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Abstract: Casein kinase 2 (CK2) regulates a plethora of proteins with pivotal roles in solid and
hematological neoplasia. Particularly, in acute myeloid leukemia (AML) CK2 has been pointed as an
attractive therapeutic target and prognostic marker. Here, we explored the impact of CK2 inhibition
over the phosphoproteome of two cell lines representing major AML subtypes. Quantitative phos-
phoproteomic analysis was conducted to evaluate changes in phosphorylation levels after incubation
with the ATP-competitive CK2 inhibitor CX-4945. Functional enrichment, network analysis, and
database mining were performed to identify biological processes, signaling pathways, and CK2
substrates that are responsive to CX-4945. A total of 273 and 1310 phosphopeptides were found differ-
entially modulated in HL-60 and OCI-AMLS3 cells, respectively. Despite regulated phosphopeptides
belong to proteins involved in multiple biological processes and signaling pathways, most of these
perturbations can be explain by direct CK2 inhibition rather than off-target effects. Furthermore,
CK2 substrates regulated by CX-4945 are mainly related to mRINA processing, translation, DNA
repair, and cell cycle. Overall, we evidenced that CK2 inhibitor CX-4945 impinge on mediators of
signaling pathways and biological processes essential for primary AML cells survival and chemosen-
sitivity, reinforcing the rationale behind the pharmacologic blockade of protein kinase CK2 for AML
targeted therapy.

Keywords: phosphoproteomics; casein kinase 2; kinase inhibitor; CX-4945; acute myeloid leukemia

1. Introduction

Protein phosphorylation is an essential post-translational modification in most cellular
processes, making of protein kinases promising therapeutic targets for a wide variety of
disorders, including cancer [1,2]. Among the protein kinases involved in cell signaling
networks, casein kinase 2 (CK2) is responsible of about 25% of all cell phosphoproteome [3].
CK2 is a constitutively active and ubiquitously expressed Ser/Thr-protein kinase composed
of two catalytic subunits (x or its isoform «’) and two regulatory subunits (3) [4]. The
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CK2 consensus sequence (pS/pT-x1-x2-E/D/pS/pT, in which x1 # P), is a small motif
characterized by several acidic residues in the proximity of the phosphorylatable amino
acid, as well as the absence of basic residues in those positions [5]. Concerning CK2
substrates, about one third are involved in gene expression and protein synthesis, while
numerous are signaling proteins implicated in cell growth, proliferation, and survival [3,6].
Moreover, a small number of CK2 substrates are classical metabolic enzymes or associated
with some virus life cycle [3].

Protein kinase CK2 has been linked to basically all the hallmarks of malignant dis-
eases [7,8]. Accordingly, several CK2 inhibitors have been described, including small
organic compounds designed to target the ATP-binding site on the CK2 catalytic subunit,
flavonoids and a synthetic cell-permeable peptide termed CIGB-300, originally designed to
block CK2-mediated phosphorylation through binding to phosphoacceptor domain in the
substrates [9-11]. Additionally, a cyclic peptide that antagonizes the interaction between
the CK2 « and 3 subunits and antisense oligonucleotides that reduce CK2 alpha subunit
transcription have also been explored [12,13]. However, only the ATP-competitive inhibitor
CX-4945 and the synthetic peptide CIGB-300 have advanced to human clinical trials in and
shall provide proof-of-concept for CK2 as a suitable oncology target [14,15].

Acute myeloid leukemia (AML) is one of the most frequent hematologic malignancies
and high-expression of CK2x subunit has been connected to a worse prognosis in AML
patients with normal karyotype [16,17]. Actually, CK2 is implicated in multiple signaling
pathways, all of them essential for hematopoietic cell survival and function, and leukemic
cells have been demonstrated to be more sensitive to downregulation of protein kinase
CK2 [18,19]. The latter becomes particularly relevant since AML stand among the most
aggressive and lethal types of cancer and are often characterized by resistance to standard
chemotherapy as well as poor long-term outcomes [20].

In recent years, quantitative phosphoproteomic approaches have been useful to ex-
plore the cellular response to kinase inhibition in different types of cancer cells [21]. In
fact, the proteomic and phosphoproteomic patterns associated with prognosis of AML
patients and its progression from diagnosis to chemoresistant relapse has been recently
described, studies that suggested the importance of CK2 for chemosensitivity in human
AML primary cells [22,23]. Besides, the CK2-dependant phosphoproteome has been ex-
plored by quantitative phosphoproteomic using not only CK2 inhibitors in HEK-293T,
HeLa, and NCI-H125 cells, but also through genetic manipulation of CK2 subunits in
C2C12 cells [24-27]. However, the impact of CK2 inhibition has not been widely assessed
in AML cells, since to our knowledge no previous phosphoproteomic studies have been
conducted for CK2 inhibitors in this particular hematological pathology. Considering the
above, we decided to explore the CK2-regulated phosphoproteome and the consequent
signaling networks perturbations induced after exposure of AML cells to CK2 inhibitor
CX-4945. Mass spectrometry (MS)-based phosphoproteomics profiling allowed us to gauge
the global impact of CX-4945 in human cell lines representing two differentiation stages
and major AML subtypes.

2. Materials and Methods
2.1. Cell Culture

Human AML cell lines HL-60 and OCI-AML3 were originally obtained from the
American Type Culture Collection (ATCC, Manassas, VA, USA) and the German Collection
of Microorganisms and Cell Cultures (DSMZ, Braunschweig, Germany), respectively.
Both cell lines were cultured in RPMI 1640 medium (Invitrogen, Carlsbad, CA, USA)
supplemented with 10% (v/v) fetal bovine serum (FBS, Invitrogen, Carlsbad, CA, USA)
and 50 ug/mL gentamicin (Sigma, St. Louis, MO, USA). Cells were maintained under
standard cell culture conditions.



Cells 2021, 10, 338

3of21

2.2. Sample Preparation and Phosphopeptide Enrichment

HL-60 and OCI-AMLS3 cells (107 cells per each condition, three biological replicates)
were treated or not with 5 uM CX-4945 (Selleck Chemicals, Houston, TX, USA) for 8 h.
After collected by centrifugation and washed with PBS, cells were resuspended in lysis
buffer containing 2% SDS and 50 mM DTT. Samples were boiled at 95 °C for 10 min
and proteins were extracted by multienzyme digestion filter-aided sample preparation
(MED-FASP) with overnight lys-C and tryptic digestions [28]. Phosphopeptides were
then enriched from each digestions using TiO, beads as previously described [29]. For
enrichment, “Titansphere TiO; 10 um” (GL Sciences, Inc., Tokyo, Japan) was suspended
in 200 puL of 3% (m/v) dihydroxybenzoic acid in 80% (v/v) CH3CN, 0.1% CF3COOH and
diluted 1:4 with water and later used at a 4:1 ratio (mg beads: mg peptides). Next, 2 mg TiO,
(per mg peptides) was added to each sample and incubated at room temperature under
continuous agitation for 20 min. The titanium beads were sedimented by centrifugation
and the supernatants were collected and mixed with another portion of the beads and
incubated as above. The bead-pellets were resuspended in 150 pL of 30% (v/v) CH3CN
containing 3% (v/v) CFsCOOH and transferred to a 200 uL pipet tip plugged with one
layer of Whatman glass microfiber filter GFA (Sigma, St. Louis, MO, USA). The beads
were washed 3 times with 30% (v/v) CH3CN, 3% CF3COOH (v/v) solution and 3 times
with 80% CH3CN (v/v), 0.3% CF3COOH (v/v) solution. Finally, the peptides were eluted
from the beads with 100 uL of 40% CH3CN (v/v) containing 15% NH4OH (m/v) and
were vacuum-concentrated to ~4 uL. Phosphopeptides were further desalted by Stage
procedure [30].

2.3. NanoLC-MS/MS and Data Analysis

Chromatographic runs for phosphopeptides and non-phosphopeptides were in home-
made column (75 mm ID, 20 cm length). For phosphopeptides, was used a gradient from
5% buffer B (0.1% formic acid in acetonitrile) up to 30% in 45 min, then increase to 60% in
5 min, and up to 95% in 5 min more. Meanwhile for non-phosphopeptides the gradient
started at 5% buffer B up to 30% in 95 min, then increase to 60% in 5 min, and up to 95% in
5 min more. An EASY-nL.C 1200 system coupled to a QExactive HF mass spectrometer (both
from Thermo Fisher Scientific, Waltham, MA, USA) was used with the nanocolumn being
at 60 °C. Peptides were detected in the mass range 300-1650 m/z using data-dependent
acquisition and each mass spectrum was obtained at 60,000 resolution (20 ms injection
time) and followed by 15 MS/MS spectra (28 ms injection time) at 15,000 resolution. Identi-
fication of peptides and proteins was based on the match-between-runs procedure using
MaxQuant software (v1.6.2.10) [31], and considering oxidation (M), deamidation (NQ),
N-terminal acetylation (proteins) and phosphorylation (STY) as variable modifications.
None fixed modifications were considered as cysteines were not modified. Alignment of
chromatographic runs were allowed with default parameters (20 min time window and
a matching of 0.7 mins between runs). Filtering and quantification of phosphopeptides
were performed in Perseus computational platform (v1.6.2.2) [32]. Reverse and potential
contaminant hits were removed, while only phosphosites with localization probability
above 0.75 were retained for further analysis. Student’s t Test was employed to identify
statistically significant changes (p-values lower than 0.05) in phosphorylation and protein
levels, after filtering for two valid values in at least one group. An additional fold-change
(treated vs. control) cutoff of 1.5 was also applied.

2.4. Enrichment Analysis and Sequence Logo

Biological processes significantly represented in differentially-phosphorylated pro-
teins were identified through functional annotation and enrichment analysis, based on the
information annotated in the Gene Ontology (GO) database (http://www.geneontology.
org/ (accessed on 2 February 2021)) [33,34]. Analysis was performed with DAVID (v6.8)
web-based tool (http://david.ncifcrf.gov/ (accessed on 2 February 2021)) and all identified
phosphoproteins dataset was used as background [35,36]. DAVD computes EASE-score, a
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modified Fisher Exact Test to identify significant enriched biological processes (p-values
lower than 0.1) [35,36]. The resulting list of GO terms with its corresponding p-values was
further submitted to REViGO (http:/ /revigo.irb.hr/ (accessed on 2 February 2021)) for re-
dundancy reduction [37]. In addition, sequence logos for down-regulated phosphopeptides
were generated using WebLogo (v3.6.0) (http://weblogo.threeplusone.com/ (accessed on
2 February 2021)) and MaxQuant amino acid sequence window was used as input [38].

2.5. Enzyme-Substrate Relationship and Kinome Network Analysis

Enzyme-substrate-site relations were retrieved using the integrated protein post-
translational modification network resource iPTMnet [39]. iPTMnet is based on a set
of curated databases like PhosphoSitePlus (http:/ /www.phosphosite.org (accessed on 2
February 2021)) and PhosphoEML (http:/ /phospho.elm.eu.org (accessed on 2 February
2021)), which annotate experimentally observed post-translational modification [40,41].
Besides, the KEA2 web tool (https://www.maayanlab.net/KEA2/ (accessed on 2 February
2021)) was used, first to retrieve information about kinases responsible for phosphopro-
teome modulation after CK2 inhibition, and second to identify which of such kinases were
enriched based on the phosphoproteomic profile [42]. KEA?2 is based on an integrative
database of kinase-substrate interactions derived from disparate source including litera-
ture [42]. The software computes a Fisher Exact Test to distinguish significant enriched
kinases (p-values lower than 0.05), through statistical analysis [42]. To represent the kinome
network, the interactions among the protein kinases associated to the phosphoproteomic
profile, according to KEA2 and iPTMnet annotations, were retrieved using the Metas-
cape gene annotation and analysis resource (http://metscape.org (accessed on 2 February
2021)) [43]. Such bioinformatics software compiles the information from different integra-
tive databases and applies the MCODE algorithm to extract highly connected regions or
complexes embedded in proteins networks [44].

2.6. Identification and Analysis of CK2 Substrates

In addition to bona fide CK2 substrates, we searched for candidate substrates based
on: (1) the presence of the CK2 consensus sequence (pS/pT-x1-x2-E/D/pS/pT, x1 # P) [5],
(2) the enzyme-substrate predictions retrieved from NetworKIN database [45], (3) the
dataset of high confidence CK2 substrates reported by Bian et al. [46] and (4) the phos-
phoproteins which interact with CK2 according to Metascape database information [43].
Substrates that met at least two of such criteria were selected as the most reliable for further
functional analysis. All identified substrates (bona fide and putative) were represented
in a network context and classified according to biological processes annotated in GO
database [33,34], and the STRING database (http:/ /string-db.org/ (accessed on 2 Febru-
ary 2021)) was used to identify interactions between proteins [47]. In such analysis only
databases and experimental evidences were used as source of interaction data and the
confidence score was fixed at 0.4. All protein-protein interaction networks (kinome network
and CK2 substrates network) were visualized using Cytoscape software (v.3.5.0) [48].

3. Results and Discussion
3.1. Profiling the CX-4945-Responsive Phosphoproteome in AML Cells

Advances in high throughput technologies and bioinformatic tools for subsequent
data analysis, make possible to explore on a wide-scale fashion the cellular response
to inhibition of protein kinases. Particularly, phosphoproteomic studies provide solid
evidences regarding kinase-substrates and kinases-kinases relationships involved in the
complexity of networks regulating cellular processes in health and disease. Hence, we
decided to explore the CK2-regulated phosphoproteome in AML cells using MS-based
phosphoproteomic analysis of HL-60 and OCI-AMLS3 cells treated or not with 5 uM of
the CK2 inhibitor CX-4945 during 8 h (Figure 1A). Of note, the inhibitory effect of CX-
4945 over CK2 enzymatic activity has been previously evidenced by reduction of bona
fide CK2 substrates phosphorylation and immunoblotting with antibody against pan-
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CK2 phosphorylated motif [25,49]. In addition, as measured using AlamarBlue assay,
CX-4945 showed a similar dose-dependent inhibitory effect on HL-60 and OCI-AML3
cells proliferation, with ICsy values of 7.49 + 1.55 uM and 4.69 £ 1.59 uM, respectively
(Figure S1A). AML is a highly heterogenous disease, and selected cell lines derive from
the most common AMLs (i.e., acute promyelocytic and acute myelomonocytic leukemia),
together accounting for roughly two thirds of all AML cases [50]. Moreover, in spite of the
similar antiproliferative effect attained by CX-4945 in both AML cell lines, our results and
previous studies have evidenced that HL-60 cells appears to be less sensitive to CX-4945
induced apoptosis when compared to other AML cell lines (Figure S1A,B) [51]. Thus,
selected cells lines not only represent major AML subtypes, but also different niches that
can be found in the clinical setting considering its differential sensitivity to CK2 inhibition
with CX-4945.

A CX-4945 B
RNl . osphoproteome and . 3
 HL-60 y  sym,en , OCFAML3 Proteome Dataset HL-60 OCI-AML3
—- == S w2
_______ ———— e e o i Unique phosphopeptides
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1 1
1 !
——————— >| Celllysate | <~~"""~ Corresponding phosphoproteins 1618 1645

: 6636 6670
Proteins (Proteomic analysis)

|
|
v

Total: 7515 ; Overlap: 5791

[ Protein extraction and digestion (MED-FASP) * ]
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| .
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~ 1 I Proteomic analysis
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I : Corresponding phosphoproteins 224 847
v 1
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. . 1
Enrichment TIO, - With up-phosphorylated peptides 48 17
1 1
1
i ; Significantly modulated proteins 76 122
(Proteomic analysis) Total: 195 ; Overlap: 3
[ NanoLC-MS/MS ]
Phosphoproteome after normalization
: with proteome dataset
1
A4
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Identification and quantification of phosphopeptides S';gmﬁﬁantlytr.r;odulated
and peptides (MaxQuant, Perseus) phosphopeptides Total: 1463 ; Overlap: 120
; Corresponding phosphoproteins 222 841
1
- i Av - With down-phosphorylated peptides 179 832
Enrichment, linear motif and network analysis
(DAVID, WebLogo, Cytoscape) With up-phosphorylated peptides 48 17

Figure 1. Phosphoproteomic and proteomic analysis of human AML cells treated with the CK2 inhibitor CX-4945: (A) Work-
flow for the exploration of phosphorylation changes induced in HL-60 and OCI-AML3 cells after treatment with CX-4945.
Three biological replicates of each group were evaluated; (B) Number of identified and significantly modulated phospho-
peptides and proteins in each AML cell line. Phosphoproteomic results are showed before and after normalization with the
proteome dataset. (*) MED-FASP: multienzyme digestion filter-aided sample preparation [28].

Using this experimental approach, phosphoproteomic analysis of HL-60 led to identi-
fication of 3365 phosphopeptides corresponding to 3077 unique phosphopeptides (90% pS,
9.8% pT and 0.2% pY) on 1618 phosphoproteins (Figure 1B). Similarly, in OCI-AMLS3 cells
3177 phosphopeptides were identified, corresponding to 2976 unique phosphopeptides
(87.8% pS, 11.9% pT and 0.3% pY) on 1645 phosphoproteins (Figure 1B). In parallel, pro-
teomic analysis led to identification of 6636 and 6670 proteins in HL-60 and OCI-AML3,
respectively (Figure 1B). On the whole, we identified a total of 4267 unique phosphopep-
tides and 7515 proteins, with 1786 phosphopeptides and 5791 proteins that overlapped
between both AML cell lines (Figure 1B).
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Changes in phosphorylation and protein levels between untreated and CX-4945-
treated cells were assessed using Student’s t Test and p-value < 0.05 was considered
statistically significant. We also applied a fold-change (treated vs. control) threshold of
1.5 (IFCI > 1.5) to define the down- and up-regulated phosphopeptides and proteins. In
HL-60 cells 275 phosphopeptides on 224 proteins were significantly modulated, while in
OCI-AMLS3 cells the number was almost 5-fold higher with 1324 on 847 proteins (Figure 2A,
Table S1). In both cellular contexts, treatment with CX-4945 elicited a global decrease of
protein phosphorylation, based on the distribution of down- and up-regulated phospho-
peptides in Volcano plots (Figure 2A). On the contrary, proteomic analysis indicated that
in both cell lines CK2 inhibition showed no bias towards the protein down-regulation
(Figure 2B, Table S2). Actually, proteome analysis evidenced that changes in phosphoryla-
tion upon CX-4945 treatment were mostly independent of protein abundance, since only
eight down-regulated proteins (two in HL-60 cells and six in OCI-AMLS3 cells) had phos-
phorylation sites significantly inhibited (Figure 2B). Those proteins were not considered as
differentially phosphorylated after CK2 inhibition, and consequently, were not included in
the functional interpretation of the phosphoproteomic profiles.

HL-60 OCI-AML3
6
FC<-15 FC=215 FC<-15 FC215
p-value < 0.05 p-value < 0.05 p-value < 0.05 p-value < 0.05
n =225 n=50 n=1307 ° n=17
Y L ]
o % E
L ] L] g ®
° . 5_0
. : o >
e ° oo % s
% o? @0 ° hd .o. .
) 4 <
) . Lo
6 4 2 2 4 6 6 -4 2 0 2 4 6
log, FC (treated vs. control) log, FC (treated vs. control)
HL-60 OCI-AML3
FC<-15 FC=215 FC=<-15 FC21.5
p-value < 0.05 o P-value <0.05 p-value < 0.05 p-value < 0.05
n =46 N n=230 n=67 n=>55
L ]
L ]
| L ]
° | ] o* o
% | ® )
08 " o 2 L .
00 | . Q ° °
.o’ e e o o . °.: - °
N 5 ° £z ° oo TN 1
lf. S ° ‘ ®9.° ‘ o o
o 'R ’v 3% o °
E 1
0
2 1 0 1 2 3 4 5 5 4 3 2 4 0 1 2 3 4 5

log, FC (treated vs. control) log, FC (treated vs. control)

Figure 2. Phosphoproteomic and proteomic profile of human AML cells treated with the CK2 inhibitor CX-4945. Volcano
plots of quantified (A) phosphopeptides and (B) proteins from HL-60 and OCI-AMLS3 cells after treatment with 5 pM
CX-4945 during 8 h. Red points indicate those phosphopeptides/proteins that met statistical significance cut-off (| FC| > 1.5,
p-value < 0.05). Additionally, black points indicate those phosphopeptides with decreased phosphorylation due to the
reduction of the corresponding protein abundance in proteomic analysis (down-regulated proteins are also indicated

in black).
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In summary, after normalization with the proteome dataset a total of 273 and 1310
significantly modulated phosphopeptides were identified in HL-60 and OCI-AMLS3 cells,
respectively (Figures 1B and 2A). Remarkably, such difference indicates that CX-4945 has
a more pronounced effect over the CK2-dependant signaling in OCI-AMLS3 cells, which
suggests that the molecular perturbations induced by this inhibitor could rely on the AML
cellular background. However, CX-4945 had a similar dose-dependent inhibitory effect
on HL-60 and OCI-AMLS3 cells proliferation (Figure S1A), suggesting that despite the
divergence concerning the molecular impact of protein kinase CK2 inhibition, there is no
differential sensitivity of AML cells towards the overall antiproliferative effect of CX-4945.

3.2. Enrichment Analysis of Differentially Modulated Phosphoproteins

For better understanding of putative biological processes perturbed after CK2 inhibi-
tion in AML cells, the differentially modulated phosphoproteins were classified in terms of
their biological functions using the information from the GO database [33,34]. Analysis
was performed using DAVID web-based tool and GO terms list was further submitted to
REViGO for redundancy reduction [35-37]. Significantly represented biological processes
in both phosphoproteomics profiles include mRNA processing, regulation of viral pro-
cess and protein sumoylation (Figure 3). Moreover, phosphorylation sites differentially
modulated in HL-60 are located on phosphoproteins related to mRNA splicing, cellular re-
sponse to DNA damage and ribosome biogenesis, while in OCI-AML3 covalent chromatin
modification, nuclear transport, regulation of cell proliferation and gene expression are sig-
nificantly represented (Figure 3). Of note, apoptotic signaling pathway was only identified
as significantly enriched in OCI-AML3 cells. Consistently, our results and previous studies
have evidenced that HL-60 cell line displays refractoriness to CX-4945 induced apoptosis
(Figure S1B), probably owing to the absence of p53 protein (HL-60 cells are p53 null) and
the lower CK2 protein level and activity in comparison to other AML cell lines [51]. In such
studies it was demonstrated that CK2 inhibition not only triggers apoptotic cell death in
AML cell lines, but also in freshly isolated blasts from AML patients [51].

HL-60 OCI-AML3
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Figure 3. Enrichment analysis for differentially modulated phosphoproteins in HL-60 and OCI-AMLS3 cells treated with
CX-4945. Biological processes significantly represented in phosphoproteomic profile were identified using annotations from
GO database. The p-value of modified Fisher Exact Test from DAVID is placed in square brackets.

Recently, another phosphoproteomic study in non-small cell lung cancer (NSCLC) cell
line NCI-H125 using the clinical-grade synthetic peptide CIGB-300, found mRNA process-
ing and ribosome biogenesis as biological processes modulated after CK2 inhibition [26].
Protein folding, cytoskeleton organization, microtubule formation and protein ubiquiti-
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nation were also significantly modulated after treatment with CIGB-300 [26]. According
with both studies, CK2 inhibition by CX-4945 or CIGB-300 modulates a common set of
biological processes but also each drug exerts its own mechanism of action by modulating
a unique array of phosphoproteins. Since this effect could be a consequence of the different
neoplastic backgrounds explored in each study (AML and NSCLC), a phosphoproteomics
study of AML cells treated with CIGB-300 is currently underway to validate our hypothesis.

Noteworthy, proteins involved in cellular response to DNA damage appeared dif-
ferentially phosphorylated in HL-60 cells treated with CX-4945 (Figure 3). Accordingly,
CK2-mediated phosphorylation has been verified to regulate proteins with critical role
in DNA damage response and DNA repair pathways [52]. In fact, phosphoproteomic
analysis of cells treated with radiomimetic compound or ionizing radiation to induce
DNA double-stranded breaks showed a dynamic response for a significant number of
CK2 phosphorylation motifs [53,54]. Furthermore, combination of CK2 inhibitors with
DNA-targeted drugs evidenced a synergistic interaction in cancer models, owing to the
suppression of DNA repair response triggered by such chemotherapeutic agents [55,56].
Interestingly, a number of modulated phosphorylation sites in AML cells belong to proteins
implicated in regulation of viral process (Figure 3). The relevance of CK2 in viral infections
has been well documented, and a number of viral and cellular proteins essential for virus
replicative cycle and pathogenesis are listed as bona fide CK2 substrates [57].

On the whole, CK2 inhibition with CX-4945 impacted on a broader set of biological
processes in OCI-AML3, which is in agreement with the higher number of differentially
modulated phosphopeptides in this cell line (Figures 2A and 3). However, as pointed
above such divergence does not impinge on the antiproliferative effect exerted by CX-4945.

3.3. Sequence Analysis of Phosphopeptides Identified in AML Cells

Protein kinases recognize structural and sequence motif, which in conjunction with
other factors like subcellular co-localization or protein complex formation, determine their
specificity [58]. Particularly, CK2 phosphorylation is specified by multiple acidic residues
located mostly downstream from the phosphoacceptor amino acid, the one at position
n + 3 playing the most crucial function. Besides, proline residue at positionn + 1 acts as a
negative determinant for protein kinase CK2 phosphorylation [3,5].

In our study, approximately 21% of the phosphopeptides identified in HL-60 and OCI-
AML3 fulfill the CK2 consensus sequence (Figure 4A and Figure S3). This proportion of
putative CK2 substrates is in accordance with previous phosphoproteomic analysis [24,59].
In HL-60 the majority of phosphopeptides (83.3%) containing the CK2 consensus sequence
were unaffected by CX-4945 treatment. Moreover, 107 phosphopeptides (16.7%) containing
the CK2 consensus sequence were significantly modulated in HL-60 treated cells, of which
14.4% had a decreased and 2.3% had an increased phosphorylation respect to non-treated
cells (Figure 4A). In contrast to HL-60 cells, the majority of phosphopeptides (53.9%)
containing the CK2 consensus sequence had a decreased phosphorylation in OCI-AML3
cells treated with CX-4945, whereas 45.8% were unaffected and 0.3% had an increased
phosphorylation (Figure 4A). This result reinforces the differential impact of CX-4945 over
the CK2-dependent signaling, which was evidenced above by the higher number of total
phosphopeptides that had a decreased phosphorylation in OCI-AMLS3 treated cells (1310
out of 2976) (Figure 2A).
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Figure 4. Sequence analysis of phosphopeptides identified in AML cells treated with the CK2 inhibitor CX-4945: (A) Pie
charts show Table 60. and OCI-AML3 cells that either, contains or not the CK2 consensus sequence. For the former category,
the percentage of phosphopeptides that are significantly increased or decreased, or that do not show significant changes
in their phosphorylation levels are reported in lateral pie charts; (B) Sequence logos corresponding to phosphopeptides

significantly down-phosphorylated in AML cells treated with CX-4945. Logos were generated using WebLogo tool and

MaxQuant amino acid sequence window as input [38]. (*) Phosphopeptides with decreased phosphorylation due to the

reduction of protein abundance were not considered as differentially regulated.

CK2 substrates have different rates of phosphorylation turnover, some of them are
promptly reduced after 6 h of treatment with CX-4945 but others are more resistant to
dephosphorylation, since requires much longer treatment times (up to 24 h) and higher
concentrations of the inhibitor [24]. We think that the foregoing could explain the pro-
portion of putative CK2 phosphopeptides that resulted unaffected after 8 h of treatment
with CX-4945 in AML cells. Even more, in C2C12 cells devoid of CK2 catalytic activity
(CK20t/ o/(=/7)) was demonstrated that not all the phosphopeptides conforming the CK2
consensus sequence have reduced phosphorylation levels, suggesting that other kinase(s)
could fulfill the phosphorylation of these sites in the absence of CK2 [27].

CK2 consensus is a quite distinctive motif where phosphoacceptor amino acid is sur-
rounded by acidic residues [5]. As demonstrated by sequence logo analysis, the positions
up- and down-stream of phosphorylated sites in peptides that significantly decreased
after treatment with CX-4945 are predominantly occupied by acidic residues (Figure 4B).
Furthermore, 30% and 16% of the phosphopeptides down-regulated by CX-4945 had a
glutamic acid at position n + 3 in HL-60 and OCI-AML3 cells, respectively (Figure 4B).
Basic residues are less represented or practically absent at positions spanning between
n + 1 ton + 4. All these features are consistent with the previously reported linear motif
preference of CK2.

Notably, phosphopeptides containing the S/ T-P motif were also down-phosphorylated
in AML cells after CK2 inhibition with CX-4945 (Figure 4B). In fact, 35% and 53% of the
significantly down-phosphorylated peptides had a proline at position n + 1 in HL-60
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and OCI-AMLS3 cells, respectively (Figure 4B). This motif is targeted by the large and
heterogeneous category of proline-directed kinases and has been previously reported that
such motif is incompatible with direct phosphorylation by CK2 [60]. Thus, the down-
regulation of phosphopeptides containing S/T-P motif could be interpreted as off-target
effect of CX-4945 or just an indirect result of CK2 inhibition, i.e., perturbations of other
kinases involved in signaling networks where CK2 is also implicated. Considering that this
effect has been associated not only to CX-4945, but also to others CK2 inhibitors [24-26],
we reasoned that decrease in phosphorylation such phosphopeptides is just a consequence
of signaling propagation following CK2 inhibition.

3.4. Network Analysis of Kinases Associated with AML Phosphoproteomic Profiles

To identify kinases responsible for the phosphoproteomic profile modulated in HL-60
and OCI-AMLS3 cells, an enzyme-substrate network was constructed using iPTMnet and
KEA2 bioinformatic resources [39,42]. A total of 37 differentially modulated phosphopep-
tides in HL-60 cells (I FC| > 1.5, p-value < 0.05) were attributed to 31 kinases including
CK2 with the higher number (10 phosphopeptides) (Figure 5, Figure S2 and Table 54). A
broader picture was observed in OCI-AML3 phosphoproteome, in which 207 differentially
modulated phosphopeptides were associated to 73 kinases. As expected, CK2 enzyme was
again among the most represented kinases with 29 phosphopeptides (Figure 5, Figure S2
and Table S4). Kinases significantly associated with the phosphoproteomic profile were
also identified using KEA2 bioinformatic tool [42]. In addition to CK2, members of the
CDKs and MAPKs families like CDK1, CDK2, MAPK9 and MAPK14 were also signifi-
cantly associated with the OCI-AML3 phosphoproteome (Figure S2). These results are in
accordance with sequence logo analysis, which indicates that CK2 and proline-directed
kinases motifs are the most frequent among the phosphopeptides down-regulated after
CK2 inhibition in AML cells.

An interaction network of protein kinases associated with the phosphoproteomic
profile modulated in HL-60 and OCI-AMLS3 cells was represented using the Metascape
bioinformatic software (Figure 5) [43]. The kinome network also includes those kinases
that were identified in AML cells after CK2 inhibition, with either not differentially modu-
lated phosphopeptides (green nodes) or down-phosphorylated peptides (blue nodes). For
instance, the tyrosine-phosphorylated and regulated protein kinase DYRK1A is known
to promote cell proliferation and survival [61]. DYRK1A is auto-phosphorylated in 5529,
modification that enhances 14-3-3-3 protein binding and consequently increases the kinase
catalytic activity [62]. DYRK1A 5529 was found down-phosphorylated in our study, sug-
gesting an inhibition of this kinase in HL-60 cells. In fact, the S369 of Cyclin-L2, a known
DYRKI1A substrate which is involved in RNA processing of apoptosis-related factors [63],
was also found down-phosphorylated in HL-60 cells (Figure S2).

CK2 has direct interactions with 13 and 27 kinases related to the phosphoproteomic
profile identified in HL-60 and OCI-AMLS3 cells, respectively (Figure 5). Such kinases
include nine bona fide CK2 substrates, three of them (MAPK1, MAPK9 and CDK1) related
to both phosphoproteomics profiles (Figure 5). Although none of the CK2 phosphosites
belonging to these kinases were identified in the present study, the results suggest a signal
propagation downstream of these proteins. For instance, CK2 phosphorylates mitogen-
activated protein kinase 1 (MAPK1) at 5246 and 5248, such event promotes MAPK1 nuclear
translocation and phosphorylation of target transcription factors [64]. A total of 19 phos-
phopeptides which are substrates of MAPK1 were identified down-phosphorylated in
OCI-AMLS3 after CK2 inhibition (Figure S2). Besides, CK2 phosphorylates cyclin-dependent
kinase 1 (CDK1) at S39 and regulates cell cycle [65]. Accordingly, the enzyme-substrate
network evidenced an inactivation downstream of CDK1 since at least, 43 phosphosites
modulated by CDK1 were down-phosphorylated in OCI-AMLS3 cells. Such phosphopep-
tides belong to proteins related to chromatin remodeling, mitotic spindle assembly, and
DNA repair (Figure S2).



Cells 2021, 10, 338

11 of 21

HL-60 , MCODE - Cluster 1
< PRKCQ ~ PRKCZ
<>PRKDC /11 & Vel MAPK3 RSK activation
“SMAPKAPK ’PRKCZ OOPASK
MAPKAPK2
Do —IPPRKCA RMARKS: RPSEKAL
<>MAPKAPK3 3 N [ ~gapsexs1 MAPK targets
CSPRKACA SVPRKGL CSNK2A
MAPKS 3 RPS6KA3
@rak2 i
< JRPSBKAL

_ >GSK3B
csnka SCHEK1
“ RPS6KA3 < _CDK5
CSNK2A2 * JCSNK1E @DYRKIA
@®PIK3C2A CCSNK1A1  <>DYRK2

OCI-AML3
CSNK2A1 PRKARTA COYRKIA  opica  oprKD!
> — OPRKAA2
NS —==CPRKACB {>PRKCA sk
‘ N OPRKG1 PRKCB
OPRKER. < PRKACA OSTK3

\'§\ ' < A L3 - OSGKA1
N \ ; l){u\‘ APK9 .LA ° TXORPS6KA4
’ \LY\O\Q\;\\\\Q i SOMARKZ (5 ppseKe2
OeoK1 .\\\x \’\\; AT R SEKAS
D: 24

MCODE - Cluster 2

>RPS6KB2 Cell cycle
< JPRKCA
GSK3B
PRKACA
cDK2
CHEK1

MCODE - Cluster 1

{OPRKD1

Seokis N\ SMAPKAPK2X SCHEKT W RESEKAS OSMAPKAPK2
ORDK4 SR SNOWEE{ORPS6KA1 GSK3B
Ocogi4f | OUHMKE Fiuapkins RS Satm ok OGRK2
PAKD o et N \ OHIPK2
OPKMYT \.} AK4; —OMA e\ SRPK1 OCAMK2A ErB signaling pathway
/ SILK ©OGRK2 LYN N Cell cycle
OMTOR Z PARK6 L CAMK1
sk3B OTESKT ) imk XOCAMK4A OCAMK2G
CAKT1 OIKBKE {OLIMK2 {OCAMK2D
MCODE - Cluster 2 MCODE - Cluster 3 MCODE - Cluster 4
OPRKCQ OPRKACG PRKAA2
CSNK2A2 R {OMAPKS OPRKCD
<COMAPKL MR AFESRAS {OPRKACB
R {>PRKACA OMTOR
CAMK4!
{OPAK1 ORPSEKAS  @PAK2 OMAPKM OSGK1 <{OPRKCA
CAMK1 @LYN  ORPS6KAL OMAPK13 OMAPK11
PI3K-AKT signaling
ERK/ MAPK targets Signaling by VEGF pathway

Node Colors

Kinases identified with not differentially modulated phosphopeptides

L 4

Kinases identified with down-phosphorylated peptides
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and down-phosphorylated peptides, respectively.
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Highly connected regions in the kinome networks associated to HL-60 and OCI-AML3
phosphoproteomic profiles were identified using MCODE algorithm [44]. Clusters repre-
senting cell proliferation (MAPK targets) and cell cycle appeared as a common denominator
in kinome networks from both AML cell lines (Figure 5). Accordingly, we found that CX-
4945 impairs AML cells proliferation and cell cycle progression (Figure S1A,B). In contrast,
signaling pathways mediated by VEGF and PI3K/AKT only appeared in OCI-AML3 ki-
nome network (Figure 5). Protein kinase CK2 it is known that up-regulates PI3K/AKT
pathway, in part by phosphorylating and activating AKT [66]. To note, PI3K/AKT pathway
is constitutively active and sustain viability of primary acute lymphoblastic leukemia cells
(ALL), signaling alteration that results from CK2 overexpression and hyperactivation [67].
AML and ALL are hematological diseases with several features in common, and previous
studies have showed that the antineoplastic effect of CX-4945 in both malignancies is medi-
ated by attenuation of the PI3K/AKT pathway [51,68-70]. Accordingly, we found a number
of AKT substrates down-phosphorylated in OCI-AML3 cells after CK2 inhibition with
CX-4945, whereas in HL-60 cells the PI3K/AKT pathway did not appeared significantly
represented in our analysis, explaining perhaps its refractoriness to CX-4945-induced apop-
tosis. Such findings are in agreement with Annexin V/PI staining and immunodetection of
phosphorylation status and total protein levels of PI3K/AKT mediators (Figure S1C,D).

Importantly, previous phosphoproteomic results from primary AML cells have in-
dicated that at the diagnosis time, patients that relapse after chemotherapy had a higher
CK2, MAPK and CDK activity in comparison with patients which have free-relapse evolu-
tion [22]. However, the high CK2 activity at diagnosis of relapsed patients was no longer
observed in chemoresistant cells [23]. Aasebg et al. pointed out that the proteome and
phosphoproteome profiles changed considerably from the first diagnosis to the first relapse,
therefore CK2 could be important in inducing treatment-resistant clones but dispensable
for the survival of clones that already have become resistant to therapy [23]. Remarkably,
in our study substrates of CK2, MAPKSs and CDKs were found down-phosphorylated
after CX-4945 treatment of AML cell lines, being MAPKs and CDKs signaling modulation
probably a down-stream consequence of CK2 inhibition (Figure 5, Table 54).

3.5. Identification of CK2 Substrates Modulated by CX-4945 in AML Cells

Besides the bona fide CK2 substrates annotated in iPTMnet and KEA databases [39,42],
additional candidate CK2 substrates in AML cells were searched. According to the presence
of the CK2 consensus sequence, 39% and 26% of all differentially modulated phosphopep-
tides on HL-60 and OCI-AMLS3 respectively, could be putative CK2 substrates responsive
to CX-4945. However, phosphosites recognized by other protein kinases like Ser/Thr-
protein kinase Chk1 or cAMP dependent protein kinase catalytic subunit alpha (PKACA)
could contain an acidic amino acid at position n + 3 (Figure S3). Indeed, we observed
that arginine is frequent at position n — 3 from the phosphorylated residue (Figure 4), a
motif that is recognized by basophilic kinases [59]. Therefore, we search for additional evi-
dences in support phosphoproteins containing the CK2 consensus sequence as candidate
CK2 substrates.

First, differentially phosphorylated proteins identified in AML cells were searched as
candidate CK2 substrates using NetworKIN database [45]. Such database includes enzyme-
substrate interactions predicted not only based on the consensus sequence recognized by
the enzyme, but also using a protein association network to model the context of substrates
and kinases, which improves the prediction accuracy [45]. Second, the phosphoproteomic
profile differentially modulated in AML cells after CK2 inhibition was compared with
a dataset of high confidence CK2 substrates reported by Bian et al. [46]. These authors
identified in vitro CK2 substrates by combining kinase reaction on immobilized proteomes
with quantitative phosphoproteomics, and to reduce false positive results compared in vitro
phosphosites with in vivo phosphorylation sites reported in databases [46]. Lastly, the
differentially modulated phosphoproteins that interact with CK2 were searched using
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Metascape, which performed interactome analysis based on integrative protein-protein
interactions databases like InWeb_IM and OmniPath [43].

Taking into account the four levels of predictions (CK2 consensus sequence, Net-
worKIN prediction, CK2 substrates predicted by Bian et al. [46] and interaction with CK2)
we identified a total of 117 and 359 candidate CK2 substrates differentially modulated after
CK2 inhibition in HL-60 and OCI-AMLS3 cells, respectively (Table S5). This dataset was
filtered out to find those substrates that had the concomitant occurrence of two or more
criteria associated to CK2 phosphorylation. Applying this workflow, in HL-60 cells 64 phos-
phosites on 53 proteins were identified as the most reliable CK2 substrates modulated
after treatment with CX-4945, whereas 168 phosphosites on 120 proteins were identified
in OCI-AMLS3 cells (Figure 6, Table S5). The list includes those CK2 substrates previously
confirmed as bona fide according to iPTMnet and KEA databases [39,42].

Remarkably, for the 67% and 71% of the high confidence CK2 substrates modulated in
HL-60 and OCI-AMLS3 cells, respectively, any related enzyme was annotated in iPTMnet
database. Besides, to our knowledge the phosphosites S280 of coilin protein and T180
of inosine-5-monophosphate dehydrogenase 2 (IMPDH2) are reported for the first time.
Coilin protein is an integral component of Cajal bodies-subnuclear compartments, whereas
IMPDH?2 catalyzes the first and rate-limiting step for de novo guanine nucleotide biosynthe-
sis pathway [71,72]. Interestingly, both proteins regulate cell growth and have been related
to malignant transformation [72,73]. However, validation of coilin 5280 and IMPDH2 T180
as phosphorylation sites targeted by CK2 and the biological roles of such post-translational
modifications need further experimentation.

3.6. Functional Characterization of CK2 Substrates Identified in AML Cells

Phosphoproteins identified as candidate CK2 substrates are related to transcription,
mRNA splicing, rRNA processing, translation, DNA repair and cell cycle in both AML cells
lines (Figure 6). However, the number of potential CK2 substrates differentially modulated
after CK2 inhibition is higher in OCI-AML3 cells than in HL-60 cells. As pointed before,
this could explain the different sensitivity to CX-4945 cytotoxic effect of HL-60 cells in
comparison to other AML cell lines [51]. In fact, we identified candidate CK2 substrates
related to apoptosis only in the phosphoproteomic profile of OCI-AMLS3 cells (Figure 6).
This subset includes three tumor suppressors: erythrocyte membrane protein band 4.1
like 3 (EPB41L3 S88), the programmed cell death 4 protein (PDCD4 S457) and the death
inducer-obliterator 1 (DIDO1 S809). However, the effect of CK2-mediated phosphorylation
for the function of these proteins remains to be determined.

CK2 inhibition in AML cells could impact the transcriptional machinery by modulat-
ing the phosphorylation of several candidate substrates. Such CK2 candidate substrates
in OCI-AML3 phosphoproteomic profile are centered around the RNA polymerase 11
subunit A (POLR2A) according to protein-protein interactions gathered from STRING
database (Figure 6) [47]. Three components of the PAF1 complex which interacts with RNA
polymerase II during transcription were identified as candidate CK2 substrates: RNA poly-
merase Il-associated factor 1 homolog (PAF1 5394), RNA polymerase-associated protein
LEO1 (LEO1 5296, S630, S658 and T629) and RNA polymerase-associated protein CTR9
homolog (CTR9 T925). PAF1 complex is required for transcription of Hox and Wnt target
genes [74]. Therefore, down-phosphorylation of these candidate substrates could modulate
the Wnt signaling pathway. Supporting this hypothesis, previous studies highlights that
CK2 is a positive regulator of Wnt signaling pathway and CK2 inhibition by CX-4945 has
been associated with Wnt/ 3-catenin inhibition [75,76].
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Figure 6. Network of CK2 substrates differentially modulated after CK2 inhibition with CX-4945 in AML cells. For each
substrate, the phosphoacceptor sites (bona fide and predicted) for CK2-mediated phosphorylation and its modulation after
incubation with CX-4945 are indicated. Phosphoproteins are grouped according to related biological processes annotated in
GO database and squares representing protein-protein interactions networks retrieved from STRING database are shown.
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Substrates related to transcription include bona fide CK2 targets such as the non-
histone chromosomal protein HMG-14 (HMGN1) and the high mobility group protein
HMG-I/HMG-Y (HMGAZ1) [77-79]. The phosphorylation level of both proteins (HMGN1
S7, 58, S89; HMGA1 5103) decreased after CK2 inhibition by CX-4945 (Figure 6). Impor-
tantly, AML patients that relapsed after chemotherapy have an increased phosphorylation
level of HMGNT1 S7 [22]. In general HMG proteins modulate chromatin and nucleosome
structure, participate in transcription, replication, DNA repair, and extracellular HMGN1
has been described to function as an alarmin that contributes to the generation of innate
and adaptative immune responses [80,81]. The biological effect of CK2 phosphorylation
of HMGN1 and HMGAL1 is currently unknown, although, previous studies suggest that
phosphorylation of HMGNI1 could interfere with its nuclear localization [78].

The most densely down-phosphorylated protein among the candidate CK2 substrates
is the protein IWS1 homolog (IWS1) which was identified with eight phosphopeptides in
OCI-AML3 cells (Figure 6). This protein recruits a number of mRNA export factors and
histone modifying enzymes to the RNA polymerase II elongation complex and modulates
the production of mature mRNA transcripts [82,83]. As illustrated by Figure 6, several
candidate CK2 substrates related to mRNA splicing were down-phosphorylated after
CK?2 inhibition in AML cells, including members of the spliceosome complex. Among
those proteins are heterogeneous nuclear ribonucleoproteins (HNRNPC, HNRNPL), ser-
ine and arginine rich splicing factors (SRSF2, SRSF11) and pre-mRNA processing factors
(PRPF3 and PRPF40A) (Figure 6). In particular, CK2 phosphorylation of heterogeneous
nuclear ribonucleoproteins C1/C2 (HNRNPC) it known that regulates its binding to
mRNA [84,85]. In agreement with our results, was previously demonstrated that CK2
inhibition by quinalizarin and CIGB-300 modulates a subset of CK2 substrates related to
transcription, RNA processing and mRNA splicing [24,26]. To note that at the time of
diagnosis, phosphoproteins containing CK2 phosphoacceptor sites and related to RNA
processing have an increased phosphorylation level in relapse AML patients when com-
pared to those which have a relapse-free evolution [22]. Another phosphoproteomic study
comparing pairing samples of AML patients at the time of diagnosis and first relapse found
that also RNA-splicing and -binding proteins were up-phosphorylated at first relapse [23].

CK2 phosphorylation of proteins related to rRNA processing and translation has been
well documented [3]. Among the proteins probably subject to CK2 regulation in AML cells
are members of the nucleolar ribonucleoprotein complex (NAF1 5315; DKC1 5451, 5453,
5485, 5494; NOP56 5520, S570) (Figure 6). According to information gathered from STRING
database [47], such proteins interacts with phosphoproteins related to ribosome biogenesis
(RIOK2 5332, S337; BMS1 S639; LTV1 T171) which were identified mainly in OCI-AML3
cells (Figure 6). The effect of CK2 regulation of these proteins remains to be elucidated.
However, the results highlight the important role of CK2 in regulating protein biosynthesis
to support the high proliferative rate of tumor cells. In line with this result, a cluster of eu-
karyotic translation initiation factors (EIF) was down-phosphorylated after CK2 inhibition
(Figure 6). This cluster contains two members of the EIF3 complex: EIF3] S11 and EIF3C
539. EIF3] is a known CK2 substrate and its phosphorylation on 5127 promotes assembly
of EIF3 complex and activation of the translational initiation machinery [86]. Besides, CK2
phosphorylates EIF23 on S2, a phosphopeptide also identified in our study, and such
modification stimulates EIF23 function in protein synthesis [87]. Down-phosphorylation
of proteins related to the translational machinery after CK2 inhibition could add a bene-
ficial impact at the clinical evolution of AML patients, since protein translation has been
associated with increased relapse risk [22,23].

Another function attributed to CK2 is the regulation of the cellular DNA damage
response [52]. After CK2 inhibition in AML cells, the biological process of DNA repair
appeared significantly represented in the phosphoproteomic profiles (Figure 3). A recent
study demonstrated that proteins related to DNA repair have increased phosphorylation
levels in relapse AML patients [22]. Among those phosphoproteins associated with such
unfavorable chemotherapy outcome, we identified in our study that treatment of AML
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cells with CX-4945 down-phosphorylates TRIM28 519, TP53BP1 5523 /5525 and LIG1 S66,
this latter a known CK2 substrate (Table S1) [88]. Besides, others known and putative CK2
substrates related to DNA repair were also found down-phosphorylated in our study, like
the DNA damage recognition and repair protein (XPC 594) (Figure 6). In particular, CK2
phosphorylation of XPC at 594 promotes recruitment of ubiquitinated XPC to the chromatin
which is important for nucleotide excision repair following ultraviolet induced DNA
damage [89]. Previous studies demonstrated that CK2 inhibition by CX-4945 inactivates
the function of other essential DNA repair proteins, supporting the synergistic interaction
of this inhibitor with chemotherapeutic agents that induce DNA damage [55].

Worthy of note, we identified members of the heat shock protein 90 (HSP90) chap-
erone proteins differentially modulated in OCI-AML3 phosphoproteomic profile. CK2
mediated phosphorylation of HSP90 is required for its chaperone activity toward client
kinases, some of them involved in human cancers [90,91]. Phosphosites from HSP90-alpha
(HSP90AA1 5263) and HSP90-beta (HSP90AB1 S5226) were both down-phosphorylated
after CK2 inhibition in OCI-AML3 cells (Figure 6). Thus, modulation of HSP90 by CX-4945
in OCI-AMLS3 cells could be in part responsible for the signal propagation downstream
of CK2 inhibition and the pronounced effect over the kinome network in this cell line. In
agreement with our findings, besides attenuation of PI3K/AKT pathway, disruption of
unfolded protein response (UPR) have also been pointed as a mediator of CX-4945-induced
apoptosis in ALL cell lines and primary lymphoblasts [69,70]. Importantly, in such effect
the reduction of chaperoning activity of HSP90 appears to play a critical role [69,70]. More-
over, in multiple myeloma (MM) cells, another hematological malignancy having common
features with AML, has been documented that CK2 inhibition causes apoptotic cell death
through alterations of the UPR pathway [92].

In summary we found that the phosphoproteomic profiles modulated after CK2
inhibition with CX-4945 in AML cell lines, contain protein mediators of signaling pathways
and biological processes previously described in primary AML cells (Figure 7) [22,23,51,68].
Therefore, our findings, in conjunction with Quotti Tubi et al. results and AML patients
phosphoproteomic data from Aasebo et al., support the rationale of protein kinase CK2
pharmacologic inhibition for AML targeted therapy, an approach that could significantly
improve the outcome in AML therapeutics.
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Figure 7. Signaling pathways and biological processes deregulated in primary AML cells and modulated by the CK2

inhibitor CX-4945 in AML cell lines. Phosphoproteins up-regulated in primary AML cells and down-phosphorylated in
CX-4945-treated AML cells are indicated.
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4. Conclusions

Our study provides the first quantitative phosphoproteomic analysis exploring the
molecular impact of the ATP-competitive CK2 inhibitor CX-4945 in human cell lines repre-
senting two differentiation stages and major AML subtypes. Here, we identified a total of
273 and 1310 unique phosphopeptides as significantly modulated in HL-60 and OCI-AML3
cells, respectively. Modulated phosphopeptides are mainly related to mRNA processing
and splicing, response to DNA damage stimulus, protein sumoylation and regulation of
viral processes. In addition, the network analysis illustrated how the relationship of CK2
with other kinases could orchestrate the perturbation of AML cells phosphoproteome. In
this complex cellular response, phosphorylation mediated by other kinases besides CK2
could be interpreted as a consequence of signal propagation downstream of CK2 inhibition,
rather than off-targets effects. Additionally, using database mining and prediction tools,
in HL-60 cells we identified 64 phosphosites on 53 proteins as high confidence CK2 sub-
strates responsive to CX-4945, whereas 168 phosphosites on 120 proteins were identified in
OCI-AMLS3 cells. Such substrates not only explain the variety of cellular effects exerted by
CX-4945, but also reinforce the instrumental role of protein kinase CK2 in AML biology.
Besides, selected cells lines not only represent two major AML subtypes, but also different
niches that can be found in the clinical practice if we consider the differential sensitivity
to CK2 inhibition with CX-4945 displayed by these cell lines. Finally, our results, in con-
junction with previous findings in primary AML cells, support the suitability of using CK2
inhibitors for AML targeted therapy, a pharmacologic approach that could significantly
improve the outcome in AML patients.

Supplementary Materials: Supplementary materials can be found at https://www.mdpi.com/
2073-4409/10/2/338/s1. Figure S1. CK2 inhibitor CX-4945 impairs proliferation and viability of
AML cells. Figure S2. Enzyme-substrate network of differentially modulated phosphopeptides
identified in AML cells using annotations from iPTMnet and KEA2. Figure S3. Sequence logos of
phosphopeptides targeted by protein kinases representing five kinase groups (CAMK, Atypical, CK1,
AGC and other) in the human kinome. Table S1. Phosphoproteomic profile of AML cells treated
with the CK2 inhibitor CX-4945. Table S2. Proteins differentially modulated in AML cells treated
with the CK2 inhibitor CX-4945. Table S3. Phosphopeptides that fulfill the CK2 consensus sequence
in AML phosphoproteomic profiles. Table S4. Data mining of kinases associated to differentially
phosphorylated peptides in AML phosphoproteomic profiles. Table S5. Candidate CK2 substrates
differentially modulated in AML cells treated with CX-4945. Supplementary Methods. AlamarBlue
Assay, Cell Cycle Analysis, Annexin V/PI Staining, Western Blot.
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