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Abstract: Metabolism is considered to be the core of all cellular activity. Thus, extensive studies of
metabolic processes are ongoing in various fields of biology, including cancer research. Cancer cells
are known to adapt their metabolism to sustain high proliferation rates and survive in unfavorable
environments with low oxygen and nutrient concentrations. Hence, targeting cancer cell metabolism
is a promising therapeutic strategy in cancer research. However, cancers consist not only of genetically
altered tumor cells but are interwoven with endothelial cells, immune cells and fibroblasts, which
together with the extracellular matrix (ECM) constitute the tumor microenvironment (TME). Cancer-
associated fibroblasts (CAFs), which are linked to poor prognosis in different cancer types, are one
important component of the TME. CAFs play a significant role in reprogramming the metabolic
landscape of tumor cells, but how, and in what manner, this interaction takes place remains rather
unclear. This review aims to highlight the metabolic landscape of tumor cells and CAFs, including
their recently identified subtypes, in different tumor types. In addition, we discuss various in vitro
and in vivo metabolic techniques as well as different in silico computational tools that can be used to
identify and characterize CAF–tumor cell interactions. Finally, we provide our view on how mapping
the complex metabolic networks of stromal-tumor metabolism will help in finding novel metabolic
targets for cancer treatment.

Keywords: cancer; cancer-associated fibroblasts (CAFs); CAF-tumor cross-talk; tumor metabolism;
metabolomics’ measurement techniques; in silico modeling; personalized metabolic drugs

1. Introduction
1.1. CAFs as the Epitome of Tumor Metabolism

Max Borst first noted the importance of the tumor microenvironment (TME) on cancer
progression in 1902 [1]. Today, it is well acknowledged that the tumor mass includes not
only a highly heterogenous cancer cell population but also various types of resident and
infiltrating host cells. Cancer-associated fibroblasts (CAFs) are a major component of the
TME. CAFs are fibroblasts that display an activated phenotype: they tend to be larger than
their normal counterparts, are spindle-shaped and show the presence of stress fibers. This
phenotype is transiently observed in normal fibroblasts during wound healing. In contrast,
CAFs seem to be constantly activated and unable to revert to a quiescent phenotype [2].
This observation contributed to Harold Dvorak’s definition of cancer as “the wound that
does not heal” [3]. Additionally, the CAF genome was reported to be subject to epigenetic
reprogramming whereas most studies have not found mutations in CAFs [4].

CAFs communicate with cancer cells in various ways in supporting tumorigenesis.
These include signaling molecules, secretion of growth factors, interleukins and metabolite
exchanges [5]. CAFs secrete extracellular matrix components such as collagen and laminins,
and produce a plethora of cytokines and chemokines (e.g., interferon-γ, stromal cell-derived
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factor-1 (SDF-1) commonly known as C-X-C Motif Chemokine Ligand 12 (CXCL12), TNF-
α and several interleukins), as well as growth factors (e.g., nodal, transforming growth
factor β (TGFβ), fibroblast growth factor (FGF)) [6–8]. CAFs also secrete pro-angiogenic
factors like vascular endothelial factor (VEGF) and endothelial growth factor (EGF). Most of
these factors display pro-tumorigenic effects leading to disease progression. Consequently,
the past two decades witnessed the development of novel approaches, which focused
on targeting stromal cells. Significant reviews have extensively described the stroma–
CAFs–cancer cell interactions [9–16]. Nevertheless, metabolic reprogramming by these
tumor–stroma interactions was barely addressed so far and rarely considered as a novel
therapeutic avenue.

Thus, we focus in this review on our current understanding of the mechanisms
underlying cancer cell–CAF metabolic interactions, which need further investigation in
order to develop novel therapies. We discuss in detail, the activation of different metabolic
pathways, which results from the interaction between tumor cells and CAFs. Distinct
metabolic analyses on the tumor-CAF crosstalk, covering in vitro, in vivo and in silico
modelling approaches, are described and critically evaluated. We present the idea of
mapping the complex metabolic landscape of tumor cells and CAFs in order to reach
mechanistic insights, by the integration of multi-omics data into context-specific metabolic
models. Finally, we discuss the future development of therapeutic strategies considering
metabolic targets identified in CAFs.

1.2. CAF Heterogeneity: The Different CAF Subtypes

There are several theories regarding the origins of CAFs (Figure 1). A first theory
suggests that CAFs may derive from the reprograming (and also metabolic rewiring)
of normal resident fibroblasts, triggered by bone marrow-derived mesenchymal stem
cells [17] or from cancer cells [18,19]. A second theory proposes that CAFs may derive,
at least partially, from cancer-associated adipocytes or their progenitor stem cells when
exposed to cancer cells [20]. Third, CAFs could originate from both mesenchymal and
hematopoietic stem cells, however, the process of this differentiation is still under study [21].
A fourth possibility would be that CAFs originate from epithelial cells through a process
called “epithelial to mesenchymal transition” or, similarly, from endothelial cells through
“endothelial to mesenchymal transition” [22].

Such heterogeneity in their origin suggests that CAFs consist of several subpopulations.
Alternatively, it is possible that CAFs respond to specific signals at different topological
sites within the TME, leading to different activation states of CAFs and thus contributing to
CAF heterogeneity. Today, four putative CAF subtypes have been identified, especially in
pancreatic cancer. Myofibroblasts (myCAFs) express high levels of α-SMA and contractile
proteins. They are mostly involved in extracellular matrix remodeling, muscle contraction
and focal adhesion. Inflammatory fibroblasts (iCAFs) secrete high amounts of cytokines
such as IL-6 and IL-8. They also strongly synthesize matrix proteins, especially hyaluronan
and are involved in various inflammatory pathways such as nuclear factor kappa-light-
chain-enhancer of activated B cells (NF-κB) and janus kinase/signal transducers and
activators of transcription (JAK/STAT) signaling [23]. Interestingly, myCAFs and iCAFs
have different effects on the response to immunotherapy. myCAFs were found to be
responsible for primary immunosuppression by increasing the infiltration of regulatory
T-cells and reducing effector T-cell infiltration, whereas iCAFs were associated with an
immunocompetent environment in breast cancer [24]. Recently, new putative subtypes
have been suggested. Antigen-presenting CAFs (apCAFs) express major histocompatibility
complex (MHC) class II genes and could be responsible for CD4+ T-cells deactivation [25].
Finally, CAFs that express meflin (meflin_CAFs), a membrane-anchored protein were
found to decrease tumor progression in pancreatic cancer [26].
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Figure 1. CAF heterogeneity. The origin of cancer-associated fibroblasts (CAFs) remains unclear. Several potential pro-
genitors have been identified including normal fibroblasts, cancer-associated adipocytes, mesenchymal or hematopoietic 
stem cells, epithelial cells, and endothelial cells. Such heterogeneity in progenitors suggest that CAFs consist of several 
populations. Today, two principal CAF subtypes have been established: Inflammatory fibroblasts (iCAF) that secrete high 
levels of cytokines, and myofibroblasts (myCAF) that secrete extracellular matrix components. Additionally, new putative 
subtypes have been suggested such as antigen-presenting CAFs (apCAF) that express major histocompatibility complex 
(MHC) class II genes and could be responsible for CD4+ T-cells deactivation, and meflin-expressing CAFs (meflin-CAF), 
which were found to reduce tumor progression. 

Such heterogeneity in their origin suggests that CAFs consist of several subpopula-
tions. Alternatively, it is possible that CAFs respond to specific signals at different topo-
logical sites within the TME, leading to different activation states of CAFs and thus con-
tributing to CAF heterogeneity. Today, four putative CAF subtypes have been identified, 
especially in pancreatic cancer. Myofibroblasts (myCAFs) express high levels of α-SMA 
and contractile proteins. They are mostly involved in extracellular matrix remodeling, 
muscle contraction and focal adhesion. Inflammatory fibroblasts (iCAFs) secrete high 
amounts of cytokines such as IL-6 and IL-8. They also strongly synthesize matrix proteins, 
especially hyaluronan and are involved in various inflammatory pathways such as nu-
clear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and janus kinase/sig-
nal transducers and activators of transcription (JAK/STAT) signaling [23]. Interestingly, 
myCAFs and iCAFs have different effects on the response to immunotherapy. myCAFs 
were found to be responsible for primary immunosuppression by increasing the 

Figure 1. CAF heterogeneity. The origin of cancer-associated fibroblasts (CAFs) remains unclear. Several potential
progenitors have been identified including normal fibroblasts, cancer-associated adipocytes, mesenchymal or hematopoietic
stem cells, epithelial cells, and endothelial cells. Such heterogeneity in progenitors suggest that CAFs consist of several
populations. Today, two principal CAF subtypes have been established: Inflammatory fibroblasts (iCAF) that secrete high
levels of cytokines, and myofibroblasts (myCAF) that secrete extracellular matrix components. Additionally, new putative
subtypes have been suggested such as antigen-presenting CAFs (apCAF) that express major histocompatibility complex
(MHC) class II genes and could be responsible for CD4+ T-cells deactivation, and meflin-expressing CAFs (meflin-CAF),
which were found to reduce tumor progression.

Recently, Kieffer and colleagues suggested that in breast and ovarian cancer, CAFs can
also be separated into four different subsets according to their location and the expression
of specific markers including FAP, α-SMA and CD29 [24]. While two of these subsets (2
and 3) are also found in healthy tissues, subset 1 and 4 are specific to tumors and lymph
nodes and are involved in the metastatic process. The subset 1 is additionally involved in
immunotherapy resistance [24,27,28].

However, the impact of CAF heterogeneity on tumor progression remains widely
unknown. It is tempting to speculate that metabolic modelling coupled with single cell
RNA (scRNA) sequencing will allow shedding light on the metabolic differences between
the CAF subtypes.

2. Tumor Cell/CAF Interaction-Driven Metabolic Rewiring in Cancer

CAFs have been considered to act as major regulators in shaping tumor metabolism
especially through the dysregulation of several metabolic pathways including glucose,
amino acid and lipid metabolism [27,28]. The orchestration of these metabolic switches is
believed to shape distinct CAF behavior and change tumor cell behavior by these CAFs.
We have summarized the studies on the interplay between CAFs and tumor cells in regard
to metabolic reprogramming in Table 1.
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Table 1. Summary of the CAF-tumor cell crosstalk metabolic studies. Abbreviations: Glucose (Glc), Glutamine (Gln), NA, Not Applicable.

Cancer Type In Vitro
Analysis

In Vivo
Analysis

Ex Vivo
Analysis

Technical
Advantage

Technical
Limitation Ref.

Glucose metabolism

Breast and
pancreatic NA

• F-FDG-PET/CT
glucose imaging

• U-13C6-glucose
tracing

• Seahorse
• Proteomics and

phosphopro-
teomics

• Comprehensive
metabolic analyses
on ex vivo samples

• Implementation of
in vivo metabolic
analysis

• Murine material only Demircioglu et al.
2020 [29]

Mechanistic highlight: FAK-deletion in CAFs induced malignant cell glycolysis and tumor growth via CCR1/CCR2

Breast

• U-13C6-glucose tracing
• Seahorse
• Lactate measurement

NA
• LC-MS

metabolomics

• Comprehensive
metabolite analy-
ses on in vitro and ex
vivo samples

• Clear schematic
overview of U-13C6-
Glc tracing experiment

• Minimal metabolic
analyses of hypoxia
within tumor and CAF
interactions

• No metabolic valida-
tion in vivo

L.M. Becker et al.
2020 [30]

Mechanistic highlight: Chronic hypoxia induced NFs to adopt a pro-glycolytic CAF phenotype via epigenetic reprogramming, which fuelled cancer cells’ metabolism and their growth.

Breast

• Glut1 cell surface pro-
tein, glucose consump-
tion, lactate secretion
and intracellular ROS

• Seahorse

NA NA

• Investigating the role of
hypoxia role on patient-
derived fibroblast pairs

• No metabolic valida-
tion in vivo and ex vivo

• Limited implemen-
tation of metabolic
analysis

Sun et al.
2019 [31]

Mechanistic highlight: Lactate secreted by hypoxic and pro-glycolytic CAFs was driven by GLUT1 phosphorylation and PKM2 upregulation, and this lactate promoted cancer cell invasion via
activated TGFB1/p38 MAPK/MMP2/9 signaling and increased cancer cells mitochondrial activity.
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Table 1. Cont.

Cancer Type In Vitro
Analysis

In Vivo
Analysis

Ex Vivo
Analysis

Technical
Advantage

Technical
Limitation Ref.

Ovarian

• Seahorse
• Metabolite profiling
• Glycogen, ATP/ADP

ratio and lactate
• Glucose-1-Phosphate
• 2-NBDG glucose up-

take
• Glucose and amino

acids (AAs) tracing
• Glycogen phosphory-

lase activity assay

NA NA

• Comprehensive
in vitro metabolic
analyses related to
glycogen on human
co-cultured samples

• No metabolic valida-
tion in vivo nor ex vivo

Curtis et al.
2019 [32]

Mechanistic highlight: Glycogen utilization in cancer cells was dependent on p38-alpha MAPK activation in CAFs and this supported their proliferation, invasion and metastasis

Lymphoma

• Intracellular (CE-
TOF/MS read out) and
extracellular (HPLC)
metabolomics

• Intracellular ROS and
pyruvate measurement

• Calcein-acetoxymethy
ester-based metabolite
measurement

NA NA

• Comprehensive
metabolic analyses
on patient-derived
materials for both CAF
and tumor cells

• No metabolic valida-
tion in vivo and ex vivo

Sakamoto et al.
2019 [33]

Mechanistic highlight: CAF-secreted pyruvate supported citric acid cycle while inhibited redox regulation to promote cancer cells survival

Pancreatic

• Glucose, glutamine and
lactate secretion

• U-13C6-Glc and U-
13C5-Gln tracing

• Seahorse

NA NA

• Comprehensive
metabolic analyses
in vitro

• No metabolic valida-
tion in vivo and ex vivo

• • Analysis limited to
CAFs

Knudsen et al.
2016 [34]
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Table 1. Cont.

Cancer Type In Vitro
Analysis

In Vivo
Analysis

Ex Vivo
Analysis

Technical
Advantage

Technical
Limitation Ref.

Mechanistic highlight: HIF1alpha-driven hypoxic and pro-glycolytic CAFs upregulated carbonic anhydrase IX (CAIX) and MCT4 expressions, secreted lactate and supported cancer invasion

Glucose and glutamine metabolism

Breast

• U-13C6-Glc, U-13C5-
Gln, U-13C3-lactate
tracing with NMR
analysis

• Glucose, lactate, gluta-
mate, glutamine, am-
monium and NO mea-
surements

• LDH, GDH and GLUL
enzymatic activities
measurements

• Seahorse

• U-13C6-Glc, U-
13C5-Gln, 15N2
tracing via tail-
vein with LC-MS
analysis

NA

• Exploring the role
of EV-encapsulated
microRNAs (miRNAs)

• Investigating the
metabolic differences
between normal and
nutrient-deprived
conditions

• Metabolite tracing
in vivo

• No metabolic analyses
on the tumor cells side

Li et al.
2018 [35]

Mechanistic highlight: Breast cancer-secreted extracellular vesicles (EVs) containing miR-105 induced a MYC-dependent pro-glycolysis and pro-glutaminolysis in CAFs under sufficient nutrients.
However, in nutrient-deprived conditions, these mir-105-reprogrammed CAFs converted metabolic wastes (i.e., lactic acid and ammonium) into energy-rich metabolites to sustain tumor growth.

Prostate and
pancreatic

• U-13C6-Glc and U-
13C5-Gln tracing

• Seahorse
• Lactate, acetate and mi-

tochondrial membrane
potential/TMRM

NA NA

• Exploring the
metabolic roles of
CAFs-derived ex-
osomes under the
co-culture set-up

• Metabolic analyses on
different cancer types

• No metabolic valida-
tion in vivo and ex vivo

Zhao et al.
2016 [36]

Mechanistic highlight: Under starvation, CAFs-derived exosomes (CDEs) were smuggled in by cancer cells as the required building blocks. This caused a decrease in mitochondrial OXPHOS,
while increase in glucose and glutamine tumor cell metabolism, enhancing cancer cells survival via a Kras-independent mechanism.
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Table 1. Cont.

Cancer Type In Vitro
Analysis

In Vivo
Analysis

Ex Vivo
Analysis

Technical
Advantage

Technical
Limitation Ref.

Breast and CRC

Invasion and migration
Organotypic invasion

Directional migration in
chemotaxis µ-slides.

Migration NA
Exploring the roles of

metabolite gradient on CAFs
and tumor cell migration

Mestre-Farrera et al.
2020 [37]

Mechanistic insight: CAFs are more sensitive to low glutamine levels than their cancer counterparts. As the tumor core is depleted in glutamine, CAFs move towards glutamine rich areas in an
ATK2 dependent mechanism. This movement along with the racks that CAFs create allow tumor cells to invade tissues and escape their original site.

Amino acids metabolism

Ovarian

• Transcriptomic
• Glutamine secretion

measurement by UPLC
• U-13C6-Glc, U-13C5-

Gln and U-13C3-lactate
tracing

NA
• Glucose and lactate

measurements

• Comprehensive
metabolic analyses
in vitro and ex vivo

• No clear experimental
set-up for in vitro co-
culture tracing

Yang et al.
2016 [38]

Mechanistic highlight: Under glutamine deprived conditions, CAFs harnessed atypical carbon and nitrogen sources to boost their glutamine production, and support cancer cells proliferation.
This relied on the expression of glutamine synthetase (GLUL) in CAFs and glutaminase (GLS) in cancer cells.

Lung • ELISA NA NA

• Revealing the mecha-
nistic insights of fibrob-
lasts’ and immune cells’
interactions in cancer

• No metabolic valida-
tion in vivo and ex vivo

Hsu et al.
2016 [39]

Mechanistic highlight: Tumor-fibroblast interaction induced galactin-1 overexpression in lung cancer which led to TDO2-dependent kynurenine secretion by fibroblasts. Fibroblasts-secreted
kynurenine promoted cancer growth, invasion and immunosuppression through the AKT/CREB/WNK1 axis.

Breast
• Metabolite profiling us-

ing UPLC NA NA

• Revealing the mech-
anistic insights of
fibroblast-derived
metabolites

• No metabolic valida-
tion in vivo and ex vivo

Chen et al.
2014 [40]
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Table 1. Cont.

Cancer Type In Vitro
Analysis

In Vivo
Analysis

Ex Vivo
Analysis

Technical
Advantage

Technical
Limitation Ref.

Mechanistic highlight: IDO-dependent kynurenine secretion by CAFs promoted E-cadherin degradation and increased invasion of cancer cells. PGE2 released by cancer cells promoted the
expression of stromal IDO via STAT3/COX2 activation.

Pancreatic

• Seahorse
• U-13C-alanine, U-13C6-

glc, U-13C5-Gln tracing
• Steady-state untargeted

metabolomics

NA NA

• • Conducting in vitro
metabolic analysis on
the co-culture set-up

• No metabolic analysis
in vivo/ex vivo

• No clear in vitro ex-
perimental set-up for
metabolic tracing

Sousa et al.
2016 [41]

Mechanistic highlight: Autophagy dependent-alanine secretion by PSCs became an alternative carbon source for cancer cells. This led to an increase in the OCR of PDAC cells.

Breast

• MS-
phosphoproteomics
and proteomics

• PDH measurement
• U-13C-proline, U-13C5-

Gln, U-13C6-glc, 13C3-
pyruvate, 13C-citrate
and 13C16-palmitate
tracing

• cholesterol (GC-MS)
• fatty acid (LC-MS)

NA NA

• Comprehensive
metabolic analyses
on fibroblasts

• 2D vs. 3D co-cultures
settings

• No metabolic analysis
using the co-culture set-
tings

Kay et al.
2020 [42]

Mechanistic highlight: Proline synthesis in CAFs caused tumor epigenetic reprogramming, which enhanced ECM production and supported tumor growth.

Lipid metabolism

Pancreatic

• Extra- and intra-cellular
LC/MS lipidomics

• U-13C-palmitate and -
oleate tracing

NA

• Measurement of
lysophosphatidic
acid (LPA)

• Comprehensive lipid
analyses on the co-
cultured samples

• Clear set-up for the sta-
ble isotope tracing on
co-culture

• Limited metabolic anal-
ysis on the patients-
derived materials

Auciello et al.
2019 [19]
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Table 1. Cont.

Cancer Type In Vitro
Analysis

In Vivo
Analysis

Ex Vivo
Analysis

Technical
Advantage

Technical
Limitation Ref.

Mechanistic highlight: PSC secreted lysophospatidylcholines (LPC) promoted the secretion of oncogenic autotaxin-lysophospatidic acid (LPA), which supported proliferation, migration and AKT
activation in PDAC

Breast

• Intracellular lipid detec-
tion (Nile Red staining)

• Fatty acid synthase
(FASN) enzymatic
activity

NA NA

• Performing imag-
ing analysis on lipid
content

• Limited metabolic anal-
yses

• No metabolic analysis
in/ex vivo

Coelho et al.
2018 [43]

Mechanistic highlight: Lipids were transferred from CAFs to tumor cells, which was dependent on fatty acid transporter-1 (FATP1), and promoted tumor growth.

Breast
• ELISA
• Seahorse NA NA

• Extensive seahorse
analysis in investigat-
ing the impact of OCC
on ovarian fibroblasts

• No metabolic analysis
in/ex vivo

• In vitro metabolic anal-
ysis only on fibroblasts

Radhakrishnan et al.
2018 [44]

Mechanistic highlight: Under normoxia and hypoxia, the secreted LPA by ovarian cancer cells (OCC) induced pro-glycolytic phenotypes in both ovarian NFs and CAFs. This was due to LPA
triggered HIF1 alpha-dependent pseudohypoxic oxidative stress in OCC.

Colorectal
• Lipidomic analysis by

UPLC-Q-TOF/MS

• Comprehensive
in vitro lipidomic
analyses

• No metabolic analysis
in vivo nor ex vivo

Gong et al.
2020 [45]

Mechanistic highlight: FASN-dependent CAFs-secreted lipids were taken up by tumor cells and induced tumor migration capacity.
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2.1. Glucose Metabolism and Other Sugar Metabolism

In the presence of O2, cells utilize glycolysis to catabolize glucose into pyruvate. The
generated pyruvate enters the tricarboxylic acid (TCA) cycle, where it is further oxidized
and used to produce energy through oxidative phosphorylation (OXPHOS). In anaerobic
conditions, cells oxidize glucose by converting it to lactate, due to the lack of O2, they are
unable to utilize OXPHOS. This is a very inefficient process and cells normally only convert
a very small amount of glucose to lactate. However, in a phenomenon first identified in
the early 20th century by Otto Warburg, cancer cells in culture appear to be reducing a
significant percentage of glucose to lactate even in the presence of O2. This phenomenon,
known as the “Warburg Effect” [46], has been extensively studied and believed to hold true
in in vitro models [47,48]. In line, some cancer types in vivo, such as renal cell carcinomas,
clearly rely on aerobic glycolysis to generate energy [49]. However, recent findings have
demonstrated that this is not a common model applicable to all cancer types in vivo. There
is evidence, by stable isotope tracing and mass spectrometry, that some types of lung, liver
and brain tumors display high levels of complete glucose oxidation in vivo [50]. Therefore,
these studies suggest that, in vivo, the origin of the tumor and the environmental niche as
well as the metastatic niche play a crucial role in shaping the metabolic profile of the tumor
cells, challenging the Warburg effect model to be of general validity.

Even further complicating the metabolic routes in cancers, in the reverse Warburg
model [51], cancer cells highjack CAFs and reprogram their metabolism to adopt an aerobic
glycolysis, which is in part triggered by the increasing production of reactive oxygen
species (ROS) by neighboring cancer cells. CAFs consequently secrete metabolites such
as pyruvate and lactate, which are taken up by cancer cells and used to support their
metabolic needs as alternative carbon sources. In this phenomenon mono-carboxylate
transporters (MCTs), both on CAFs and cancer cells, facilitate the metabolite exchange
between the two cells types [34]. CAFs might thus become continuously exhausted and
replaced by novel recruited fibroblasts. This might explain the rapid loss of the human
tumor stromal CAFs and their replacement by their murine counterparts in patient derived
xenograft models [52].

CAFs also have the ability to reshape and change the extracellular matrix. In cancer, it
is well-established that during cancer progression tissue fibrosis and increased ECM stiff-
ness can appear due to changes in the stroma cell phenotype. The interlinked relationships
between ECM remodeling, CAF and cancer progression were demonstrated by Bertero
et al. in 2019 [53]. The authors found that stiffening of the ECM by CAFs activated the
Yes-associated protein 1 (YAP) and Transcriptional coactivator with PDZ-binding motif
(TAZ) transcriptional programs, increasing transcription of glutaminase synthase (GLS),
lactate dehydrogenase A (LDHA) and aspartate/glutamate transporter SLC1A3 genes.
These changes increased metabolite exchange that mutualistically sustained pro-tumor
activities in both the cancer cells and the CAF compartment [53]. In hepatocellular car-
cinoma, induced ECM stiffness activated YAP downstream of c-Jun N-terminal kinases
(JNK) and p38. In turn YAP activation increased the glycolytic pathway and migration of
cancer cells [54]. YAP/TAZ has also been found to promote cancer cell proliferation by
upregulating deoxynucleotide synthesis and inhibiting RAS-induced senescence in cells.
However, YAP was inhibited by plating cells on soft substrates which induced expression
of senescence markers [55]. These changes can also affect metabolism in cancer cells directly.
Plating triple-negative breast cancer cells on denser collagen substrates has been shown to
cause a shift towards aerobic glycolysis [56]. In a mechanistically more detailed study, Park
et al. in 2019 demonstrated that F-actin regulated degradation of phosphofructokinase
(PFK) via ligase tripartite motif containing-21 (TRIM21) [57]. Under mechanical stress
TRIM21 was bound to the F-actin bundles of the cytoskeleton and thus PFK degradation
was prevented. Transformed cells bypassed this form of regulation by having thick bun-
dles of F-actin that did not respond to mechanical cues. These data indicate that ECM
remodeling is directly influenced by CAFs and reciprocally also influences CAFs in cancer.
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Moreover, these changes in ECM influence directly or indirectly the metabolic phenotype
and progression of tumors.

2.2. Amino Acid Metabolism

Human proteins are composed by 20 different proteinogenic amino acids, which are
divided into two different groups: the essential amino acids (EAAs: histidine, isoleucine,
leucine, lysine, methionine, phenylalanine, threonine, tryptophan and valine) and the non-
essential amino acids (NEAAs: alanine, aspartate, asparagine, arginine, cysteine, glutamate,
glutamine, glycine, proline, serine and tyrosine) [58]. In cancer, amino acids, apart from
their normal role as protein building blocks, can serve as alternative energy source to
fuel the TCA cycle and can regulate redox status as well as antioxidant defense [58,59].
They can also act as substrates for post-translational and epigenetic transformation [58,59].
These versatile aspects of amino acids led to a surge of interest in further investigating
their mechanistic roles in tumor metabolism.

One of the key amino acids, which is abundant in human plasma, is glutamine (Gln).
Gln acts as an important precursor for the synthesis of proteins, nucleotides, fatty acids
and other critical molecules [60,61]. There are extensive studies on the role of glutamine
in regulating cancer cell metabolism [43,47,48]. Several of these have reported crucial
roles of Gln metabolism in the interaction between CAFs and tumor cells (Table 1). In
ovarian cancer, CAFs were shown to generate high levels of Gln by glutamine synthetase
(GS). In this cancer, CAF-derived Gln was exported to the tumor cells and converted
to glutamate by the enzyme glutaminase. This further supported tumor cell growth by
anaplerosis (replenishment process of metabolic pathway intermediates) of the TCA [38].
Indeed, co-inhibition of glutamine synthetase (GLUL) in CAFs and glutaminase (GLS) in
ovarian cancer cells abrogated cancer cell growth better than each individual treatment [38].
Furthermore, in a recent study, it was found that CAFs migrate from the glutamine depleted
core of tumors towards more glutamine rich areas. This migration based on a glutamine
gradient was dependent on protein kinase B (ATK2) and allowed tumor cells to escape the
orginal tumor site [37].

Additionally, CAF-derived Gln has been reported to activate a process called reductive
carboxylation in pancreatic ductal adenocarcinoma (PDAC) [36]. Reductive carboxylation
of glutamine is a thoroughly studied metabolic route in which glutamine is converted to
α-ketoglutarate (α-KG) to enter the TCA cycle. Then, in a reversal of the TCA cycle, α-KG
is converted to citrate, which is finally exported to the cytoplasm where it contributes to
fatty acid biosynthesis. This glutamine-dependent metabolic reprogramming was induced
by the transfer of CAF-derived exosomes (CDEs containing glutamine) into PDAC cells
and was shown to be independent of KRAS activation [36].

Further research suggests that CAFs can transfer aspartate to cancer cells via the
SLC1A3 transporter (also known as excitatory amino acid transporter 1 [EAAT1]), to
facilitate nucleotide synthesis in the tumor cells [53], whereas glutamine-derived glutamate
from cancer cells is taken up by CAFs through the same transporter.

Pancreatic stellate cells (PSCs), one of the best studied CAF subtypes in PDAC, can be
reprogrammed to secrete alanine through activation of autophagy. The secreted alanine is
taken up by the tumor cells and converted to pyruvate which fuels the TCA. This further
allows PDAC cells to divert glucose carbon atoms into serine/glycine metabolism for
sustaining their proliferation. The dysregulation of tryptophan metabolism due to tumor–
CAF interaction has also been reported (Table 1). Yet, there are still many amino acids
which have not been explored in the metabolic crosstalk between CAF and tumor cells.
Obviously, further research is needed to dissect the metabolic function of other amino acids
within tumor–CAFs interactions.

2.3. Lipid Metabolism

Lipids are macromolecules that are soluble in non-polar solvents. In biology they
include substances such as fats, waxes, oils, vitamins and steroid hormones. Fatty acids
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(FAs) are the building blocks of various lipids. Lipids and FAs have main functions in cells:
(i) they build up the structural components of cell membranes which mainly consist of
glycerophospholipids and sphingolipids (ii) they provide energy storage in the form of
triglycerides and (iii) they work as signaling molecules [62]. Given these functions, it is
not surprising that increased de novo FA synthesis has been observed in various types of
cancer in order to support rapid tumor cell growth [63,64].

Limited studies have investigated how the dysregulation of lipid metabolism in CAFs
affects tumorigenesis. In an early study in 2013 by Kamphorst et al. the authors were able to
show that hypoxic cancer cells scavenge FA from lysophospholipids [65]. In 2019, Auciello
et al. further demonstrated that CAFs secrete lysophospholipids, particularly lysophos-
phatidylcholine, to promote tumor proliferation and metastatic processes in PDAC [19]. In
a similar study, lysophosphatidic acid from ovarian cancer cells induced a CAF phenotype
in peritumoral fibroblasts, indicating again how the crosstalk between CAFs and cancer
cells is mutualistic in nature [44]. Finally, a recent study indicates that lipids secreted
by CAFs are taken up by colorectal cancer (CRC) cells and that deletion of the fatty acid
synthase (FASN) or the inhibition of FA uptake in CAFs reduced CRC cell migration [45].

Recently, more attention has come to an understanding on how mechanical forces in
the TME can regulate lipid metabolism. In 2019, Romani et al. demonstrated that a soft
ECM microenvironment increased lipid and cholesterol synthesis [66]. Mechanistically
it was identified that reduced mechanical stress on the Golgi apparatus led to sterol
regulatory-element binding proteins (SREBP) activation and translocation to the nucleus,
where it induced activation of lipid synthesis [66]. Conversely, in 2018 Boulter et al.
uncovered that genetic deletion of the amino acid transporter and integrin coreceptor
CD98hc (SLC3A2) indirectly influenced mechanosensing of integrins by impairment in
sphingolipid metabolism [67].

2.4. Immune Modulation by CAF-Derived Metabolism

CAFs have been hypothesized to play an important role in immune evasion (for a more
in depth review please refer to [68]). CAF-secreted metabolites, such as lactate, can actively
participate in an immunosuppressive TME. Several studies have attempted to further clarify
the role of CAF-derived metabolites in modulating anti-tumor immunity. In breast cancer,
CAF-secreted kynurenine, a tryptophan metabolite, was found to promote E-cadherin/Aryl
hydrocarbon receptor (AhR)/S-phase kinase-associated protein 2 (Skp2) complex, leading
to E-cadherin degradation, which supported cancer cell invasion [40]. Indoleamine 2,3-
dioxygenase (IDO), the key enzyme in the degradation process of tryptophan to kynurenine,
was found to be expressed by CAFs. The STAT3-dependent release of prostaglandin E2 by
cancer cells triggered the upregulation of IDO in CAFs. Moreover, the co-expression of IDO
in stromal fibroblasts and cyclooxygenase (COX2) in breast tumors was correlated with
poor patient survival and metastasis spreading. CAFs-derived IDO can also induce T cell
anergy and inhibit CD8+ cytotoxic activity [69]. Similarly, the upregulation of galectin-1 in
lung cancer cells induced CAFs to overexpress tryptophan 2,3-dioxygenase (TDO2) and
enabled CAFs to secrete kynurenine [39]. This kynurenine/TDO2 signaling was found to
promote cancer growth and invasion, while suppressing the differentiation of dendritic
cells through the AKT/cAMP response element-binding protein (CREB)/ WNK Lysine
Deficient Protein Kinase 1 (WNK1) axis. The production of arginase II (ARG 2) by CAFs
was also reported to hamper anti-tumor T cell functions [70].

Moreover, a reciprocal interaction between CAFs and neutrophils has been described [71].
Activated neutrophils are high producers of ROS [72]. Using a lymphoma mouse model, a
study showed that tumor cells educated CAFs to enhance the recruitment of CD11b+Ly6G+

neutrophils via the CCL2-CCR-2 axis and accelerated tumor growth [73]. Activated neu-
trophils can also stimulate the transformation of MSCs into highly FAP expressing CAFs
and promote the metastasis of gastric cancer cells via IL6/STAT3 axis [74]. In hepatocellular
carcinoma, α-SMA+ CAFs are found to produce IL-6 for recruiting neutrophils via the acti-
vation of STAT3 and c-Jun kinase-programmed cell death ligand 1 (STAT3-PDL1) [75]. This
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signaling cascade induces neutrophil apoptosis and fosters tumor progression. Immuno-
suppressive roles of CAFs on macrophages and CD8+ T cells have also been shown to be
ROS-dependent [76–78]. CAFs can additionally lead to extensive reorganization of the
mitochondrial metabolism in prostate cancer in a STIRT1/PGC-1a dependent manner [79].
This leads to extensive mitochondria-generated ROS (mtROS) generation that supports
pro-invasive features in prostate cancer cells.

3. CAFs and Reactive Oxygen Species

Reactive oxygen species (ROS) consist of radical and non-radical oxygen species gen-
erated by the partial reduction of oxygen. Despite the well-known ROS-driven damaging
effects, ROS, and especially mitochondria-generated ROS (mtROS), have been shown to
play a key role in diverse cell functions of different cell types [80,81]. In cancer, ROS
generation is greatly enhanced, especially in some cancer types with known mutations
to mitochondrial enzymes. ROS can activate cell survival through the activation of dif-
ferent signaling cascades including the JNK, the MAPK/ERK1/2, the PI3K/Akt, the p38
MAPK, the NF-kB, as well as the activation of transcription factors, such as HIF1a and
NRF2 [82–85].

CAFs produce ROS in their permanent activated state. Oxidative stress in fibroblasts
during chronic inflammation and in cancers, which is mediated by ROS, can induce ge-
nomic instability of the adjacent epithelial cells and thus, contribute to tumor initiation or
drive tumor progression [83]. ROS mediates the loss of stromal Cav-1, which is associated
with a more aggressive phenotype in pancreatic [86] and breast cancers [87]. Cav-1, a struc-
tural component of caveolae and signaling regulator, which is composed by sphingolipids
and cholesterol, negatively regulates NADPH oxidase, a major ROS producer, through
different pathways [88]. Stroma remodeling potentially occurs due to the high level of
ROS that lead to the differentiation of normal fibroblast into activated, pro-tumorigenic
myofibroblasts [89]. In support of this hypothesis, the treatment of CAF-conditioned me-
dia or exogenous ROS on normal fibroblasts (NFs) led NFs to adopt oxidative CAF-like
features [90]. TGF-β signaling has been described as an important factor in the conversion
from NF to CAF [91,92]. Despite these findings, other studies indicated that TGF-β signal-
ing ablation in stromal fibroblasts still resulted in tumor growth and progression [93,94].
In 2017, Chan et al. were able to demonstrate that impaired TGF-β signaling leads to a
decreased antioxidant enzyme glutathione peroxidase (GPx1) consequently increasing
ROS levels and fueling tumor growth [95]. Apart from inducing ROS, CAFs can also help
alleviate ROS induced oxidative stress in cancer cells by enhancing glutathione production
in response to platinum-based chemotherapies [96]. Hence, ROS are key regulators in the
tumor–CAF metabolic interactions, which strongly influence the behaviors and functions
of both CAFs and tumor cells.

4. Metabolic Approaches to Study the Cross-Talks between CAFs and Tumor Cells

The proper analysis of metabolism in cell-cell interaction is dependent on specific
analytic techniques to measure the metabolome, which represents the pool of metabolites
from diverse array of metabolic activities [97,98]. Here we discuss the different methods
that allow us deciphering the metabolic crosstalk between different cells, e.g., of CAFs and
tumor cells.

4.1. Mass Spectrometry-Based Metabolomics

Generally, mass spectrometry (MS) is the leading technology used to identify metabo-
lites and quantify their concentration [99]. It allows obtaining both quantitative and
qualitative information about the intracellular or extracellular metabolome composition
of a given biological sample [97]. MS is commonly coupled with gas chromatography
(GC) or liquid chromatography (LC), to allow pre-separation of metabolites. GS tandem
MS requires the derivatization of metabolites and their conversion to the air phase. This
limits the number of molecules that can reliably be measured. GC-MS, however, is an ideal
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technique for analyzing non-polar, volatile and non-volatile molecules of small molecular
weight [100]. Conversely, LS-MS is well-suited to analyze thermally unstable molecules
and requires a less extensive extraction process. These metabolites are then loaded on the
MS to identify and decode the metabolic profiles of cells or tissues. This kind of metabolite
analysis can be used for a targeted (with pre-defined or selected metabolites targets) and a
non-targeted metabolomics approach.

In the studies of CAF and tumor cell interactions, the use of LC-MS is more popular
compared with GC-MS (Table 1). This is probably due to the broader coverage of metabolite
read-outs and a simpler methodical setup in LC-MS compared to GC-MS. A few studies
have also used superior versions of the conventional LC, namely ultra-performance liquid
chromatography (UPLC) or high-performance liquid chromatography (HPLC) to assess
metabolism in tumor–CAF interaction. Both allow the separation of smaller particle sizes
(<2 µm for UPLC) and provide a higher speed, resolution, and sensitivity [101]. However,
MS is mostly used to analyze in vitro cultures and ex vivo tumor tissues. More applications
of those techniques are needed to further explore CAF and tumor metabolic interactions
under in vitro and/or in vivo settings. In the future, they will be particularly useful in
delineating the role of small extracellular vesicles, which are derived from CAFs, and are
capable of driving tumor metabolic rewiring. Moreover, integrating the MS-measurements
with other metabolic approaches such as stable isotope labelling and seahorse assays seems
an ideal way to decipher CAF and tumor cell metabolic interactions.

4.2. Metabolic Flux Analysis

While measuring the level of cellular metabolites provides crucial information, it is
equally important to determine the pathways that are linked to them and how they interact.
On its own, a drop in the levels of a metabolite can either point towards the reduction of
the synthesis or the increased consumption of this metabolite via another pathway. One
of the metabolic techniques used to determine the pathways that contribute to metabolite
secretion is known as ‘metabolic flux analysis’ (MFA). MFA uses nutrients, such as glucose,
amino acids, or lipids, which are labelled with the stable isotopes 13C or 14N, as the basis
for metabolites’ identification and quantification [102]. Mass spectrometry is commonly
used to analyze the labeled samples. Primarily, 13C-MFA aims to produce a quantitative
cellular metabolic map by assigning the values of fluxes to the reactions in the network
and by using confidence interval for every predicted flux [103].

Although MFA has been used to elucidate the metabolic changes that take place
in cancer cells and their microenvironment in vitro, it is equally important to perform
13C-MFA under in vivo settings, which has been addressed recently [101,104]. In fact,
the variations in experimental set-up between different in vitro studies on CAF–tumor
interaction has also raised concerns about the most reliable workflow to use. Thus, its
usage for understanding CAF–tumor cell interactions is still limited (Table 1), particularly
under the in vivo or ex vivo settings. However, in vivo flux analysis provides a better
comprehensive view of the metabolism at the cellular and whole-organism level which
can complement in vitro approaches [105,106]. In particular, it will help to understand the
nutrient exchange between CAFs and the other components of the TME, such as immune
cells or pericytes, which are known to impact tumorigenesis. Furthermore, by using 13C-
MFA in vivo, it will be possible to understand the contribution of each metabolic pathway
to the generation of CAF-secreted oncogenic metabolites in a physiological relevant context.
Accordingly, the integration of MFA with other computational approaches will lead to a
better understanding of the CAF–tumor interaction-driven cancer metabolic rewiring in
the future.

4.3. Seahorse Extracellular Flux

The Agilent Seahorse XF Analyzer is a powerful tool that can offer a rapid insight into
the metabolic state of the cells. Seahorse protocols use a combination of metabolic inhibitors
to quantify the rate of glycolysis and/or OXPHOS, via the measurement of extracellular
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acidification rate (ECAR) and oxygen consumption rate (OCR). By understanding the
cellular responses to metabolic drugs, the different respiratory phases can be defined and
the cellular bioenergetics status of the cells can be inferred [107].

In ECAR measurement, cells are stimulated with 2,4-Dinitrophenol (2,4-DNP, an ox-
idative phosphorylation inhibitor) and 2-Deoxy-D-Glucose (2-DG, a hexokinase inhibitor).
2-4 DNP induces maximal glycolytic capacity, whereas 2-DG is a glucose analog that com-
pletely shuts glycolysis. For measuring OCR, cells are exposed to mitochondria perturbing
reagents. Oligomycin, carbonyl cyanide-4-(trifluoromethoxy)phenylhydrazone (FCCP)
and rotenone coupled with antimycin are added to the cells in a sequential manner to
induce changes in mitochondrial activity. Oligomycin blocks the ATP synthase (complex
V) and suppresses OCR. FCCP is a mitochondrial uncoupler which disrupts the proton
gradient and mitochondrial membrane potential, and drives OCR to a maximal level,
which is then reduced to a minimal level by antimycin A and rotenone (complex III and
complex I inhibitor), finally disrupting mitochondrial respiration. The administration of
these drugs at different time-points causes the fluctuation in the OCR level. These data can
then be used to calculate basal respiration, ATP-linked respiration, proton leak, maximal
respiration capacity, reserve capacity and non-mitochondrial respiration [108].

An indirect in vitro study set-up using the conditioned media, of either the tumor
cells or the CAFs, is commonly used to study CAF–tumor cell interaction with Seahorse
(Table 1). This is obviously due to the simplicity of such a set-up. In addition, most studies
have only been performed on a 2D cell culture monolayer so far. However, it is commonly
accepted that 3D cell cultures better recapitulate the physiological parameters of a tumor;
they have been described to better mimic cell–cell interaction and environmental factors
(gradient of oxygen and nutrient supply) compared to their 2D counterparts [109,110].

In a more advanced setup, Demircioglu et al., 2020 have used Seahorse to analyze
isolated cells from ex vivo tumor samples [29]. Such an approach may give deeper insights
into the physiological and metabolic state of a tumor. Yet, the prior tissue processing steps
to isolate the cells need to be considered as these may significantly alter the initial tumor
metabolic state.

Thus, further explorations on 3D cultures and direct co-culture settings with Seahorse,
in combination with other metabolic measurements (such as stable isotope tracing and
non-destructive metabolic imaging approaches), are definitively warranted in order to gain
greater mechanistic insights into CAF–tumor cell interaction.

4.4. Computational Approaches to Unravel Tumor-CAF Metabolic Reprogramming

The increasing use of modern analytical techniques has helped characterizing tumor
metabolism. However, the heterogeneity of the tumor metabolic rewiring is still not yet
fully understood. Studies often only touch upon the phenotypic analysis without providing
an in-depth mechanism. This is mostly due to the technical challenges and experimental
limitations in the field of metabolomics. While metabolomics studies provide powerful
insights into the cellular metabolic status of cells, the information regarding the cause
or effect of metabolite changes is still missing, hence limiting our understanding of the
underlying mechanisms. The cell’s metabolome constitutes the amplified and integrated
signals from various levels, either at the transcriptional level or post-translational level [111].
Therefore, a multi-omics approach (proteomics, transcriptomics and metabolomics) may
provide a bigger picture to identify the key molecular regulators of a complex disease,
like cancer. Further integration of ‘omics’ data to build personalized in silico models
(i.e., models which represent each patient individually) could shed light on the metabolic
heterogeneity and the regulatory interactions between different classes of biomolecules
(genes, proteins and metabolites), especially in CAF subpopulations which are continuously
being identified.

The principle of network modelling is to present high-throughput data in a robust and
predictive way [112]. Metabolic models are computational tools showing the metabolites as
a set of nodes and the enzymatic conversion from one metabolite to another as edges [113].
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The main advantage of computational metabolic networks is the possibility to narrow
down the number of potential targets to be validated in vitro, therefore saving time and
money. They also allow studying the complex interactions between the tumor and its
microenvironment on multiple scales and generating patient-specific models [114]. As
such, they represent important tools to improve drug testing, thereby making treatments
more accurate and beneficial to the patients [115].

Genome-scale metabolic reconstructions, such as Recon2 [116], iHSA [117], or Hu-
man1 [118], consist of a library of all the possible reactions that can occur in an organism, as
well as a set of genes that control the enzymes and transporters that allow the reactions to
take place [119]. There are two types of metabolic models. Kinetic models rely on ordinary
differential equations and kinetic rates. Their applicability is, however, limited, due to
a high number of parameters to be determined [120]. Constraint-based models focus on
steady states and do not integrate parameters, which allows reconstructing and analyzing
larger models. Over the last few years, these models have gained interest to model the
metabolic status of a cell [121]. One important advantage of constraint-based modelling is
the possibility to integrate multi-omics data, such as transcriptomics [122], proteomics [123]
or metabolomics [124], to constrain genome-scale metabolic reconstructions and generate
context-specific models [125]. Several algorithms exist that build context-specific models
such as iMAT [126], INIT [127], mCADRE [128] and the FASTCORE family [129–131].
Finally, in silico gene knock-out can be applied to identify potential drug targets. Gene
knock-out consists of blocking all the reactions associated with a specific gene and as-
sesses its effect on the objective function of the model, i.e., biomass production. The genes
that significantly reduce growth are considered as essential and, therefore, as potential
drug targets [132].

However, modelling a complex system such as the tumor microenvironment remains
challenging, mainly due to the difficulty in modelling the interactions between multiple cell
types. Indeed, such models already exist for microbial communities [133], however, similar
approaches applied to multiple human cell types are still widely unexplored. In 2010,
Lewis et al. built a constraint-based model for multiple cell interactions in the brain based
on Recon1 and successfully simulated Alzheimer’s disease [134]. In 2015, Capuani et al.
reconstructed a small, unconstrained model (75 reactions) for the lactate shuttle between
CAFs and tumor cells [135]. More recently, in 2018 Shan et al. modeled the impact of the
tumor microenvironment on the Warburg effect and glutamine addiction in cancer cells and
found that the reverse Warburg effect provided growth advantage to the tumors originating
from deep tissues [136]. Finally, in 2019 Damiani et al. developed a new algorithm (single-
cell flux balance analysis) that allows integrating single-cell RNA-seq data into models of
breast and lung cancer. This method allowed them to model an heterogeneous cancer cell
population, to identify cancer cell subpopulations based on their growth rate and enabled
to represent metabolite exchange between different cell types [52,137].

These first studies strongly demonstrate that there is no doubt that constrain-based
modelling combined with single-cell sequencing will become one of the most important
tools to study tumor–microenvironment interactions. Additionally, many efforts are now
directed towards the integration of signaling data into metabolic models.

5. Concluding Remarks

Based on their predominantly tumor promoting function, targeting CAFs has become
one of the promising alternative therapeutic approaches in cancer. The relatively stable
genomic status, which may minimize resistance, gives a major advantage to CAF-targeted
therapies [138]. CAFs can also limit the anti-tumor immunity by either reducing immune
cell infiltration or increasing an immunosuppressive state, or a combination of both. These
interactions are suggested to impair the response to current immunotherapies in different
cancer types.

In the light of the direct tumor promoting activity and the immunomodulatory ca-
pacity of CAFs, researchers have focused over the past years on testing inhibitors and
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antibodies that would specifically target CAFs [10]. These drugs aim at targeting either
CAFs directly or their secreted molecules, which are known to sustain tumor progression.
Another appealing therapeutic strategy is the reprogramming of CAFs into normal fibrob-
lasts or into an antitumorigenic phenotype which suppresses carcinogenesis [10]. However,
due to CAF heterogeneity and the varying nature of the TME in different tumor sites, the
exact mechanisms behind this regulation remains rather elusive. The high heterogeneity
and plasticity of CAFs are believed to contribute to the unsuccessful outcomes observed in
clinical trials using CAF-targeted therapies [11,68]. Moreover, drugs that specifically target
CAFs metabolism have not been identified so far [139]. Thus, mapping a personalized
network with in silico approaches based on an individual patient’s biological information
may potentially lead to the identification of better therapeutic strategies (Figure 2). The
advancement in experimental approaches will encourage gathering all the necessary in-
formation to build such personalized in silico metabolic models in the future. Finally, the
integration of all experimental data into these personalized models will allow for better
tailoring of metabolic anti-cancer therapies for patients.
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kynurenine, alanine, asparagine, proline), lipid (LPC) and lactate secretions which fuels malignant
glucose cancer metabolism, supporting tumor growth. CAFs-derived exosomes also contribute in
driving carcinogenesis by supplying glucose and glutamine to cancer cells. ROS, produced by CAFs
or tumor cells, become an important mediator in CAFs–tumor cells’ metabolic interactions further
supporting cancer malignancy. Yet, there is no therapy that specifically targets CAFs’ metabolism
most probably due to the high CAF heterogeneity. In silico approaches may help in unravelling the
mechanistic insights of CAF-tumor crosstalk, ultimately identifying tailored CAF-targeted therapies.
Glc (Glucose), Gln (Glutamine), GS (Glutamine synthetase), FAK (Focal adhesion kinase), MAPK
(mitogen-activated protein kinases), ECM (Extracellular matrix), ROS (Reactive oxygen species),
CCR (Chemokine receptor), TDO2 (Tryptophan 2,3-Dioxygenase), Cav-1 (Caveolin-1), FASN (Fatty
acid synthase), LPC (Lysophophatidylcholine), HIF1a (Hypoxia-inducible factor 1-alpha), ATF4
(Activating Transcription Factor 4), MCT (Monocarboxylate Transporter), FATP1 (Fatty acid transport
protein 1).
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Abbreviations

Abbreviation Full Text
α-KG Alpha-ketoglutarate
apCAF Antigen-presenting fibroblasts
CAFs Cancer-associated fibroblasts
CRC Colorectal cancer
CDEs CAF-derived exosomes
EAAs Essential amino acids
ECAR Extracellular acidification rate
FA Fatty acids
FASN Fatty acid synthase
FCCP (trifluoromethoxy)phenylhydrazone
GC Gas chromatography
Glc Glucose
Gln Glutamine
GS Glutamine synthetase
HPLC High performance liquid chromatography
iCAF Inflammatory fibroblasts
LC Liquid chromatography
LPC Lysophophatidylcholine
LPA Lysophosphatidic acid
MCTs Mono-carboxylate transporters
Meflin_CAF Meflin-positive fibroblasts
MFA Metabolite flux analysis
MS Mass spectrometry
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mt(ROS) Mitochondrial reactive oxygen species
myCAF Myofibroblasts
NEAAs Non-essential amino acids
NFs Normal fibroblasts
OCR Oxygen consumption rate
OXPHOS Oxidative phosphorylation
PDAC Pancreatic ductal adenocarcinoma
PSCs Pancreatic stellate cells
ROS Reactive oxygen species
TCA Tricarboxylic acid cycle
TME Tumor microenvironment
UPLC Ultra-performance liquid chromatography
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