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Abstract: A subset of patients with mycosis fungoides (MF) progress to the tumor stage, which
correlates with a worse clinical outcome. The molecular events driving this progression are not
well-understood. To identify the key molecular drivers, we performed gene expression profiling
(GEP) using NanoString. Ten formalin-fixed/paraffin-embedded skin biopsies from six patients
(six non-tumor and four tumor MF) were included; non-tumor and tumor samples were available
in three patients. Laser capture/single cell microdissection of epidermotropic MF cells was used
for non-tumor cases. We found that the RNA extracted from 700–800 single cells was consistently
sufficient for GEP, provided that multiplexed target enrichment amplification was used. An un-
supervised/hierarchical analysis revealed clustering of non-tumor and tumor cases. Many of the
most upregulated or downregulated genes are implicated in the PI3K, RAS, cell cycle/apoptosis and
MAPK pathways. Two of the targets, HMGA1 and PTPN11 (encodes SHP2), were validated using
immunohistochemistry. HMGA1 was positive in six out of six non-tumor MF samples and negative
in five out of five tumor MF samples. An opposite pattern was seen with SHP2. Our study has
provided a proof-of-concept that single-cell microdissection/GEP can be applied to archival tissues.
Some of our identified gene targets might be key drivers of the disease progression of MF.

Keywords: mycosis fungoides; single cell microdissection; NanoString; gene expression profiling;
immunohistochemistry

1. Introduction

Mycosis fungoides (MF), the most common form of primary cutaneous lymphoid
malignancy, is typically characterized by an infiltration of neoplastic CD4-positive T lym-
phocytes in the skin [1]. The histology of the early-stage skin lesions is variable, but one of
the most consistent features is that of epidermotropism of cytologically atypical lymphoid
cells with or without the formation of Pautrier microabscesses. With progression to the
tumor stage (i.e., ≥1 cm in diameter), epidermotropism often diminishes and the dermal in-
filtrates of MF cells become more diffuse and confluent. Large cell transformation, defined
by the presence of >25% large cells in the infiltrate, occurs mostly in the tumor stage [2].
While MF is generally an indolent disease, progression to the tumor stage elevates the
clinical stage of the disease, which is the single most important prognostic factor [1,3,4].
The molecular events underlying this disease progression of MF have not been exten-
sively studied. Currently, there are no biomarkers that are predictive of progression to the
tumor stage.

Gene expression profiling (GEP) has been highly valuable in deciphering the molecular
events that drive oncogenesis and cancer progression [5–7]. In the literature, we identified
only a relatively small number of GEP studies of MF. For instance, Hashikawa et al. em-
ployed GEP to identify genes that are differentially expressed between the epidermal and
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dermal compartments of MF-involved skin, in order to reveal the molecular mechanisms
underlying epidermotropism [8]. In another GEP study, Zhang et al. identified genes
that are differentially expressed between early-stage MF and benign dermatosis/normal
skin, and their results suggest that the differential expression of TOX, PDCD1 and IL23R
between the two groups might be useful diagnostically [9]. One of the intrinsic challenges
of using GEP to study MF is that MF cells are often surrounded by a relative abundance
of benign lymphocytes, stromal cells and epithelial cells. Thus, GEP studies using whole
skin biopsies or microdissected regions of a biopsy can potentially produce results that are
obscured by signals derived from non-MF cells. This challenge is further compounded
by the fact that the MF cell population may represent only a small fraction of the cellular
elements present in the entire biopsy sample.

In this study, our main objective was to identify genes that are differentially expressed
between non-tumor and tumor MF, with the hypothesis that the identified gene lists may
contain key oncogenic drivers for the progression of MF to the tumor stage. To avoid
contamination from non-MF cells in the skin biopsy samples, we employed laser capture
single-cell microdissection to collect MF cells localized to the epidermis in non-tumor MF
cases. Our studies have provided a proof-of-concept that RNA samples extracted from
single-cell microdissection of archival tissues are sufficient for GEP using NanoString.

2. Materials and Methods
2.1. Patient Samples

Formalin-fixed/paraffin-embedded (FFPE) tissue blocks derived from 15 MF skin
biopsy samples from 9 patients were retrieved from the Department of Laboratory Medicine
and Pathology, University of Alberta. The characteristics of the 9 patients are summarized
in Supplementary Table S1. The diagnoses fall into two groups: (1) non-tumor MF (i.e.,
patch or plaque stage) or (2) tumor MF. Ten samples were used for NanoString analysis
and an additional five samples were included for immunohistochemical validation. Patient
samples were collected and used in accordance with the ethics guidelines of the Health
Research Ethics Board of Alberta (HREBA.CC-16-0859).

2.2. Tissue Staining and Laser Capture Single-Cell Microdissection

FFPE tissues were cut into 4 µm sections, which were then mounted onto a Mem-
braneSlide 1.0 PEN (ZEISS, Oberkochen, Germany). The slides were dipped in wax and
stored at −80 ◦C until being used. Prior to the laser capture single-cell microdissection, the
slides were baked for one hour at 60 ◦C, deparaffinized with xylene and graded alcohols
and stained with Harris Hematoxylin. The slides were rinsed with tap water for three
minutes and then air-dried. The PALM Microbeam Laser-Capture Microdissection system
(ZEISS, Oberkochen, Germany) was employed to collect single MF cells. In non-tumor
MF cases, only lymphoid cells in the epidermis (i.e., epidermotropic lymphoid cells) were
selected. In tumor cases, single MF cells in areas with diffuse dermal lymphoid infiltration
were collected.

2.3. RNA Extraction and Purification

RNA was extracted from the microdissected samples using the RecoverAll Total Nu-
cleic Acid Isolation Kit for FFPE (Invitrogen, Burlington, ON, Canada). Slight modifications
were made to the manufacturer’s protocol to maximize the RNA yield. Specifically, the
initial centrifugation to submerge the tissue in the melting buffer was eliminated. Samples
were then incubated at 65 ◦C for 10 min, instead of 72 ◦C as suggested in the manufacturer’s
protocol. Incubation with Proteinase K was done at 60 ◦C overnight. Lastly, the final elution
step was performed twice. The eluted product was then treated with the DNase I and
DNase I Buffer included in the RNA extraction kit. The RNA quantity and quality were
measured using the Thermo Scientific Nanodrop 2000 (Thermo Fisher Scientific, Waltham,
MA, USA). Only RNA with a 260/280 ratio of 1.8–2.1 was used for further analysis. The
RNA was stored at −80 ◦C until being used for cDNA synthesis and amplification.
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2.4. Reverse Transcriptase Polymerase Chain Reaction (RT–PCR) for the Optimization Step

For each sample, we converted 10 µL of the RNA into cDNA using the Superscript
First-Strand Synthesis System kits (Invitrogen). Following cDNA conversion, PCR (45 cy-
cles) and gel electrophoresis were performed as described previously [10]. Glyceraldehyde-
3-phosphate dehydrogenase (GAPDH), a housekeeping gene, was used as an internal control.

2.5. cDNA Synthesis and Amplification for NanoString

Amplification of our cDNA products was performed using the nCounter Low RNA
Input Kit (NanoString, Seattle, WA, USA) based on the manufacturer’s protocol. Briefly,
4 µL of RNA was used for the cDNA conversion, and the PanCancer Pathways primer
pools were used for the cDNA amplification. The cDNA was then amplified for 10 cycles
as recommended by the manufacturer for FFPE tissues, then incubated at 95 ◦C for 2 min.
For each sample, a total of 7.5 µL of the amplified cDNA products was produced. The
samples were stored at −80 ◦C until an analysis was conducted with the nCounter platform
from NanoString.

2.6. NanoString Analysis

All samples were processed by our Institutional Core Facility for NanoString nCounter
Analysis. A total of 5 µL of the amplified cDNA product was used for the analysis and
the nCounter PanCancer Pathways Panel was used. This panel included 724 cancer-
related genes and 60 reference genes (including positive controls, negative controls and
housekeeping genes). The panel was designed by NanoString, and all of the included
cancer-related gene targets are known to be implicated in at least one cancer pathway. The
list of the cancer pathways for each gene target was provided by NanoString. All data
normalization was performed by the nSolver 4.0 software (NanoString, Seattle, WA, USA),
as recommended by the manufacturer. The genes with the highest differential expression
between the tumor MF and non-tumor MF groups were identified by calculating the means
of both groups, and dividing the means of the tumor MF group by the non-tumor MF
group to obtain the tumor/non-tumor MF ratio. The tumor/non-tumor MF ratios were
ranked in descending order, and the highest 30 and lowest 30 genes were identified as the
top most upregulated and downregulated genes, respectively, in tumor MF genes. The
p-values for the difference of means between the tumor and non-tumor groups for these
genes were calculated using Student’s t-test. The nSolver 4.0 software was employed to
create the heat maps and to perform the Differential Expression analysis. The differential
expression analysis identifies the genes with the most statistically significant increased or
decreased gene expression (i.e., the most statistically significant log2 fold change) between
the tumor and non-tumor groups. The p-values for the differential expression analysis
were calculated by the nSolver 4.0 software using a Wald test.

2.7. Immunohistochemistry

Tissue sections with a thickness of 4 µm, derived from FFPE tissue blocks, were used
for this study. Deparaffinization was performed by submerging the slides in xylene. After
rehydration in graded alcohols, the tissue sections were microwaved in a pressure cooker
in citrate buffer, pH 6.0, for 10–15 min for antigen retrieval. The slides were then blocked
with fish gelatin and incubated with the primary antibody at 4 ◦C overnight. Anti-HMGA1
(1:200, Elabscience, Houston, TX, USA; #17331) and anti-SHP2 (1:75, Elabscience, #14341)
antibodies were used. Following an incubation with the primary antibodies, the slides
were blocked in 3% hydrogen peroxide prior to a one-hour incubation with Dako EnVision+
System HRP Labelled Polymer secondary antibody (Agilent, Santa Clara, CA, USA) at
room temperature. The slides were developed in Dako DAB+ Chromagen (Agilent) and
were then placed in 1% copper sulfate. The slides were stained with hematoxylin, placed in
lithium carbonate for 2 min, and then dehydrated through graded alcohols and xylene. The
slides were then coverslipped with Permount Mounting Medium (Thermo Fisher Scientific).
The slides were scored by a pathologist. Cases were scored as >50%, representing positive
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staining, if >50% of the MF cells had stronger staining than the surrounding basal epithelial
cells. Cases were scored as ≤50% if 50% or less of the MF cells had stronger staining than
the surrounding basal epithelial cells.

3. Results
3.1. Optimization of a Protocol to Generate Sufficient cDNA for NanoString

Based on the NanoString protocol, 10 ng of RNA is the minimum quantity for this
analysis, provided that the Low RNA Input Kit is used in the amplification step. Since we
identified two prior publications in which RNA extracted from 60–200 singly dissected
neurons/astrocytes from frozen tissue sections was sufficient for NanoString [11,12], we
chose to microdissect 700–800 single cells from FFPE tissue sections. For this optimization
step, we employed FFPE cell blocks containing SK-N-SH, a neuroblastoma cell line [13].
After six independent runs of single-cell dissection and RNA extraction, we found that
700–800 microdissected single cells, typically coming from 5–6 tissue sections, yielded
an RNA concentration of 3.9–7.8 ng/µL (median 5.5 ng/µL; SD +/− 1.5 ng/µL). Based
on the manufacturer’s protocol for RNA amplification using the Low RNA Input Kit, a
maximum of 4.0 µL of RNA sample can be added to the reaction. Thus, a median of 22.0 ng
of RNA was used for amplification. Using 4 µL from one of the six generated RNA samples
(6.1 ng/µL), we obtained 7.5 µL of cDNA product with a concentration of 2132.6 ng/µL.

To provide evidence that the RNA extracted from our singly extracted SK-N-SH cells
was intact, we performed a PCR to amplify the GAPDH gene. As shown in Supplementary
Figure S1, a GAPDH band was readily detectable in the RNA sample derived from the
singly dissected SK-N-SH cells. Similar GAPDH bands were also detectable in the RNA
samples extracted from paraffin curls of the cell blocks as well as from fresh SK-N-SH cells.

3.2. Generation of cDNA Samples from Singly Dissected MF Cells

We then studied a total of ten skin biopsy samples from six patients. Two of the six
patients had two biopsy samples obtained at different locations, one had three biopsy
samples obtained at different locations, and four patients had only one sample. At the time
of the skin biopsy, six samples were in the patch/plaque stage and four samples were in
the tumor stage. Using our optimized protocol described above, we performed single-cell
microdissection of 700–800 MF cells. For the six cases of patch/plaque MF, only lymphoid
cells present in the epidermis were captured. For the four cases of tumor MF, MF cells in
the dermal tumors were selected. The cDNA concentrations after the Low RNA Input Kit
amplification for these 10 samples had a median of 2611.5 ng/µL +/− 637.1 ng/µL. A total
of 7.5 µL of amplified cDNA were consistently obtained for each sample. Again, based on
the manufacturer’s protocol, 5 µL (i.e., a median of 13 µg of cDNA) from each sample was
used for the NanoString assay.

3.3. NanoString Analysis

There were 724 cancer-related genes and 60 reference genes (including positive con-
trols, negative controls and housekeeping genes) included in the nCounter PanCancer
Pathways Panel. The NanoString nSolver software did not show any housekeeping nor-
malization flags, suggesting that our RNA samples were sufficient for the analysis. Addi-
tionally, the nSolver software did not show any positive control flags, indicating that the
NanoString assay has a high sensitivity in quantifying gene expression in our samples.

Normalization of the collected data against the 60 reference genes was performed using
the NanoString nSolver analysis software. A heat map illustrating clustered samples and
genes based on their relatedness (i.e., un-supervised) was generated (Figure 1). We noted
that all four tumor samples were localized to the left side of the panel (i.e., columns 1–4)
whereas the six patch/plaque MF samples were found on the right side of the panel
(columns 5–10).
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Figure 1. Heat map of all 724 cancer-related genes in the 10 MF patient samples. The NanoString
nSolver Analysis Software used hierarchical clustering to group samples and genes together based
on relatedness. Red shading indicates low gene expression relative to the average expression, black
shading indicates average expression and green shading indicates high gene expression relative
to the average expression. All 4 tumor MF samples were clustered on the left of the panel and all
6 non-tumor MF samples were clustered on the right of the panel.

We then determined which of the 724 cancer-related genes were most significantly
different between non-tumor and tumor MF. For each of these genes, we calculated the
mean for each group, and we ranked the genes based on the descending tumor/non-
tumor MF ratio. The top 30 upregulated genes in tumor MF are summarized in Table 1
and the top 30 downregulated genes in tumor MF are summarized in Table 2. The top
30 upregulated genes in tumor MF had a tumor/non-tumor MF ratio of >1.34, and the
top 30 downregulated genes in tumor MF had a tumor/non-tumor MF ratio of <0.60. As
shown in Figure 2, heat maps generated using these top 30 upregulated and downregulated
genes showed a clearer separation between the tumor and the non-tumor groups compared
to that illustrated in Figure 1.

The validity of these gene sets was further tested using the differential expression
analysis from the NanoString nSolver software, which identified the top 30 genes showing
differences between the tumor and non-tumor MF groups with the highest statistical
significance. As shown in Table 3, three genes, including B2M, FGF9 and HMGA1, were
also found in the 30 upregulated (in tumor MF) gene list. Twenty-two genes, including
SIN3A, BID, HGF, EPOR, CAMK2B, CREB5, PTPN11, NKD1, HNF1A, EFNA2, SMC3, SFRP1,
PKMYT1, C19orf40, DDIT3, SOS1, DKK4, PRKAR1B, TNFRSF10A, LAMA1, ITGA2 and PGF
were found in the 30 downregulated (in tumor MF) gene list.
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Table 1. Summary of the 30 genes most upregulated in tumor MF based on the tumor/non-tumor
MF ratio.

Gene
Name

Mean of
Non-Tumor MF

Mean of
Tumor MF

SD of
Non-Tumor MF

SD of
Tumor MF p-Value Tumor/

Non-Tumor

FGF9 1.60 3.12 0.63 1.97 0.22 1.95
B2M 1.83 3.54 0.77 1.79 0.15 1.94

COL5A1 1.36 2.55 0.13 1.52 0.21 1.88
PRKACG 1.55 2.89 0.38 2.16 0.31 1.86

SSX1 1.36 2.45 0.13 1.24 0.18 1.80
WEE1 1.36 2.42 0.13 1.93 0.35 1.78

HMGA1 2.01 3.44 0.68 2.47 0.33 1.71
ERCC2 1.61 2.75 0.69 2.59 0.45 1.71
BMP5 2.03 3.24 1.16 1.42 0.21 1.60
ITGA3 1.55 2.48 0.38 0.67 0.06 1.60
FGF16 2.22 3.51 0.94 1.72 0.24 1.59
PAK3 1.55 2.45 0.38 1.24 0.25 1.58

TGFB3 1.36 2.13 0.13 0.82 0.15 1.57
DUSP6 1.36 2.11 0.13 1.34 0.34 1.56
BAIAP3 1.81 2.81 0.72 1.02 0.15 1.55

BCL2 1.36 2.10 0.13 0.69 0.12 1.55
RASA4 1.36 2.10 0.13 0.69 0.12 1.55
DDB2 1.36 2.09 0.13 1.27 0.33 1.54
FGF2 1.36 2.09 0.13 1.27 0.33 1.54
GNG4 1.36 2.09 0.13 1.27 0.33 1.54

LEFTY2 1.36 2.09 0.13 1.27 0.33 1.54
MAP2K6 1.36 2.09 0.13 1.27 0.33 1.54
PPP3CC 1.36 2.09 0.13 1.27 0.33 1.54
NPM1 2.13 3.17 1.78 2.03 0.44 1.49

GRIN2A 1.77 2.47 0.56 1.26 0.36 1.39
MLLT3 1.74 2.42 0.84 1.93 0.55 1.39
SPRY4 1.79 2.47 0.64 1.26 0.38 1.38
STAT3 1.79 2.47 0.64 1.26 0.38 1.38
FGF23 1.55 2.13 0.38 0.82 0.26 1.38
MCM7 2.05 2.76 0.79 1.80 0.50 1.35

Table 2. Summary of the 30 genes most downregulated in tumor MF based on the tumor/non-tumor
MF ratio.

Gene
Name

Mean of
Non-Tumor

MF

Mean of
Tumor MF

SD of
Non-Tumor MF

SD of
Tumor MF p-Value Tumor/

Non-Tumor

BID 3.54 1.43 1.67 0.09 0.03 0.40
SIN3A 5.77 2.48 1.89 0.67 0.01 0.43

PTPN11 3.04 1.43 2.25 0.09 0.14 0.47
NKD1 2.94 1.43 0.57 0.09 0.00 0.48
EFNA3 5.32 2.55 4.29 2.31 0.22 0.48
EFNA2 2.89 1.43 0.86 0.09 0.01 0.49
EPOR 3.60 1.77 1.60 0.65 0.04 0.49

HNF1A 2.93 1.43 1.03 0.09 0.02 0.49
HGF 3.70 1.80 1.61 0.80 0.04 0.49

CAMK2B 3.51 1.77 1.91 0.65 0.08 0.50
DDIT3 2.79 1.43 1.39 0.09 0.06 0.51
SFRP1 2.80 1.43 1.77 0.09 0.12 0.51

C19orf40 2.76 1.43 1.40 0.09 0.07 0.52
PRKAR1B 2.67 1.43 1.42 0.09 0.08 0.53

ITGA2 2.62 1.43 1.72 0.09 0.15 0.54
PGF 2.62 1.43 1.72 0.09 0.15 0.54

TNFRSF10A 2.64 1.43 1.52 0.09 0.11 0.54
SMC3 3.77 2.09 1.65 1.27 0.11 0.55
SOS1 3.14 1.76 1.25 0.60 0.05 0.56
KIT 2.49 1.43 1.41 0.09 0.12 0.57

DTX1 2.50 1.43 1.09 0.09 0.06 0.57
PKMYT1 3.16 1.80 0.65 0.80 0.03 0.57
IL22RA2 2.50 1.43 1.13 0.09 0.07 0.57

DKK4 3.09 1.76 1.43 0.60 0.08 0.57
U2AF1 2.47 1.43 1.32 0.09 0.11 0.58
WNT2 3.05 1.76 2.02 0.60 0.19 0.58
MMP7 2.48 1.43 0.99 0.09 0.05 0.58
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Table 2. Cont.

Gene
Name

Mean of
Non-Tumor

MF

Mean of
Tumor MF

SD of
Non-Tumor MF

SD of
Tumor MF p-Value Tumor/

Non-Tumor

LAMA1 3.53 2.09 2.31 1.27 0.24 0.59
DAXX 2.41 1.43 1.64 0.09 0.20 0.59
CREB5 4.79 2.81 2.51 1.02 0.13 0.59
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Figure 2. (a) Heat map of the 10 MF samples generated using the 30 most upregulated genes in tumor
MF (i.e., the genes with the highest tumor/non-tumor MF ratio). The 6 non-tumor samples show a
pattern of red shading indicating low gene expression, while the 4 tumor samples show a pattern of
green shading indicating high gene expression. (b) Heat map off the 10 MF samples generated using
the 30 most downregulated genes in MF. The 6 non-tumor samples show a pattern of green shading
indicating high gene expression, while the 4 tumor samples show a pattern of red shading indicating
low gene expression.

As shown in Table 4, we summarized the cancer pathways with which the 30 up-
regulated and 30 downregulated genes are known to be associated. The known cancer
pathways of all gene targets were provided in a list from NanoString. The pathways that
are most represented by these identified gene targets are the PI3K pathway (18/60), the
RAS pathway (16/60), the cell cycle/apoptosis pathway (12/60), the MAPK pathway
(12/60) and the Wnt pathway (8/60).
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Table 3. Differential expression analysis revealed the 30 gene targets with the highest statistically significant upregulated
(3 genes) or downregulated (27 genes) gene expression in tumor MF groups compared to non-tumor MF groups. These
30 gene targets substantially overlap with the top upregulated and downregulated genes identified using the tumor/non-
tumor MF ratios, with 25 of these 30 genes being listed in Table 1 or Table 2.

Downregulated in Tumor MF Upregulated in Tumor MF

Gene Log2 Fold Change p-Value Gene Log2 Fold Change p-Value

SIN3A −1.31 0.0728 B2M 0.908 0.232
BID −1.41 0.127 FGF9 0.945 0.241
HGF −1.18 0.156 HMGA1 0.727 0.318

RHOA * −0.601 0.159
EPOR −1.1 0.187

CAMK2B −1.09 0.189
CREB5 −0.866 0.196

PTPN11 −1.18 0.201
NKD1 −1.12 0.221

HNF1A −1.12 0.222
EFNA2 −1.12 0.222
SMC3 −0.925 0.226
SFRP1 −1.1 0.231

PKMYT1 −0.905 0.273
C19orf40 −1 0.273
DDIT3 −1 0.273
SOS1 −0.902 0.275
DKK4 −0.901 0.275

PRKAR1B −0.997 0.276
TNFRSF10A −0.995 0.277

WNT2 * −0.892 0.281
LAMA1 −0.819 0.286
ITGA2 −0.978 0.288
PGF −0.978 0.288

MEN1 * −0.795 0.335
GPC4 * −0.792 0.337
GLI3 * −0.791 0.338

* RHOA, WNT2, MEN1, GPC4 and GLI3 were not identified in the gene lists in Tables 1 and 2.

3.4. Target Validation Using Immunohistochemistry

We selected two gene targets for further validation using immunohistochemistry,
namely HMGA1 and PTPN11 (encodes SHP2), both of which were identified as one of
the highest upregulated or downregulated genes based on the analysis of the non-tumor
MF/tumor MF ratios as well as being in the top 30 most statistically significant genes in the
differential expression analysis. Other criteria for their inclusion for the validation studies
are related to the availability of commercial antibodies and their known oncogenic or tumor
suppressor functions found in other cancer types. HMGA1, known to be oncogenic in
other cancer types [14–16], was found to be upregulated in tumor MF. PTPN11, encoding
SHP2, which has been found to be a tumor suppressor in several cancer models [17–19],
was found to be downregulated in tumor MF.

As summarized in Table 5, a total of 11 samples (6 non-tumor MF and 5 tumor MF)
derived from 6 patients were included in the immunohistochemical validation. Three
patients (#1, 2 and 4) had both non-tumor MF and tumor MF samples. For HMGA1
(nuclear staining pattern) and SHP2 (cytoplasmic staining pattern), positivity was assessed
when there were >50% MF cells showing staining greater than that of basal epithelial cells.
In non-tumor MF cases, immunostaining was evaluated only for lymphoid cells in the
epidermis. In tumor MF cases, immunostaining was evaluated on lymphoid cells in the
dermis where MF clusters or sheets were found. As summarized in Table 5, HMGA1 was
positive in six of six non-tumor MF samples and negative in five of five tumor MF samples.
Similarly, SHP2 was negative in six of six non-tumor MF samples and positive in five of
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five tumor MF samples. These differences are statistically significant (Fisher’s exact test,
p = 0.0022). Images of HMGA1 and SHP2 staining in MF non-tumor and tumor cases are
shown in Figure 3.

Table 4. Cancer pathways implicated in gene targets differentially expressed between non-tumor and tumor MF.

Pathway Upregulated Genes Downregulated Genes

PI3K FGF9, COL5A1, ITGA3, FGF16, BCL2, FGF2,
GNG4, FGF23

EFNA3, EFNA2, EPOR, HGF, ITGA2, PGF,
SOS1, KIT, LAMA1, CREB5

RAS FGF9, PRKACG, FGF16, PAK3, RASA4, FGF2,
GNG4, GRIN2A, FGF23

PTPN11, EFNA3, EFNA2, HGF, PGF,
SOS1, KIT

Cell Cycle and Apoptosis PRKACG, WEE1, TGFB3, BCL2, DDB2,
PPP3CC, MCM7

BID, PRKAR1B, TNFRSF10A,
SMC3, PKMTY1

MAPK FGF9, PRKACG, FGF16, TGFB3, DUSP6,
FGF2, MAP2K6, PPP3CC, FGF23 DDIT3, SOS1, DAXX

Wnt PRKACG, PPP3CC NKD1, CAMK2B, SFRP1, DKK4,
WNT2, MMP7

Driver Gene B2M, BCL2, NPM1 PTPN11, HNF1A, KIT, U2AF1, DAXX

JAK-STAT SPRY4, STAT3 PTPN11, EPOR, SOS1, IL22RA2

Transcriptional Regulation SSX1, DUSP6, BAIAP3, MLLT3 SIN3A, DDIT3

TGF-Beta BMP5, TGFB3, LEFTY2

DNA Repair ERCC2 C19orf40

Hedge Hog PRKACG WNT2

Chromatin Modification HMGA1

Notch DTX1

Table 5. Immunohistochemical analysis of MF patients showed SHP2 protein expression downregu-
lated in tumor MF cases and HMGA1 protein expression upregulated in tumor MF cases.

Patient No. Non-Tumor MF or Tumor MF NanoString Data SHP2 HMGA1

1 non-tumor Yes >50% ≤50%
1 tumor Yes ≤50% >50%
1 tumor Yes ≤50% >50%
2 non-tumor Yes >50% ≤50%
2 tumor Yes ≤50% >50%
3 tumor Yes ≤50% >50%
4 non-tumor No >50% ≤50%
4 tumor No ≤50% >50%
5 non-tumor No >50% ≤50%
5 non-tumor No >50% ≤50%
6 non-tumor No >50% ≤50%
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Figure 3. Immunohistochemical validation of SHP2 and HMGA1. (a) Immunostaining of SHP2
showed strong cytoplasmic staining of epidermotropic MF cells (highlighted by red arrows) in two
non-tumor MF cases (left panel). The strong staining of the basal epithelial cells served as the internal
reference. In comparison, SHP2 was weak or undetectable in most cells present in the MF tumors
(right panel) (400×). (b) MF cells in the epidermis in three non-tumor cases (highlighted by red
arrows) showed no appreciable HMGA1 nuclear expression (left panel). The basal epithelial cells
served as the internal reference. Neoplastic cells in MF tumors showed strong HMGA1 nuclear
staining (right panel) (400×).

4. Discussion

One of the major advantages of analyzing samples derived from single-cell microdis-
section is that cells of interest are specifically targeted. Thus, contamination or dilution
with ‘unwanted’ cells can be minimized and accuracy can be improved. Single-cell mi-
crodissection is well-suited for gene expression profiling (GEP) of MF cells, since these
neoplastic cells are often surrounded by an abundance of benign epithelial cells, stromal
cells and reactive immune cells. Nonetheless, GEP coupled with single-cell microdissection
is technically difficult and rarely done. In our literature search, we were able to identify
only two studies employing this protocol [11,12]. In both studies, small numbers (60–200)
of singly dissected human or mouse neurons/astrocytes were harvested from frozen tissue
sections, the extracted RNA was amplified using multiplexed target enrichment ampli-
fication and the generated cDNA samples were analyzed using NanoString. With this



Cells 2021, 10, 3190 11 of 13

background, we asked if single-cell microdissection/GEP is feasible if FFPE tissues are
used. If successful, this protocol can be used to study human diseases for which FFPE
tissues are far more available than frozen tissues.

Thus, the first objective of this study is to develop/optimize a protocol by which
sufficient RNA can be extracted from single-cell microdissection using FFPE tissues. Our
studies have shown that RNA extracted from 700–800 MF cells, after being subjected to
multiplexed target enrichment amplification (i.e., Low RNA Input Kit), was sufficient for
NanoString analysis. In our experience, this protocol can produce GEP results consistently,
as we were able to obtain results in all the tissue blocks we processed. The validity of
our protocol is supported by the fact that our results passed all of the NanoString built-in
checkpoints. This protocol can be highly useful in studying other types of tumors in which
the neoplastic cell population represents only a small component of the tumor and/or
the neoplastic cells are often surrounded by abundant benign cells. T-cell/histiocyte-
rich B-cell lymphomas, Hodgkin lymphomas and the inflammatory variants of various
sarcomas/carcinomas likely fall into this category.

Despite the relatively small sample size, our single-cell microdissection/NanoString
analysis was effective in differentiating tumor MF from non-tumor MF. Our observation
that tumor MF cases (n = 4) could be separated from non-tumor MF cases (n = 6) using
un-supervised analysis suggests that our method of cell selection is valid. Thus, in non-
tumor MF cases, only lymphoid cells in the epidermis (i.e., epidermotropic) were selected.
This approach will minimize the likelihood of including benign lymphocytes, which can
extensively infiltrate the dermis. In tumor MF cases, cells were selected from relatively well-
defined tumorous regions in the dermis, where MF cells form clusters and their cytological
abnormalities can be readily appreciated.

The second objective of this study is to decipher the molecular events underlying the
progression from non-tumor MF to tumor MF. In this regard, we could not identify any
similar studies in the literature. We identified that the PI3K and RAS pathways are the
two pathways most implicated. Interestingly, we noticed that many of the gene targets
identified overlap between these two pathways, such as FGF9, FGF16, FGF2, GNG4, FGF23,
EFNA3, EFNA2, HGF, PGF, SOS1 and KIT, suggesting that the cross-talks between the PI3K
and RAS pathways might be important in promoting progression to the tumor stage. In
this regard, it has been shown that, in certain cancer models, activated RAS is required for
the full execution of the oncogenic activity of PI3K [20]. A similar scenario may occur in
the disease progression of MF, which requires significant deregulations of both signaling
pathways. This requirement may partly explain why progression to tumor-stage MF is a
relatively infrequent occurrence.

To further validate the genes identified with our GEP studies, we performed immuno-
histochemical analysis. HMGA1 (i.e., upregulated in tumor MF) and PTPN11/SHP2 (i.e.,
downregulated in MF) were selected. HMGA1 overexpression has been identified in a
number of cancer types, and this abnormality has been associated with a poor prognosis
in patients with gliomas, pancreatic cancer and lung cancer [15,16]. HMGA1 has been
shown to contribute to the maintenance of cancer stem cell populations and promote cell
proliferation, angiogenesis and anchorage-independent growth [14,15,21]. SHP2, encoded
by PTPN11, has been shown to play tumor-suppressor roles in a number of cancer models
such as hepatocellular carcinomas [17–19]. In these studies, SHP2 has been shown to inhibit
the JAK-STAT pathway, which is known to be activated in many cancer types [22,23]. In
keeping with these concepts, we observed a downregulation of SHP2 and an upregulation
of STAT3 in tumor MF. These observations correlate well with another MF study, in which
STAT3 activation was found to be higher in advanced stages of MF compared to early MF
stages [24].

In conclusion, the results from this study have provided a proof-of-concept that RNA
samples derived from single-cell microdissection applied to archival tumor samples can be
used consistently for GEP. While this study contains limited MF cases, we have shown that
our protocol is feasible to study MF, and we hope that it will stimulate future MF studies
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using this methodology. We believe that this protocol can be valuable in studying other
cancer cells that are surrounded by abundant benign cells and/or cells irrelevant to the
study. Our results have also highlighted specific cancer pathways and gene targets that
might be important in mediating the progression of MF to the tumor stage.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/cells10113190/s1, Table S1: Characteristics of the patients used in the NanoString and/or
immunohistochemical analysis. Figure S1: RT-PCR was performed to detect GAPDH.
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