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Abstract: Fibrosis progression in the lung commonly results in impaired functional gas exchange,
respiratory failure, or even death. In addition to the aberrant activation and differentiation of
lung fibroblasts, persistent alveolar injury and incomplete repair are the driving factors of lung
fibrotic response. Macrophages are activated and polarized in response to lipopolysaccharide- or
bleomycin-induced lung injury. The classically activated macrophage (M1) and alternatively ac-
tivated macrophage (M2) have been extensively investigated in lung injury, repair, and fibrosis.
In the present review, we summarized the current data on monocyte-derived macrophages that are
recruited to the lung, as well as alveolar resident macrophages and their polarization, pyroptosis,
and phagocytosis in acute lung injury (ALI). Additionally, we described how macrophages inter-
act with lung epithelial cells during lung repair. Finally, we emphasized the role of macrophage
polarization in the pulmonary fibrotic response, and elucidated the potential benefits of targeting
macrophage in alleviating pulmonary fibrosis.
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1. Introduction

In innate immunity, macrophages play a significant role as heterologous phagocytes
and express pattern recognition receptors to detect pathogen-associated molecular patterns
and damage-associated molecular patterns [1,2]. Macrophages were originally authenti-
cated by Elie Metchnikoff, albeit in a rudimentary manner: in 1883, he reported on the
effect of phagocytes in starfish larvae [3]. While the origin of lung macrophages is believed
to be complex, these macrophages are formed either by the differentiation of blood-derived
monocytes or the proliferation of local macrophages [4].

Tissue-resident macrophages act as the primary and foremost barrier against for-
eign invaders and coordinate the infiltration of hemameba in innate immunity [5]. Re-
cent lineage-tracing studies have indicated that these macrophages arise from embryonic
yolk sac erythromyeloid progenitors; they are capable of self-renewal in large adult tis-
sues at steady-state without the influence of bone marrow hematopoietic stem cells [6].
In the lungs, three different populations of macrophages exist, including airway, alveolar,
and interstitial macrophages. Macrophage populations inside the lungs sustain homeosta-
sis via phagocytosing inhaled particulate and foreigner pathogens and inducing cytokine
production and antigen presentation, which facilitates the clearance of particulate anti-
gens [7,8]. Alveolar macrophages account for 55% of lung immune cells and are situated
on the inner surface of the lung [9]. They participate in the onset of several lung diseases
and are crucial for maintaining airway homeostasis. Interstitial macrophages, thus named
because they are localized in the interstitial area of the lung, preserve homeostasis and
modulate tolerance toward non-threatening antigens [10]. Two independent populations
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of interstitial macrophages were identified in distinct locations of mouse lung by single-cell
mRNA sequencing [11]. Although macrophages play a significant role in defending against
invading organisms, their excessive numbers could cause tissue damage [12].

Stimulated by different local environmental factors, macrophages can be divided
into two distinct polarization states: classically activated phenotype (M1), and the alter-
natively activated phenotype (M2) [13]. Evidence has shown that M1 is closely linked
to pro-inflammatory responses, while M2 plays a key role in anti-inflammatory reac-
tions [13]. Furthermore, M2 macrophages consist of four subtypes, including M2a, M2b,
M2c, and M2d [14]. They are activated by different stimulators. M2a macrophages are
elicited mainly by interleukin 4 (IL-4) and IL-13, whereas M2b phenotype is usually stim-
ulated by IL-1 receptor ligands. IL-10 and glucocorticoids promote the synthesis of M2c
macrophages, while M2d macrophages are primarily induced by adenosine A2A recep-
tor agonists [14]. M2a cells can promote the production of IL-13, in addition to several
other chemokines, such as C-C motif chemokine ligand 17 (CCL17), CCL18, and CCL22.
These chemokines are relevant to the activation of Th2 cells and can facilitate eosinophil
recruitment into the lungs [15,16]. In addition, M2a cells contribute to the initiation of
allergic asthma. By contrast, Treg cells are activated by M2b cells through IL-10, result-
ing in allergic tolerance and lowered inflammatory responses [17]. Compared to M2a
macrophages, M2c macrophages are capable of inducing Tregs and express higher levels
of IL-10 and anti-inflammatory cytokines, leading to reduced inflammatory infiltration
locally [18]. In addition, these polarized macrophages exhibit plasticity because they
can depolarize to M0 macrophages or exhibit the opposite phenotypes by repolarizing
(M1 to M2 and vice versa), depending on the types of cytokines present in the specific
microenvironment [19].

2. Macrophages and Acute Lung Injury

Inflammation is the host’s necessary defense against immunogenic agents [20]. Inflam-
mation is originally protective, and when homeostasis is restored, the inflammation devel-
oped dissipates during repair. However, in case the inflammation is not suitably resolved,
pathological fibrosis may develop, ultimately resulting in organ failure [21]. Macrophages
execute clearing by phagocytosis; they actively participate in processes such as extracellu-
lar matrix remodeling and angiogenesis, as well as inflammation [20]. Acute lung injury
(ALI) usually leads to acute respiratory distress syndrome (ARDS), which is the primary
cause of death in critical patients [22]. ALI is characterized by leukocyte accumulation,
epithelial injury, pulmonary edema, and increased alveolar permeability, as well as diffuse
alveolar damage [23]. Macrophage M1 phenotype is involved in the acute phase, while M2
phenotypes are mainly associated with the resolving phases of inflammation in ALI [24].
Macrophage polarization, pyroptosis, and phagocytosis as well as vesicles derived from
different cells, are implicated in the inflammation process of ALI (Figure 1).
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Figure 1. Macrophages in lung injury and repair. Lung tissue resident macrophages and monocyte-derived macrophages
can be polarized into classically activated macrophage (M1) phenotype stimulated by LPS and interferon gamma (IFNγ),
or into alternatively activated macrophage (M2) phenotype in presence of IL-4 and IL-13. TNFα-stimulated gene-6 (TSG6)
and MCP-induced protein 1 (MCPIP1) can convert macrophages from M1 to M2 phenotype. M1 macrophages secrete
pro-inflammatory cytokines, such as IL-6, TNFα, leading to enhanced lung injury. Impaired phagocytosis and pyroptosis of
alveolar macrophages result in exacerbated lung injury. M2 macrophages produce arginase and contribute to alveolar type 2
cells (AT2) proliferation, resulting in tissue repair after injury. The protein ‘found in inflammatory zone’ (Fizz1) expressed by
AT2 cells recruits monocyte-derived macrophages and promotes fibroblast proliferation. Interstitial macrophages derived
IL-1β hinders AT1 differentiation.
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2.1. Macrophage Polarization and ALI

Macrophage polarization can be modulated by multiple factors, including microRNA (miR),
proteins, glucocorticoids, and components isolated from herbal extracts. miR is a type of
small noncoding RNA, which regulates the stability of mRNAs and the translation pro-
cess, hence modulating related gene expressions [25]. Several types of miRs have been
found to be associated with macrophage polarization and are likely to have promising
therapeutic implications in inflammation-related diseases, such as ALI. miR-127 was ob-
viously induced under inflammatory lung conditions [26,27], and lipopolysaccharides
(LPS)-induced lung injury is found to deteriorate following the intratracheal administra-
tion of miR-127 in mice [28]. Mechanistically, miR-127 represses the expression of target
B-cell lymphoma 6 and dual-specificity phosphatase 1 (Dusp 1), followed by enhanced
activation of c-Jun N-terminal kinase (JNK), which consequently promotes the activa-
tion of M1 pro-inflammatory macrophages [28]. Similar to miR-127, miR-429 attenuates
the translation of Dusp 1 and promotes LPS-induced lung injury by boosting alveolar
macrophage production of pro-inflammatory cytokines [29]. Metastasis-associated lung
adenocarcinoma transcript 1 (Malat1), a long noncoding RNA (lncRNA), has recently
demonstrated to promote M1 activation and inhibit IL-4–activated M2 differentiation
during bleomycin-induced lung injury [30]. Suppression of lncRNA H19 could reverse tox-
icant arsenite-induced M2 polarization of macrophages [31]. Apart from noncoding RNAs,
a number of proteins and glucocorticoids have been implicated in macrophage polarization
and inflammation modulation in ALI [32–34]. For example, activated macrophages can
generate TNFα-stimulated gene-6 (TSG6). In the LPS-induced ALI model, augmented
inflammation and mortality were observed in TSG6-/- mice [33]. TSG6 is capable of pre-
venting neutrophil sequestration, decreasing pro-inflammatory mediators, upregulating
anti-inflammatory cytokines, and promoting macrophages to convert from M1 to M2 pheno-
type [33]. MCP-induced protein 1 protects the lungs from ALI by modulating macrophage
polarization via suppressing the JNK/c-Myc signal [32]. Methylprednisolone is widely
employed in various inflammatory diseases, including ALI, due to its anti-inflammatory
properties [35–37]. Methylprednisolone promoted M2 polarization instead of M1, thus at-
tenuating tissue damage in ALI. M2, particularly M2c, can induce CD4+CD25+Fxop3+

Tregs and can maintain the immunosuppressive function of Tregs unimpaired, thereby con-
tributing to the resolution of inflammation and tissue repair [34]. Remarkably, with the
significant progress achieved in pharmacology research, numerous therapeutic compo-
nents isolated from herbal extracts demonstrate anti-inflammatory curative effects [38,39].
One of these compounds, Smiglaside A, promotes M2 polarization while inhibiting M1 po-
larization, likely mediated by the AMP-activated protein kinase (AMPK) and peroxisome
proliferator activated receptor gama (PPARγ) signaling pathways [40]. Smiglaside A miti-
gates LPS-induced lung damage and increases the survival rate of mice. AMPK and PPARγ
have been shown to decrease the production of inflammatory mediators, and significantly
promote M2 macrophage polarization, thereby ameliorating tissue damage [41–43]. De-
hydrocostus lactone isolated from herbal extracts suppresses the p38 mitogen-activated
protein kinase (MAPK)/MK2 pathway, as well as the production of cytokines, for ex-
ample IL-6 and IL-1β and pro-inflammatory mediators including inducible nitric oxide
synthase (iNOS), resulting in attenuated pathological lung injury [44]. Promoting M2 polar-
ization can also prove beneficial for aseptic lung injury recovery. Clinically, several aseptic
conditions such as multiple traumas, burns, acute pancreatitis, and near drowning can
lead to ALI, although it is less common than pneumonia and sepsis [45]. Protein kinase
B beta (Akt2) is a serine/threonine protein kinase that participates in modulating the
macrophage activation phenotype [46,47]. In peritoneal macrophages, the inhibition of the
Akt2 isoform suppresses M1 activation while facilitating the M2 phenotype by inducing
C/EBPβ and arginase 1 expression [46]. Despite its beneficial effect in aseptic lung injury,
regulating macrophage phenotype via Akt2 depletion impairs the ability of macrophages
to eliminate live bacteria, thus limiting the use of Akt2 depletion in septic lung injury.
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2.2. Macrophage Pyroptosis and ALI

Macrophage pyroptosis is associated with the progression of ALI, rather than macrop-
hage polarization. The excessive lung inflammation in ALI is believed to be related to
changes in alveolar macrophage activation and death [48–50]. Although ALI was believed
to be linked to apoptotic cell death, apoptosis elicits a non-inflammatory response, in-
consistent with the severe inflammation in ALI [51]. Pyroptosis is caspase-1-dependent
programmed cell death, which induces cell swelling and perforates the plasma membrane,
leading to potassium efflux, thereby releasing pro-inflammatory substances outside the
cells [52,53]. In bronchoalveolar lavage fluid (BALF), alveolar macrophages defend against
microbes and airborne particles. They identify pathogen-associated molecular patterns
and initiate the innate immune response and host defense mechanisms [48]. Wu showed
that caspase-1 was activated in LPS-induced ALI, thereby facilitating alveolar macrophage
pyroptosis [54]. Caspase-1 inhibition ameliorates pulmonary tissue damage as well as pul-
monary edema in LPS-induced ALI, implying that caspase-1 could be a therapeutic target
in the treatment of patients with ALI [54]. In addition to caspase-1, a large body of evidence
suggests that the MAPK signal is associated with macrophage pyroptosis [55–57]. In the
LPS-induced ALI model, p38 MAPK expression and macrophage pyroptosis are upregu-
lated [56]. Blocking the p38 MAPK signaling pathway reorients macrophage death from
pro-inflammatory pyroptosis toward non-inflammatory apoptosis [57]. SB203580, a p38
MAPK inhibitor, significantly suppressed macrophage pyroptosis and ameliorated ALI by
downregulating NLRP3 inflammasome activation [57]. Thus, inhibition of the p38 MAPK
signaling pathway and macrophage pyroptosis may provide a novel immunotherapy
strategy for ALI [57].

2.3. Macrophage Phagocytosis and ALI

Foreign particles and pathogens engulfed by macrophages comprise an essential
step of host innate immunity. Macrophage phagocytic function is essential for the res-
olution phase of ALI, which can be regulated by transient receptor potential vanilloid
4 (TRPV4), β-adrenergic receptor, α7 nicotinic acetylcholine receptor, and apoptosis in-
hibitor of macrophage (AIM) [58–61]. In LPS-induced ALI, the enhancement in macrophage
phagocytic function is closely related to TRPV4, as a mechanosensitive ion channel.
When extracellular matrix stiffness is altered, TRPV4 can be triggered in conjunction
with LPS-induced signals, hence accelerating the rate of macrophage phagocytosis, fol-
lowed by resolution of lung injury [58]. In an Escherichia coli-induced ALI mouse model,
human mesenchymal stromal cells (hMSCs) reduce the bacterial burden in the lung and
raise the animal survival rate, potentially by boosting macrophage phagocytosis [62]. Cate-
cholamines enhance macrophage phagocytosis of fluorescent E. coli bioparticles through β-
adrenergic receptor activation, resulting in decreased inflammation, and may be beneficial
for ALI resolution [59]. GTS-21 (3-(2,4 dimethoxybenzylidene)-anabaseine dihydrochlo-
ride), an α7 nicotinic acetylcholine receptor agonist, can enhance macrophage phagocytosis,
contributing to bacterial clearance and decreased acute lung injury induced by Pseudomonas
aeruginosa [60]. Apart from pathogens, the elimination of apoptotic neutrophils is signif-
icant to the resolution of lung inflammation and injury. AIM can prevent macrophages
from phagocytosing apoptotic neutrophils, accompanied by exacerbated histopathological
damage and inflammation in the lungs. These experimental results further indicate that
AIM orchestrates the recovery process of inflammation by altering lipid metabolism [61].

Vesicles derived from different cells also participate in the pathophysiology of ALI.
Microvesicles (MVs) are important for intercellular communication, carrying various molec-
ular cargo, such as receptors, proteins, and nucleic acids [63–65]. MVs containing TNF,
derived from alveolar macrophages, potentially initiate inflammation in vivo and con-
tribute to ALI. These data show that in the pathophysiology of ALI, MVs act as key
components and promising therapeutic targets [66]. MSCs are a promising cell-based
therapeutic method for ARDS [67]. MSC-derived EVs can transfer mitochondria to hu-



Cells 2021, 10, 436 6 of 17

man macrophages, resulting in enhanced phagocytosis and decreased pro-inflammatory
cytokine secretion [68].

3. Macrophages and Lung Repair

The lungs are frequently exposed to microbes and pollutants, thus establishing envi-
ronmental adaptation that sustains immune tolerance, alleviates tissue injury, and secures
gas exchange [7]. Given the clonal analysis and organoid culture together with lineage
tracing mouse models, an increasing body of evidence has shown that there exist het-
erogeneous and complex resident epithelial progenitor or stem cells in the lung [69–73].
They generally divide rarely and are quiescent but proliferate and differentiate rapidly
to accelerate the restoration of the surrounding epithelium since the lung is injured [74].
Thus, homeostasis of the lung epithelium is preserved via the endogenous stem/progenitor
cells at steady state or after lung injury [75–77]. The number of alveolar macrophages
was significantly increased in a mouse model of pneumonectomy, suggesting that alveolar
macrophages may contribute to secondary alveologenesis [78]. During postnatal develop-
ment, alveolarization was shown to be associated with the abundance and polarization of
macrophages [79].

3.1. Macrophages Interact with Epithelial Cells in Lung Repair

Coordinated efforts between epithelia and macrophages are considered indispensable
for wound healing (Figure 1), whereas the macrophage-derived molecules that are reliable
for repair are barely defined [80,81]. In response to epithelial injury, recruited and resident
macrophages drive tissue repair [7]. For instance, after infectious or chemical lung injury,
alveolar macrophages may promote epithelial proliferation by producing Wnt ligands [80].
Macrophages could directly boost epithelial proliferation in the absence of other cell types
within a co-culture system, including alveolar type 2 cells (AT2) [80]. An in vitro co-culture
experiment indicated that macrophages enhance AT2 cell self-renewal and survival [82].
Recent evidence indicates that circulating monocytes rarely promote resident macrophage
proliferation at steady state but replace macrophages during inflammation [83–85]. Dis-
ruptions in the macrophage function could lead to abnormal repairs, as the uncontrolled
generation of growth factors and inflammatory mediators, deficient production of anti-
inflammatory macrophages, or invalid communication among macrophages and epithelial
cells, tissue stem or progenitor cells, and fibroblasts, all contribute to persistent injury, lead-
ing to the development of pathological fibrosis [21]. Interestingly, interstitial macrophage-
derived IL-1β hinders AT1 differentiation, causing impaired alveolar regeneration and
aberrant accumulation of damage-associated type of AT2 cells [86]. Macrophages also in-
duced epithelia to proliferate by trefoil factor 2 generation, a cytokine formerly considered
to be released only from impaired epithelia. Thus, lung macrophages may serve as a crucial
ancillary source of this pivotal reparative cytokine [80].

Adoptive transfer studies and genetic loss of function in mice indicated that bone
marrow-derived monocytes migrate to the lung by a CCL2/C-C motif chemokine receptor
2 (CCR2) axis, which is necessary for AT2 cell proliferation [82]. Mice lacking CCR2
were shown to lose the ability to recruit monocytes in the lung, and display decreased
stimulation of AT2 cells and eventually damage compensatory lung regeneration post
partial pneumonectomy [82]. Recruited monocytes enhance the generation of the M2-
like phenotype of macrophages inside the repairing lung through modulation of the
microenvironment [82]. Although it remains unclear whether the recruited and resident
macrophages have completely distinct or identical roles in lung regeneration, the findings
are specifically interesting to the field since they identify reparative cells that contribute to
lung regeneration [87].

3.2. Macrophage-Derived Cytokines in Lung Repair

In the lung, if the injury persists, pro-inflammatory signals will continue to be trans-
mitted, and the epithelial cells destroyed by inflammation and infection will be further
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damaged. Thus, the repair process can be considered an essential part of the settlement of
inflammation [88]. After the primary inflammatory phase subsides, macrophages present a
wound-healing phenotype by the generation of growth factors, including platelet-derived
growth factor, vascular endothelial growth factor alpha, and insulin-like growth factor
1 (IGF-1), which promote blood vessel development and cellular proliferation [89–91].
The intricate relationship between resolution of inflammation and repair has been demon-
strated by several macrophage-derived cytokines, for example epidermal growth factor-like
growth factor amphiregulin [92]. A direct action of amphiregulin in recovering the lung
function was originally demonstrated in asthma patients and chronic obstructive pul-
monary disease patients; influenza virus-infected mice enhanced amphiregulin expression
in the lungs and sputum of such patients [93–95]. Airway macrophages produce am-
phiregulin in response to lipopolysaccharide [96]. In addition, alveolar macrophages
generate amphiregulin to offset the epithelial injury induced by infection [88]. Addition-
ally, arginase translates arginine to ornithine, which acts as a precursor for hydroxyproline
or proline synthesis, which are the main constituents of collagen [97]. Ornithine enters the
biosynthetic pathway of polyamines, which are necessary for cellular proliferation [98].
Moreover, arginase activity controls the inflammatory response because arginase competes
with iNOS for their mutual substrate, arginine [97].

3.3. Cytokines That Regulate Macrophages in Lung Repair

In experimental helminth infection model, IL-4 receptor signaling was shown to
increase IL-10 and IGF-1 expression and stimulate M2 macrophage development, which fa-
cilitated the resolution of lung damage [99]. Surfactant protein A was shown to promote
IL-4-dependent proliferation and activation of alveolar macrophages, thereby alleviating
lung injury after parasite infection [100]. IL-4 expedites resolution of lipopolysaccharide-
or Pseudomonas-induced ALI and lung repair by reprogramming macrophages to the M2
phenotype [101]. Th2 cells and group 2 innate lymphoid cells predominantly secrete IL-
13 and IL-4, which enhance tissue repair and promote the initiation of matrix synthesis
via activated macrophages [102,103]. The group 2 innate lymphoid cells generate IL-13,
which has been shown to promote lung regeneration [82]. This cytokine modulates the
M2-like biochemical functions and enhances their polarization, including collagen syn-
thesis, refactoring of the extracellular matrix, and anti-inflammation [104–107]. IL-6 is
conducive for lung repair following influenza-induced pulmonary injury by promoting
the recruitment of macrophages to the lungs and accelerating the rate of phagocytosis of
viruses via macrophages [108].

4. Macrophages and Lung Fibrosis

Idiopathic pulmonary fibrosis (IPF) is a chronic and progressive disease with no
effective treatments. Increased myofibroblasts, deposition of collagen, and alveolar ep-
ithelial injury are characteristics of IPF and bleomycin-induced fibrosis in animals, result-
ing in impaired functional gas exchange, respiratory failure, and even death [109–112].
M2 macrophage, rather M1 phenotype, is involved in fibrotic progress in the lung (Figure 2).
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Figure 2. Macrophage in lung fibrosis. Fizz1 expressed by AT2 cells recruits monocyte-derived macrophages and promotes
fibroblast activation and proliferation in the lung. Monocyte-derived macrophages secrete macrophage colony-stimulating
factor (M-CSF) in an autocrine manner for self-maintenance, and produce platelet-derived growth factor subunit A (PDGFA),
arginase 1, matrix metallopeptidase 13 (MMP13) to promote fibrotic process. Both alveolar macrophages and monocyte-
derived macrophages can be polarized into M2 phenotype. M2 macrophages produce TGF-β1, inducing the differentiation
of fibroblasts into myofibroblasts. Overexpression of IL-4 and IL-10 derived from M2 macrophages also contributes to
lung fibrosis.
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4.1. Macrophage Apoptosis in Lung Fibrosis

Macrophage apoptosis is related to pathological fibrosis. Ehab et al. focused their
research on glucose-regulated protein 78 (GRP78), which is a primary unfolded protein
response regulator, and determined that Grp78+/− mice are remarkably protected against
pulmonary fibrosis induced by bleomycin [113]. They further demonstrated that interfering
with Grp78 can upregulate Chop and facilitate macrophage apoptosis, leading to reduced
lung fibrosis induced by bleomycin. Similarly, high levels of active caspase-8 were observed
to induce programmed cell death; furthermore, cellular FADD-like IL-1β–converting
enzyme–inhibitory protein (c-FLIP) limits caspase-8 activation, thus its deletion contributes
to macrophage death [114–118]. In a bleomycin-induced fibrotic mouse model, RNA-seq
revealed that macrophages express profibrotic chemokines abundantly, including CCL2
and CCL24, which recruit fibrocytes and are positively correlated with the progression and
severity of fibrosis [119,120]. Loss of c-FLIP in macrophages protects mice from bleomycin-
induced fibrosis [121]. Moreover, macrophages derived from BALF of IPF patients also
exhibit elevated levels of CCL2 and CCL24 [121]. It seems clear that the elimination of
macrophages prevents the development of lung fibrosis. These macrophages expressed
markers of both the M1 and M2 phases, but their source was not investigated.

4.2. Resident Macrophages and Monocyte-Derived Macrophages in Lung Fibrosis

Depletion of resident macrophages by intratracheally administering liposomal clo-
dronate produces no effect on the fibrosis process [122]. Monocyte-derived macrophages
have been proven to contribute to aberrant wound response [123]. Misharin et al. demon-
strated that specific genetic deletion of monocyte-derived macrophages after being re-
cruited to the lung can alleviate lung fibrosis [122]. In the lungs of IPF patients, the Wnt/β-
catenin is involved in aberrant wound repair, which causes persistent fibrosis [124].
There has been evidence that global loss of low-density lipoprotein receptor-related protein
5 (Lrp5), a Wnt coreceptor, can mitigate pulmonary fibrosis induced by bleomycin [125].
In Lrp5-/- mice, gene pathways associated with matrix processing and connective tis-
sue degradation are altered, such as matrix metallopeptidase 13 (MMP13) [125]. In addi-
tion, the number of monocyte-derived macrophages in Lrp5-/- mice is markedly lower
than that in Lrp5+/+ mice in the fibrotic phase (Day 21 after bleomycin administration),
resulting in decreased fibrosis [126]. Through transcriptome analysis, Misharin et al.
revealed that several profibrotic genes such as arginase 1 and Mmp13 are upregulated
in monocyte-derived macrophages compared to the corresponding genes in resident
macrophages during the development of lung fibrosis [122]. Additionally, human ho-
mologs of these kinds of profibrotic genes are also upregulated in alveolar macrophages
in IPF [122]. Using CD11cCreCasp8flox/flox and LysMCreCasp8flox/flox mice, which induced
necroptosis of monocyte-derived macrophages, they found that the severity of fibrosis
is attenuated compared to that in Casp8flox/flox mice [122]. Finally, they proposed that se-
lectively targeting monocyte-derived macrophages may relieve fibrosis severity without
adverse consequences related to circulating monocyte depletion. Later, by applying genetic
lineage tracing, in situ RNA hybridization, combined with single-cell RNA sequencing,
Misharin et al. further demonstrated a similar role of monocyte-derived macrophages
in asbestos-induced pulmonary fibrosis [127]. After asbestos administration, monocyte-
derived macrophages were localized to fibrotic areas, expressing platelet-derived growth
factor subunit A to facilitate fibroblast proliferation, thus aggravating the severity of fi-
brosis [127]. Epithelial expression of Fizz1 drives the recruitment of monocyte-derived
macrophages to the lungs. Fizz1-deficient mice are protected from bleomycin-induced
fibrosis [128]. Monocyte-derived macrophages are capable of secreting macrophage colony-
stimulating factor (M-CSF) in an autocrine manner, and M-CSF/M-CSFR signaling is
indispensable for the maintenance of monocyte-derived macrophages [127]. Pharmacologi-
cal blockade of this pathway by anti-CSF1 antibody or selective inhibitor PLX3397 greatly
reduces the quantity of monocyte-derived macrophages and the severity of fibrosis. There-
fore, M-CSF/M-CSFR signaling can serve as a promising drug target for fibrosis therapy.
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A recent study demonstrated that age-related lung fibrosis is associated with the recruit-
ment of fibrogenic macrophages, which is regulated by endothelial protein C receptor
suppression in endothelial cells and IL-1α upregulation in activated platelets [129].

4.3. Cytokines/Pathways Associated with M2 Polarization in Lung Fibrosis

Generally, M2 macrophages are important regulators of fibrogenesis, which aggra-
vates the progression of pulmonary fibrosis [21,130,131]. Regulators of M2 polarization
contribute to fibrotic progression. IL-4 is known to induce macrophage M2 polarization via
activating phosphoinositide 3-Kinase (PI3K)/AKT and Janus kinase 1 (JAK1)/signal trans-
ducer and activator of transcription 6 (STAT6) [131,132]. Indeed, during bleomycin-induced
experimental fibrosis, IL-4-induced macrophage polarization is modulated by Grb2 asso-
ciated binding protein 1 (Gab1) and Gab2. Gab1 and Gab2 was found to regulate AKT
and STAT6, respectively [133]. Similarly, the phosphatase and tensin homologue loss was
observed to sustain PI3K activation and promote macrophage M2 phenotype, leading to
exacerbation of bleomycin-induced lung fibrosis [134]. Furthermore, tyrosine phosphatase
Shp2 inhibits M2 macrophage polarization and prevents bleomycin-induced pulmonary
fibrosis by regulating JAK1/STAT6 activity [135]. Although IL-10 is commonly identified
as an anti-inflammatory cytokine, mice with IL-10 overexpression developed lung fibrosis,
with a dramatic upregulation of the numbers of M2 macrophages not only in the BALF
but also in the whole lung tissue [136]. In IPF patients, circulating levels of serum amyloid
P (SAP) are significantly reduced compared to non-fibrotic controls [137]. The circulating
SAP is positively related to forced vital capacity, indicating a correlation between SAP and
the severity of fibrosis. SAP inhibits pulmonary fibrocyte accumulation and collagen depo-
sition. Administration of SAP is able to reduce M2 macrophages and deplete pulmonary
macrophages by liposomal clodronate, leading to anti-fibrotic effects. Therefore, SAP seems
to exert an anti-fibrotic effect in TGFβ1-induced lung fibrosis by regulating macrophage
responses [137]. Recombinant TNF-α reduces the pro-fibrotic M2 phenotype and exerts ther-
apeutic effects during bleomycin-induced fibrosis in mice [138]. In addition to cytokines,
adenosine is able to polarize macrophages to M2 phenotype [139]. IL-13 and TGF-β1
expression can be induced by IL-33 signaling through ST2 during bleomycin-induced
lung fibrosis [140]. IL-33 and IL-13 synergistically induce M2 macrophage polarization,
and anti-IL-33 antibody treatment and ST2 deficiency can attenuate bleomycin-mediated
pulmonary inflammation and fibrosis [140].

TGF-β1 overexpression results in progressive pulmonary fibrosis, and depletion of M2
macrophages, which also produce TGF-β1, ameliorates the disease [141]. Besides, TGFβ1,
which is elevated in fibrotic remodeling, can induce multiple responses related to re-
modeling, such as fibroblast activation, extracellular matrix deposition, and cell death
responses. These processes can be observed in the lungs of IPF, asthma, and scleroderma
patients [142–144]. M2 polarization is accompanied by an increased expression of a number
of surface proteins, including CD206 (also known as mannose receptor) [123,145]. The pro-
tein ‘found in inflammatory zone’ (Fizz1) is upregulated by IL-4 on macrophages [146].
Fizz1-deficiency prevents bleomycin-induced lung fibrosis by suppressing lung fibroblast
activation and monocyte recruitment to the lungs [128].

In addition, myofibroblast-derived lactate promotes expression of the profibrotic
genes in macrophages [147]. Adenosine is generated in response to cellular stress and dam-
age, and signals through the adenosine A2b receptor polarizes macrophages to a fibrotic
M2 phenotype during bleomycin-induced fibrosis [139]. It becomes clear that metabolic
reprograming is involved in macrophage polarization and lung fibrosis [148].

5. Conclusions

There is no cure for pulmonary fibrosis, and abnormal lung repair after epithelial injury
will also exacerbate pulmonary fibrosis, which is related to the infiltration of macrophages.
The role of macrophages in lung injury repair and fibrosis is very complicated. In the lung
injury stage, macrophages are polarized into the M1 phenotype under the action of LPS
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and interferon gamma (IFNγ) and play a pro-inflammatory function (Figure 1). In the lung
repair process, macrophages are polarized to the M2 phenotype in presence of IL-4 and IL-
13, accelerating the resolution of inflammation. However, M2 macrophages may also
secrete too much TGF-β to promote the proliferation and differentiation of lung fibroblasts
and aggravate the progression of pulmonary fibrosis (Figure 2). Blocking the recruitment
of mononuclear-derived macrophages, promoting the apoptosis of M2 macrophages or
inhibiting the polarization of M2 macrophages may be beneficial for the treatment of pul-
monary fibrosis. At the same time, the effective and timely repair of lung epithelia could
limit inflammation, thus preventing progression of pulmonary fibrosis. However, it is
still not fully addressed how macrophages crosstalk with epithelial stem/progenitor cells,
and how the polarization of macrophages impact lung epithelial stem/progenitor cell func-
tion. In addition, there is relatively little information on cellular communication between
macrophage and fibroblast cells, and endothelial cells in the lung at steady state and after
lung injury. Although a lot of studies have linked macrophage M2 polarization to lung
repair and fibrosis, the role of subtype of M2 macrophages in lung repair and fibrosis is
missing. Besides, future studies are also needed to identify subtypes of macrophages that
are associated with fibrotic progression, to characterize the metabolic state of macrophages
that regulate their functions, to illustrate the dynamic interaction of macrophages with
tissue environments at steady state or in response to insults using single RNA sequencing
and multi-omics techniques. Targeting the polarization and source of macrophages has
potential benefits for post-injury lung repair and the alleviation of lung fibrosis in clini-
cal treatment for patients with IPF, as well as for patients with severe acute respiratory
syndrome coronavirus 2 infection or mycobacterium tuberculosis infection, who may also
develop lung fibrosis.
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