproteinases [1–4].

In addition to the numerous actions that characterize the defensive response of neu-
trophils, another particular way of entrapping and killing pathogens has been observed. In
2004, Brinkmann et al. [5] reported the extrusion by neutrophils in a meshwork of chro-
matin fibers decorated with granule-derived antimicrobial peptides and enzymes capable
of killing Gram-positive and Gram-negative bacteria. Due to the modality of defensive
action, this defensive meshwork has received the denomination of neutrophil extracellular
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traps (NETs). NETs were also observed to be efficient in the host defense against fungi [6],
although not necessary against enveloped viruses [7].

NETs are composed of highly decondensed chromatin fibers, having a diameter of 15 to
17 nm, derived from nuclear components accompanied by histone proteins and complexed
with microbicidal globular proteins, such as elastase, cathepsin G, and myeloperoxidase,
which are normally stored in neutrophil granules [5,8].

NETs are released in the extracellular space where the chromatin meshwork entraps
microbes, limiting their diffusion and concentrating the neutrophil factors, and thus increas-
ing the microbicidal effects [9]. NET releases are fundamental as a defensive mechanism,
when the size of the pathogens makes phagocytosis an unreliable process [10].

A further mechanism through which NETs carry out their microbicidal activity is
related to the ability of DNA to induce chelation of manganese and other ions. In particular,
manganese plays an important role in the proliferation and survival of microbes. Together
with other divalent cations, it is used for the transport of electrons across the cellular
membrane, a fundamental process used by bacteria to obtain chemical energy for their
vital activity [11]. As a consequence of the chelating activity of the DNA in the meshwork
of NETs, decreased ion transport impedes the survival of microbes [12,13]. Further, it has
been observed that NETs not only have an active function in eliminating pathogens, but
also regulate the local inflammatory process [14,15].

Initially, NET formation was interpreted as a particular form of cell death, different
from apoptosis or necrosis (no caspases/DNA fragmentation or necrosis death signals
activation occur) [15], responsible for terminating the short life of activated neutrophils
during an explosive event producing microbiocidal effects. Following this interpretation,
the process was called NETosis [16].

However, the identification of NET formation stages has recently led researchers
to revise the death concept of NETosis (Figure 1). The formation of NETs starts from
the dissolution of the nuclear envelope, freeing decondensed chromatin threads into
cytoplasm. Subsequently, the granular membranes also disappear, allowing the mixing of
nuclear and granular components; throughout this process, the cell membrane is intact.
In the final step, chromatin threads and granular components are released by a process
that preserves the integrity of the cytoplasmic membrane of polymorphonuclear cells
(PMNs) [15]. Although enucleated, the remnants of the neutrophils continue their defensive
antimicrobial performance by active phagocytosis, albeit for only a few hours [14,15,17].

This last observation led to the hypothesis that this process cannot be properly un-
derstood as a cell death process, because neutrophils are still alive after NET extrusion. In
these terms, the NETosis process is no different than other defensive bursting effects, such
as those using ROS, which in addition to their efficient microbicidal effects, result in the
death of immune cells [18].

From this point of view, some researchers have criticized the use of the term NETosis,
preferring the term NET formation [19]. NET formation appears to be a widespread
phenomenon within immune cell responses, and in addition to neutrophils, other immune
cells have been reported to develop the process of NET formation [20–23], so that a broader
term extracellular trap (ET)osis has been proposed [24].

Neutrophils, like monocytes, work to maintain the integrity and health of the or-
ganism. They control the molecular patterns of microbes, known as pathogen-associated
molecular patterns (PAMPs), and/or molecules from damaged cells of host origin, known
as damage-associated molecular patterns (DAMPs), using pattern recognition receptors
(PRRs). Activation of the immune system response is mediated by the detection of PAMPs
and/or DAMPs. PAMPs are a molecular structure; a component of the cell wall, such
as lipopolysaccharide (LPS), peptidoglycan, lipoteichoic acids, and cell-wall lipoproteins;
flagellar components such as flagellin; or β-glucan, which is a component of fungal cell
wall [25].
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Figure 1. Molecular mechanism involved in the neutrophils extracellular traps (NETs) formation process. Following
pathogen-associated molecular patterns (PAMPs) or damage-associated molecular patterns (DAMPs), molecules binding to
toll-like receptors (TLR) in a neutrophil granulocyte several steps characterizing the evolution, formation, and extrusion of
NETs. (A) Cytoplasmatic events: cytoplasm granules are shifted into the nucleus for decondensing DNA, the nucleus loses
its integrity, and NETs meshwork is released in the extracellular space by gasdermin D pores. After NETs extrusion, the
granulocyte preserves its phagocytic ability for some hours. (B) Nuclear events: nuclear DNA-histones is was decondensed
by azurophilic granulocyte enzymes, then linker H1 histone is cleaved off and histone 3 and 4 are citrullinated, inducing
DNA decondensation.

DAMPs are molecules normally produced by cells, and in healthy conditions they
remain inside the cells. When DAMPs are detected outside the cells, due to stress or injury,
they can trigger a strong reaction from the immune system. Typical DAMPs include nuclear
proteins, histones, ATP, mitochondrial components such as mitochondrial DNA, and uric
acid [26,27]. When DAMPs are detected by PRRs such as toll-like receptors (TLR) there
is an activation of the immune system response. This clears dead cells, which triggers
inflammation and is necessary for tissue regeneration [26,28].

The formation of NET begins with the activation of neutrophils through the recog-
nition of stimuli, leading them to package and activate the NADPH oxidase (NOX) com-
plex through protein kinase C (PKC)/Raf/MERK/ERK, as well as increase cytosolic
Ca2+ [29,30].

Bacteria can induce NET production by activating TLR4 [22,31]. Stimulation of TLR4
activates a pathway with as its principal intermediates NADPH oxidase 2 (NOX2), an
enzyme that generates reactive oxygens species (ROS), myeloperoxidase enzyme (MPO),
and peptidylarginine deaminase 4 (PAD4) [32]. This process takes from 1 h to 4 h to be
completed after the initial stimulus.

During NET formation, the separation of chromatin into eu- and hetero-chromatin is
lost [33]. In this process, the enzymes of azurophilic granulocyte, elastase, and myeloper-
oxidase are involved, which move into the nucleus in the early stage of NETosis in an
unknown way. Elastase is the first to enter the nucleus, where it determines the cleavage of
the histone linker H1, and modifies the histone core [33]. The elastase action makes it the
first fundamental limiting factor in the formation of the traps; mice deficient in this enzyme
cannot produce NETs [33]. Later, MPO enters the nucleus, increasing the decondensation
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of chromatin, likely by hypochlorite synthesis; subjects with an altered MPO gene cannot
form NETs [29,34].

Another enzyme involved in this pathway is peptidylarginine deiminase 4 (PAD4),
which induces the deamination of the arginine residues to citrulline in the histone 3 and 4
(histone citrullination or demethylimination), producing a weaker binding to DNA and
chromatin decondensation [8,29,30,34]. The role of PAD4 in NET formation has been
studied in knock-out mice that were unable to form NETs [8,29,35,36]. Finally, the pore-
forming protein gasdermin D has been proven to be involved in NETosis, allowing for
DNA and associated protein extrusion [30,37,38].

Recently, it was demonstrated that NADPH oxidase-dependent autophagy is involved
in NETs [39]. Neutrophil stimulation by phorbol myristate acetate (PMA) produces a
giant vacuole similar to autophagosome [40,41]. The cytoskeleton is also involved in the
regulation of NET formation, as the formation of tubules can direct the movement of
granules during exocytosis and phagocytosis [42].

A particular short NET formation pathway has been recently observed, where mitochon-
drial DNA is released instead of nuclear DNA, depending on ROS formation. This quick
process occurs in 80% of neutrophils within 15 min, following C5a or LPS recognition [43].

2. The Dark Side of NETosis

Neutrophils are mostly seen as playing a beneficial role to the host, but their im-
proper activation can also lead to tissue damage during an autoimmune or exaggerated
inflammatory reaction [44–47] (Figure 2).

Figure 2. NETosis in physiologic (A) and pathologic conditions or ageing (B). Interleukins (ILs), tumor necrosis factors
(TNFs), and interferones (IFNs). (A) NETs extrusion is adequate to the defensive anti-microbial action, and NETs are then
removed by macrophages; inflammatory factors drop down. (B) Basal or induced NETs extrusion is enhanced, and they are
not efficiently removed by macrophages; inflammatory factors increase, leading to long-lasting inflammation.

Neutrophils are involved in acute infections and inflammation. Excessive activation of
neutrophils may lead to the development of multiple organ dysfunction syndrome, where
the lungs are the main target, such as acute lung injury (ALI), and in its more severe form,
acute respiratory distress syndrome (ARDS) [48].

NETs act by promoting differentiation of pulmonary fibroblasts into active myofibrob-
lasts responsible to fibrotic effect, and NETs in close proximity to alpha-smooth muscle
actin (α-SMA)-expressing fibroblasts were found in biopsies from patients with fibrotic
interstitial lung disease [49].
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NETs have been implicated in chronic inflammatory disorders or ageing-related
diseases, such as atherosclerosis, psoriasis, rheumatoid arthritis, inflammatory bowel
disease, diabetes, and cancer [36].

In cancer, the double face of NET formation is evident, since NETs show antitumor
activity but can stimulate tumor invasiveness [50], and protect tumor cells from cytotoxic
lymphocytes activity [51]. In particular, in a murine breast cancer model, NETs promote the
progression of tumor metastasis, due to protein factors strictly associated with the DNA
mesh. The presence of NETs was observed around metastatic cells, and DNAse activity
blocked the cell invasiveness [52]. Notably, the quantification of NET formation has been
suggested as a prognostic biomarker in neoplastic disorder [52–55], or a potential target
for new therapeutic approaches using DNAse I to disrupt the effect of the DNA-mesh or
inhibitors of PAD4 [52,56].

In a diabetic patient, neutrophils showed an increase in spontaneous NETosis that
induced an important wound healing alteration [57].

In systemic lupus erythematosus, NETs have been claimed to be responsible for the
autoimmune response [37,58,59]. In an experimental lupus-like autoimmunity model in
a mouse, aberrant NET formation and consequent uncontrolled release of inflammatory
mediators occurred. These events can induce a delay in the macrophage dependent
downregulation of inflammation, causing an inappropriate persistence of autoantigen [60]
responsible for the aggravated condition in systemic lupus erythematosus [58].

In particular, the use of chromatin elements in forming NETs have raised the question
as to whether NET formation is the cause of developing several forms of autoimmunity,
because hide antigens become accessible to immune cells surveillance [61].

Macrophages are involved in removing NETs: M1 (pro-inflammatory type) macrophages,
and M2 (anti-inflammatory and tissue remodeling type) macrophages are equally involved
in tissue clearance [62]. Delayed macrophages-dependent clearance could be responsible
for the persistence of autoimmunity triggering factors [60,63].

NETs DNA and histones activate the platelets and the coagulation cascade and NETs
form aggregates called AggNET, which are scaffolds for erythrocytes and activated platelets.
At the same time, elastase inactivates the main coagulation inhibitors antithrombin III and
tissue factor pathway inhibitor (TFPI), and a further formation of thrombi in the blood
vessels occurs with consequent damage to the lungs, heart, and kidneys [64].

Molecules that are able to counteract the production of NETs by neutrophils have
already been reported [65,66]. Furthermore, given the involvement of neutrophils in
coagulation, it is worth evaluating the activity of neutrophils and the formation of NETs in
patients with congenital (e.g., hemophilia A) or acquired (e.g., disseminated intravascular
coagulation) coagulopathies. Hence, according to Barnes et al. and Tomar et al., the
development of novel therapeutic strategies targeting neutrophils, such as inhibitors of
neutrophil recruitment or NET formation, could help reduce thrombosis and mortality
in COVID-19 patients [67,68], as well as circulatory complications in infections caused by
other pathogens.

Recently, exacerbated neutrophils response and NET production have been suggested
as being involved in COVID-19-associated pneumonitis and/or ARDS [67,69], since exces-
sive NET production also causes the acute cardiac and kidney injuries common in patients
with severe COVID-19 [70].

In COVID-19, an uncontrollable and progressive inflammation, due to a cytokine
storm, is caused by the alteration in the crosstalk between macrophages and neutrophils [67].
Neutrophilia predicts poor outcomes in patients with COVID-19 [71].

In conclusion, excessive NET formation affects the inflammatory response, worsening
tissue damage in pathologic conditions.

3. The Bright Side of NETosis

In addition to the NET formation being a process involved in defensive mechanisms
against microbes, several authors have shown that NETs play a role in resolving inflamma-
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tion, as demonstrated for gouty arthritis [72], even if there are not enough to fully resolve
gouty arthritis [73,74].

In the case of neutrophils, recruitment to the area of inflammation induces the release
of a particular form of NETs called aggregated NETs, which modulate inflammation by
binding and sequestering inflammatory cytokines such as IL-1β and IL-6, which are then
degraded by the serine proteases attached to their meshwork [75].

Therefore, NETs also act as regulators in the inflammatory process when they can act
as a key component in the initiation and resolution of inflammation. The NETosis effect
as a pro- or anti-inflammatory agent depends on the quantity, quality, and length of the
NETs, highlighting new sophisticated and complex mechanisms adopted by neutrophils
to play their role in immune defense and inflammation [36]. Nevertheless, the variety of
experimental conditions adopted in the study of NET formation still did not show a clear
correlation between NET effects and their quantity/quality [75,76].

When summarizing information about the dark and light sides of neutrophils NETs,
we are faced with a mechanism that increases the microbicidal properties of neutrophils and
regulates the inflammatory response. Neutrophils balance their pro- and anti-inflammatory
action, but in the presence of conditions that exacerbate NET formation, they become
pathogenic agents [30,36].

4. NETs Formation in Wound Healing

In wound healing, the Janus-faced behavior of NETs is not well-documented (Figure 3).
In particular, increased NETosis has been shown to impair wound healing in a plethora of
pathological conditions [77], including in skin tumorigenesis [78]. Furthermore, delayed
wound healing due to NET formation has been well-reported in diabetic patients [46,79].

Figure 3. NETs in wound healing: the physiological release of NETs and macrophage clearance (A) actions are essential
to support the physiological response of fibroblasts and keratinocytes to heal wounds (B). Excessive NETs extrusion and
inefficient macrophage clearance (C) increases in situ inflammation and altered both fibroblast and keratinocyte pro-healing
action (D).

In these patients, an increased PAD4-mediated NET formation has been associated
with increased release of elastase, responsible for extracellular matrix degradation and
delayed wound healing [80–82]. Additionally, in Padi4−/− diabetic mice, wound healing
was accelerated [83].
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The importance of excessive NET production in relation to disease manifestation or
progression has gained further evidence in the efficacy of metformin diabetic treatment.
Metformin, a well-known first-line drug for the treatment of type 2 diabetes, in addition
to its incompletely understood glucose-lowering mechanism, has revealed the ability to
reduce the concentrations of NET components by the inhibitory effect on the PKC-NADPH
oxidase pathway, responsible of the first metabolic steps leading to NET production [84].
Again, these findings confirm that the observed tissue damage induced by NET is a reflex
of an altered production, and not a manifestation of a harmful defensive mechanism in sè.

NETosis dysregulation can also be induced by chronic inflammation, a mechanism
responsible for the delayed wound healing process, as demonstrated in diabetic foot ulcer
(DFU) patients, where NOD-like receptor protein (NLRP)-3 inflammasome-NETs axis
was upregulated compared with both controls and diabetic patients with no ulcer [85,86].
Therefore, NETs have been recognized as markers of wound healing impairment in diabetic
foot ulcers patients [87].

The chronic inflammation-inducing NETosis dysregulation model is well-represented
in psoriasis. Psoriasis pathogenesis depends on IL-17 and IL-23 levels, and drugs targeting
these cytokines are used to control the disease [88]. The efficacy of these treatments has
been attributed to the block of a particular subset of T cells (called Th17) in producing IL-17
and in blocking their expansion induced by IL-23, IL-21, and IL-1 β [89–92]. However,
mast cells and neutrophils are the main producers of IL-17 in the skin, and in psoriasis.
In particular, IL-17 is released during the formation of extracellular traps by neutrophils,
whereas IL-23 and IL-1β are involved in degranulation and extracellular trap formation in
mast cells [22,37].

Another process mediated by IL-17 has been reported by Frangou et al. NET scaffolds
decorated with tissue factor (TF) and interleukin-17A (IL-17A) are involved in throm-
boinflammation and lung fibrosis in systemic lupus erythematosus (SLE) patients [93].
IL-17A is a proinflammatory cytokine that was shown to be associated with an increase
and propagation in a fibrotic process in several different tissues, including lung, skin, liver,
and others, with the exception of the kidney [94]. In SLE patients, NETs derived from
an impaired autophagic mechanism are enriched with TF and IL-17A, which both work
as active proteins: TF induces thrombin generation, and IL-17A behaves as promoter of
collagen deposition [93].

In addition to the effects of NETs on the extracellular matrix and on the immune
response, their direct effects on the cell populations involved in wound healing were
observed. For example, NETs in ALI/ARDS inflammation induced M1 pro-inflammatory
macrophage polarization [48], whereas in diabetic wounds, NETs upregulated NLRP3
and pro-IL-1β levels via the TLR-4/TLR-9/NF-κB signaling pathway in macrophages,
sustaining a local pronged inflammatory response [85].

NETs increased the expression of connective tissue growth factors, collagen produc-
tion and proliferation/migration in fibroblasts expressing alpha-smooth muscle actin
(α-SMA) [49], and were detected in close proximity to this cell population in biopsies from
patients with skin scar tissue [49].

Notably, the effects of NETs on endothelial cells (ECs) and angiogenesis during wound
healing have not been extensively explored. The only information we have on the in-
teraction between endothelial cells and NETs is from studies on the pathophysiology of
atherosclerosis [95] or other vascular diseases. High levels of NETs induced endothelial cells
death in vasculitis [96] and endothelial-to-mesenchymal transition in lupus nephritis [97].
However, NETs were able to induce proliferation, destabilize intercellular junctions, and
increase cell motility in ECs, along with in vitro angiogenesis via TLR4 [98]. Interestingly,
NET concentrations capable of stimulating angiogenesis were not measured.

In wound healing, keratinocytes play a pivotal role during the initial defensive process,
recruiting neutrophils, macrophages, and other leukocytes, and they are essential in the
repairing process. Keratinocytes express different kinds of TLR on their cell surface [99,100],
with TLR-4 appearing to be involved in acute wound healing, as TLR4 blockade delays the
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migration of normal primary human epidermal keratinocytes (NHEK) and abolishes the
phosphorylation of p38 and JNK/MAPK, and IL-1β production [101]. External TLRs 1, 2, 4,
5, and 6 are found on the cell surface, and recognize ligands of mainly bacterial and fungal
origin. Internal members of TLR family (TLR 3, 7, 8, and 9) are located in endosomes where
their primary function is to detect microbial and host-derived nucleic acids [100]. Recently,
endosomal TLRs have been shown to be potential contributors to inflammation in different
human studies and rodent models [102,103].

TLR9 recognizes and binds unmethylated CpG residues in the DNA uptaken by
endocytosis [104], and TLR9 ectodomain is subsequently cleaved to produce a functional
receptor for the recruitment of adapter molecules and activation of NF-κB or interferon
(IFN) [103]. Proteolytic cleavage of TLR9 is a prerequisite for its activation, since after
cleavage, one of its fragments binds with Myd88 to induce downstream signaling in a
wide variety of cells [103]. TLR9 is expressed by subsets of B cells and dendritic cells in
humans, and is involved in local as well as systemic inflammation [105]. Moreover, the
TLR-9 receptor is involved in double-strand DNA internalization through vesicular uptake
in macrophages [106]. Keratinocytes express TLR9, with its activation inducing type I
INF [100]. In psoriasis, an increase in TLR9 response induces the production of a greater
amounts of IFN-β characterizing the psoriatic lesion [107].

NETs can also exert a stimulating positive role on the wound healing process, even
if it is only now beginning to be investigated. NETs act on keratinocytes through the
internalization of double-strand DNA by TLR9 receptors, which induce a NF-kB-dependent
keratinocyte proliferation [108]. This phenomenon is NET-concentration-dependent, as low
and high NETs concentrations induce an opposite effect on in vitro wound healing [108],
with low physiological NETs concentration increasing keratinocyte proliferation. This NET
concentration-dependent effect on in vitro keratinocytes proliferation and wound healing
was strongly reduced in elderly subjects (over 65 years old). Moreover, LPS-stimulated
neutrophils from elderly subjects produced a higher NET concentration compared to adult
subjects (20–40 years old), but NETs were less effective in inducing bacterial toxicity and
keratinocyte proliferation (Sabbatini et al., unpublished results).

These findings are in contrast with the results obtained by Tseng et al. in a murine
model of Staphylococcus aureus infection, where less NET production was observed in
neutrophils obtained from elderly animals compared to those obtained from younger
animals [109], while in humans, an age-associated reduction in IL-8 and LPS-induced NET
formation has been observed [110].

The difference in the experimental model and neutrophils stimulation could explain,
at least in part, the different findings. Moreover, the NETs from elderly human subjects had
larger DNA fragments compared to NET production of young subjects (Sabbatini et al.,
unpublished results) and large DNA fragments have less efficiency in ion chelation, a key
quality for microbicidal performance [111].

Furthermore, larger DNA fragments are less efficient in the interaction and activa-
tion of TLR9 [112], which explains the absence of keratinocyte NETs induced prolifera-
tion. Finally, in a murine model, the activity/NETosis of PAD4 increased with age, and
PAD4/NETs has been implicated in age-related organ fibrosis [80].

The Janus-face of NET production can also be appreciated when comparing the ineffi-
cient antimicrobic defense and the wound healing process observed in diabetic patients.

Type 2 diabetes mellitus (T2D) patients are known to be at increased risk for infections
and wound healing impairment, which have been partially linked to a delayed release
of short-living NETs [57,113]. T2D patients exhibit NETs decorated with a low level of
cathelicidin (LL-37), which possess poor antimicrobial action, probably due to scaffold
defects in extracellular NET threads, induced by constant hyperglycemia.

When patients are treated with the macrolide clarithromycin, the antibacterial ability
is restored by up-regulation of LL-37 on NETs [114]. At the same time, improved wound
healing was observed due to dermal fibroblasts activation and differentiation [114]. These
findings indicate a direct positive physiological role of NETs in wound healing, beyond
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their defensive antimicrobic action. However, the physiological importance of NET in
wound healing remains inadequately investigated.

5. Concluding Remarks

NET formation is a neutrophils physiological response that stems the tissue invasion
by external agents and regulates inflammation.

This process is highly resolutive and needs the balanced clearance action of macrophage,
but higher levels of spontaneous or induced NETosis can unveil NETs’ negative effects,
as they can become effectors for chronic inflammation, impair wound healing, and cause
tissue damage and organ failure.

Nevertheless, information on the positive effects of NETs, other than their antimi-
crobial ability, although limited in number, are promising. They could become useful
therapeutic tools in the future.
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