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Abstract: Pulmonary premature ageing and fibrogenesis as in idiopathic pulmonary fibrosis (IPF)
occur with the DNA damage response in lungs deficient of telomerase. The molecular mechanism
mediating pulmonary alveolar cell fates remains to be investigated. The present study shows that
naturally occurring ageing is associated with the DNA damage response (DDR) and activation
of the p53 signalling pathway. Telomerase deficiency induced by telomerase RNA component
(TERC) knockout (KO) accelerates not only replicative senescence but also altered differentiation and
apoptosis of the pulmonary alveolar stem cells (AEC2) in association with increased innate immune
natural killer (NK) cells in TERC KO mice. TERC KO results in increased senescence-associated
heterochromatin foci (SAHF) marker HP1γ, p21, p16, and apoptosis-associated cleaved caspase-3
in AEC2. However, additional deficiency of the tumour suppressor p53 in the Trp53−/− allele of
the late generation of TERC KO mice attenuates the increased senescent and apoptotic markers
significantly. Moreover, p53 deficiency has no significant effect on the increased gene expression of
T1α (a marker of terminal differentiated AEC1) in AEC2 of the late generation of TERC KO mice. These
findings demonstrate that, in natural ageing or premature ageing accelerated by telomere shortening,
pulmonary senescence and IPF develop with alveolar stem cell p53-dependent premature replicative
senescence, apoptosis, and p53-independent differentiation, resulting in pulmonary senescence-
associated low-grade inflammation (SALI). Our studies indicate a natural ageing-associated molecular
mechanism of telomerase deficiency-induced telomere DDR and SALI in pulmonary ageing and IPF.

Keywords: telomerase RNA component; telomere shortening; lung alveolar type 2 cells; senescence;
apoptosis; differentiation; p53

1. Introduction

Mammalian lung tissue plays an important role in O2 and CO2 gas exchange through
numerous alveoli. The alveolus has a semi-circular shape, serving as the basic physiological
unit in lung parenchyma. Alveoli are comprised of alveolar epithelia and interstitial
space [1]. Two major cell types of alveolar epithelia are alveolar epithelial type 1 (AEC1)
cells and alveolar epithelial type 2 (AEC2) cells. As smaller and rounder cells than AEC1
cells, AEC2 cells function to secrete surfactant proteins and lipids to maintain alveolar
surface tension and differentiate as stem cells in alveolar epithelia in lung tissue [2–4].
When AEC1 cells are injured, AEC2 cells directly differentiate into AEC1 cells to offset
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epithelial loss [2,5,6]. Importantly, recent studies have revealed that AEC2 cells act as adult
stem cells in the lungs [2,4–7].

Lung function is thought to begin declining at approximately 25 years of age in
humans [8]. Consequently, the incidence of age-dependent diseases, such as idiopathic
pulmonary fibrosis (IPF) and chronic obstructive pulmonary disease (COPD), are signif-
icantly increased in adults older than 45 years of age [9]. The aetiologies of the diseases
remain unclear. From genetic studies, >40% of familial IPF patients and 20% of sporadic
IPF patients showed significant telomere shortening [10–14]. In COPD patients, telomere
lengths were found to be significantly shorter than those in healthy controls [15–17]. How-
ever, the connection between telomere shortening and the genesis of these two disorders is
largely unknown.

Telomere length is shortened with each cell division. In contrast to this, telomere
length is maintained by telomerase, which contains a telomerase RNA component (TERC)
and telomerase reverse transcriptase (TERT) [18]. TERC functions as a template to add
the telomere repeat sequence to the end of telomeres under the catalysis of TERT [18–20].
Human TERC was reported to encode a 121 amino acid protein termed hTERP with a
potential role against apoptosis [21]. The TERC knockout mouse model shows signifi-
cantly shortened telomeres in late generations [18,19] and has been used to investigate the
physiological effects of telomere shortening in stem and progenitor cells, including the
hematopoietic and pulmonary systems [20]. Currently, telomere shortening triggers stem
cell senescence and apoptosis, impairing tissue repair and regeneration [4,22,23].

Genetic and molecular investigations indicate that telomere shortening induced by
TERT disruption or telomere dysfunction without telomere shortening in AEC2 cells in-
duces pulmonary fibrosis in mice [24]. Recently, we demonstrated that severe stress such as
bacterial toxin bleomycin or radiation trigger pulmonary premature ageing and fibrosis by
telomere uncapping [4]. Through stress-related protein kinase GSK3β phosphorylation and
subsequent ubiquitin E3 ligase FBW7 ubiquitination of telomere protein TPP1, the telomere
DNA damage response (DDR) mediates reversible AEC2 replicative senescence and pul-
monary fibrosis [4,25]. In addition, we also demonstrated that telomerase deficiency due to
either TERC or telomerase catalytic subunit TERT knockout induces pulmonary fibrosis
with AEC2 senescence and senescence-associated low-grade inflammation (SALI) [20,26].
However, the mechanisms whereby telomere DDR causes SALI and fibrosis remain to be
investigated [26,27].

The present study demonstrates that naturally aged mice showed DDR with an
activated p53 pathway in association with pulmonary ageing and cellular senescence.
Telomerase inactivation by TERC gene deletion accelerated not only senescence but also
apoptosis and differentiation in AEC2 cells by p53-dependent and -independent mecha-
nisms. Furthermore, we found that increased innate immune NK cells were involved in the
pathophysiology pulmonary senescence induced by telomerase deficiency and telomere
DDR in the mouse lungs.

2. Materials and Methods
2.1. Mice

Eighteen- and thirty-month-old wild-type mice were used in this study. Terc+/−

mice [19,28] with a C57BL/6J background were inter-crossed to generate Terc+/+ mice
and first-generation G1 Terc−/− mice. These G1 Terc−/− mice were crossed successively
to produce second-generation G2 Terc−/− mice and third-generation G3 Terc−/− mice
to acquire mice with significantly shorter telomeres. Terc+/− mice were crossed with
p53+/− [29] mice to produce Terc+/−p53+/− mice. These mice were inter-crossed to generate
G1 Terc−/−p53+/−. G2 Terc−/− p53−/− mice are the offspring from crossing G1 Terc−/−

p53+/− with G1 Terc−/−p53+/−. The wild-type (WT) control mice were C57BL/6J. The
mice were raised under standard conditions in the animal centre of Hangzhou Normal
University. The mice that were 2–5 months old were used for all experiments conducted in



Cells 2021, 10, 2892 3 of 14

this work. The Animal Ethics Committee of Hangzhou Normal University approved all
surgical procedures (ethical approval code 2016036, 2018012 and 2021-1059).

2.2. Respiration Function Assay

The mice were placed into a head-out single chamber plethysmograph for 3–5 min.
Data acquisition was performed by the eSpira Forced Manoeuvers System.

2.3. Fibrosis-Associated Masson’s Staining, Collagen Volume Fraction

The lung fibrosis was evaluated by Masson’s trichrome staining. Mice lung tissues
were fixed and paraffin embedded. The paraffin sections were cut into 4 µm and stained
with Masson trichrome (Sigma) according to the manufacturer’s instructions. The collagen
volume fraction was calculated by ImageJ software according to the formula collagen
area/total area ∗ 100%.

2.4. In Situ Senescence-Associated (SA)-β-Gal Staining in Lung Tissues

Fresh mouse lung tissues were immersed in a fixation solution containing 2% formalde-
hyde and 0.2% glutaraldehyde in phosphate buffered saline (PBS) for 45 min, then trans-
ferred to 30% sucrose, and fixed overnight. The tissues were cut into 6 µm thick cryosec-
tions, which were then fixed and incubated overnight at 37 ◦C with the staining mixture
supplied in the Senescence Cells Histochemical Staining Kit (Sigma-Aldrich, St. Louis,
MO, USA) before being counterstained with Nuclear Fast Red. Finally, the slides were
scanned and photographed with a Pannoramic MIDI II digital slide scanner (3DHISTECH,
Budapest, Hungary).

2.5. Double Immunofluorescence Staining Analysis

In brief, the 6 µm thick lung cryosections were fixed using 1% paraformaldehyde
and then permeabilised with 0.5% SDS. The following primary antibodies were used:
anti-Surfactant Protein C (SPC), anti-p21, anti-p16 (Santa Cruz Biotechnology, Inc., Dallas,
TX, USA), anti-HP1γ (heterochromatin protein 1γ) (Cell Signaling Technology, Danvers,
MA, USA), and anti-T1α (Abcam, Cambridge, UK). The secondary antibodies were Alexa
Fluor 488-conjugated donkey anti-goat IgG, Alexa Fluor 555-conjugated donkey anti-
rabbit IgG (Molecular Probes, Eugene, OR, USA), and Alexa Fluor 488-conjugated goat
anti-Syrian hamster (Jackson ImmunoResearch Laboratories, Inc., West Grove, PA, USA).
The cell nuclei were counterstained with 4′6-diamidino-2-phenylindole dihydrochloride.
Images were acquired with an Axio imager M2 fluorescence microscope (Carl Zeiss AG,
Oberkochen, Germany). The stained rates of p21, p16, and Hp1γ stain in AEC2 cells
were calculated using the number of double-stained cells from SPC and one of either p21,
p16, or Hp1γ, dividing the number of stained cells by SPC. The T1α stained rates were
calculated by dividing the number of T1α stained cells by the total cells labelled with
4′6-diamidino-2-phenylindole dihydrochloride.

2.6. Isolation of AEC2 Cells from Lung Tissues by Fluorescence-Activated Cell Sorting (FACS)

AEC2 cells were isolated from lung tissues using a FACS sorter, as previously described
(Messier et al., 2012; Fujino et al., 2012). In brief, lung tissues were digested with Dispase
II, collagenase (Roche Diagnostics, Indianapolis, IN, USA) and DNase I (Sigma-Aldrich,
St. Louis, MO, USA) in order to acquire a single-cell suspension. After removing the
large cells and debris with a 100 µm filter, the remaining cells were labelled with PE-
CY5.5-conjugated anti-CD45 (eBioscience, San Diego, CA, USA), APC-conjugated EpCAM
(BioLegend, San Diego, CA, USA), and PE-conjugated T1α (Biolegend, San Diego, CA,
USA) and then run through a BD influx flow cytometer (BD Biosciences, San Jose, CA,
USA) in order to harvest AEC2 cell subpopulations with a >90% CD45−EpCAM+ or
CD45−EpCAM+ T1α− profile.
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2.7. Real-Time Quantitative PCR

The RNA levels were assayed in both lung tissue and FACS-isolated AEC2 cells by
quantitative PCR (qPCR) using the gene-specific primer sequences shown in Supplemen-
tary Table S1. Fresh lung tissues were perfused with PBS in order to remove blood cell
contamination, followed by snap-freezing and storage at −80 ◦C. Total RNA from lung
tissue was extracted with TRIzol reagent (Life Technologies, Carlsbad, CA, USA) according
to the manufacturer’s instructions. Total RNA from AEC2 cells was extracted with an
RNeasy Micro Kit (Qiagen, Valencia, CA, USA). Equal amounts of total RNA from lung
or AEC2 cells was reverse-transcribed into cDNA using the PrimeScript RT Reagent Kit
(Takara Bio (Dalian), Dalian, China). Gene expression was quantified by qPCR using iQ
SYBR Green Supermix (Bio-Rad Laboratories, Hercules, CA, USA) with the Bio-Rad CFX96
real-time PCR system. The cycle threshold value of each target gene was normalised
to the housekeeping β-actin content of each cDNA and either the 2(−∆Ct) or 2(−∆∆Ct)
method was used to calculate and graph the relative mRNA level (ratio to β-actin) or
relative expression (as a fold-activation value) [30]. The primer sequences were listed in
Supplementary Table S1.

2.8. Statistical Analysis

The results were expressed as the mean ± standard error and were based on the
indicated number of lung samples per group. For lung staining, four random images
from different regions on a randomly selected slide at 20- or 40-fold amplification for
each mouse were captured, and the number of stained cells was counted for each image.
The average number of stained cells from these four images represented the value of the
lung from which the section was cut. The statistical significance of differences was assessed
by a two-tailed Student’s t-test when two groups were compared or by one-way ANOVA
analysis with Bonferroni correction when multiple comparisons were conducted using
GraphPad Prism software, with statistical significance indicated by * p < 0.05, ** p < 0.01,
and *** p < 0.001.

3. Results
3.1. Age-Related Activation of the p53 Signalling Pathway in Pulmonary Fibrosis in Mice

To investigate the molecular mechanisms of telomere DDR and SALI in pulmonary
ageing and IPF, we examined the p53 signalling pathway in naturally aged mouse lung
tissues and found that pulmonary fibrosis occurred with the increase in age in male mice
(Figure 1A). In male mice aged 30 months, the pulmonary morphology confirmed the
IPF-like fibrosis with significantly reduced volumes (Figure 1A,B). In association with
pulmonary fibrotic lesions including alveolar fusion (Figure 1A), the mRNA levels of p53,
p21, heterochromatin protein 1γ (HP1γ), type I collagen (Col1α), Vimentin (Vim), and
α-SMA were increased significantly in the lung tissues of 18-month-old mice compared
with 2-month-old mice (Figure 1C). Significantly compromised pulmonary respiratory
functions were confirmed with impaired expiratory influxes and tidal and minute venti-
lation volumes in mice aged 30 months (Figure 1D). These results indicate that naturally
aged mice develop pulmonary senescence with DDR and activation of the p53-related
signalling pathway.

3.2. The Third Generation of Telomerase RNA Subunit Deficiency Causes Pulmonary Senescence
and Low-Grade Inflammation

To determine the overall molecular signatures of pulmonary ageing in lung sections
of telomerase-deficient mice (Figure 2A–E, Supplementary Figures S1 and S2), we found
that, in addition to increased senescence marker SA-β-gal-positive cells in the G3 Terc
knockout (KO) lungs compared with the wild-type (WT) littermate lungs, the mRNA
levels for the cell cycle inhibitor p21 were markedly increased (Figure 2A–C). While no
significant mRNA change was observed for p27, p57, p16, or cell proliferation index Ki67,
potentially due to sample preparation in this instance, a marked protein increase was
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detected for phospho-ATM (p-ATM), p53, p21, p16, p15, and γH2AX (Figure 2C,D) in line
with our previous observations at the mRNA levels [20]. The lysosomal β-galactosidase-
associated GLB1 was increased in line with increased SA-β-gal (Figure 2C), and a marked
increase in p21 was confirmed by Western blot (Figure 2D), suggesting that p21 might
mediate telomere shortening-induced pulmonary senescence. In line with pulmonary
senescence, the lung weights were significantly decreased (Figure 2F). In addition, we
found that the natural-killer cell marker NK1.1 was significantly increased, whereas the
macrophage marker F4/80 was not changed significantly (Figure 2C,E), suggesting that
telomere shortening results in the activation of innate immunity with increased natural
killer cells rather than macrophages.
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3.3. Pulmonary AEC2 Stem Cells Undergo Senescence by Mechanisms Involving p21 in Mice
Deficient of the Telomerase RNA Component

To identify the cell type(s) showing a senescent phenotype, we performed double
immunofluorescence staining on pulmonary alveolar stem AEC2 cells by SPC (surfactant
protein C) and each of p21, p16, or Hp1γ. We found that the cell cycle inhibitor p21 was
significantly higher in AEC2 cells of the lung sections in G3 TERC KO mice versus the WT
(20.44% vs. 10.54%, respectively) (Figure 3). In addition, staining with the cell cycle inhibitor
p16 in AEC2 cells showed that p16 was significantly higher in AEC2 cells of G3 TERC
KO lungs (88%) compared with the WT (32.7%) (Figure 3). Consistent with the increased
cell cycle inhibitors in AEC2 cells, senescence-associated heterochromatin foci (SAHF)-
associated HP1γ were increased. We found that HP1γ was significantly higher in the lungs
of G3 TERC KO than that in the WT (37.5% vs. 6.0%) (Figure 3). The telomere lengths
of AEC2 stem cells were significantly shortened in late-generation TERC KO lungs [20],
suggesting that telomere shortening triggers AEC2 cell cycle arrest and senescence by
mechanisms involving p21 in mouse lungs.

3.4. Marked Increase in Apoptosis-Related Cleaved Caspase-3 Staining in AEC2 Cells from G3
TERC Knockout Mouse Lungs

To investigate the effect of TERC deficiency on apoptosis in AEC2 cells in the lungs,
double immunofluorescence staining was performed for the AEC2-specific marker, SPC,
and the apoptotic marker, cleaved caspase-3. Staining of cleaved caspase-3 in AEC2 cells
showed significantly increased levels in the lungs of G3 TERC KO mice compared with
that in WT lungs (41.8% vs. 14.8%, respectively) (Figure 4A,B). In addition, the levels of
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cleaved caspase-3 protein and apoptosis-related Bax [31,32] were increased significantly
in the lungs of G3 TERC KO mice (Figure 4C,D). The AEC2 cell number was decreased
significantly in the lungs of G3 TERC KO mice by cell counting in slides (SPC-positive cells)
or flow cytometry (Figure 4E,F). These results suggest that TERC deficiency triggers not
only alveolar stem cell senescence but also apoptosis by a mechanism involving p21 and
p16 in lungs.

3.5. AEC1 Cell-Associated T1α Is Significantly Elevated in Both G3 TERC Knockout Mouse
Lungs and AEC2 Cells

As an AEC1 canonical marker in the lungs [33], T1α mRNA levels were up-regulated
more than two-fold in the lungs of G3 TERC KO mice in comparison with that of WT
animals (Figure 5A). Consistent with an effect of telomere shortening, the T1α mRNA
level was significantly higher in the lungs of G3 TERC KO mice than that of G2 TERC
KO mice (Figure 5A). In addition, T1α was increased in the AEC2 cells of G3 TERC KO
mice compared with the WT (Figure 5A,B), suggesting that telomere shortening promotes
differentiation from AEC2 cells to AEC1 cells while triggering AEC2 cell senescence and
apoptosis. Consistently, p21 mRNA was up-regulated whereas Ki67 [34,35] was down-
regulated in the lungs of G3 TERC KO compared with the WT (Figure 5B). Moreover, the
mRNA level of another AEC1 marker, aquaporin 5 (AQP5), was significantly increased in
the lungs of G3 TERC KO mice compared with that of WT mice (Supplementary Figure S2).
These results suggest that AEC2 cells undergo differentiation in G3 TERC KO mice.
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cleaved caspase-3 protein and apoptosis-related Bax [31,32] were increased significantly 
in the lungs of G3 TERC KO mice (Figure 4C,D). The AEC2 cell number was decreased 
significantly in the lungs of G3 TERC KO mice by cell counting in slides (SPC-positive 

Figure 3. Marked increases in p21, p16, and SAHF-associated Hp1γ staining rates in AEC2 cells from late-generation Terc−/−

lungs, and p53 deletion significantly reversed increased Hp1γ expression. (A) Representative double immunofluorescence
staining of Terc+/+, G3Terc−/−, G2Terc−/−, and G2Terc−/−p53−/− mouse lungs (magnification: 40×) for SPC along with
p21, p16, or Hp1γ. Scale bar = 30 µm. (B) Quantification of p21-, p16-, and Hp1γ-stained AEC2 cells by cell counting (as in
A). Data are mean ± SE values based on the indicated number of lungs. Statistical significance is indicated by ** p < 0.01,
*** p < 0.001.
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cells) or flow cytometry (Figure 4E,F). These results suggest that TERC deficiency triggers 
not only alveolar stem cell senescence but also apoptosis by a mechanism involving p21 
and p16 in lungs.  

 Figure 4. Marked increases in apoptosis-related cleaved caspase-3 staining rates in the AEC2 cells
from late-generation Terc−/− mouse lungs and rescued in p53−/−. (A). Representative double
immunofluorescence staining of WT, G3Terc−/−, G2Terc−/−, and G2Terc−/−p53−/− mouse lungs
(magnification: 40×) for SPC and cleaved caspase-3. Scale bar = 30 µm. (B). Quantification of cleaved
caspase-3 stained AEC2 cells by cell counting (as in (A)). Data are mean ± SE values based on the
indicated number of lungs. (C). Marked increases in apoptosis with cleaved caspase-3 in the late-
generation Terc−/− mouse lungs by Western blotting analysis. (D). Increases in apoptosis-related Bax
mRNA levels in the late-generation Terc−/− mouse lungs by RT-qPCR analysis. Data are mean ± SE
values based on the indicated number of lungs. (E). Significant decrease in the AEC2 cell number by
cell counting in the slides from late-generation Terc−/− mouse lungs, and rescued in p53−/−. Data are
mean ± SE values based on the indicated number of lungs. (F). Representative flow cytometry result
showing significant decreases in AEC2 cell number (gated by CD45−EpCAM+) in late-generation
Terc−/− mouse lungs. Statistical significance is indicated by * p < 0.05, ** p < 0.01, *** p < 0.001.
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fication: 40×). Scale bar = 30 μm. (D) Quantification of T1α stained rate by cell counting (as in (A)). Data are mean ± SE 
values based on the indicated number of lungs. Statistical significance is indicated by * p < 0.05, ** p < 0.01, *** p < 0.001. 

3.6. Rescue of Alveolar Stem Cell Senescence and Apoptosis in the Late Generation of TERC KO 
Mice by p53 Deficiency 

To understand the molecular mechanism of AEC2 cellular senescence and apoptosis 
caused by telomere shortening, mice carrying the Terc−/− allele were crossed with the p53−/− 
allele to generate double-knockout mice of TERC and p53. A comparison of the SAHF-
associated Hp1γ expression in AEC2 cells of G2 TERC and p53 double-knockout mouse 
lungs with that of G2 TERC KO mouse lungs by immunofluorescence double staining 
showed that the increased Hp1γ staining in AEC2 cells in G2 TERC KO mouse lungs com-
pared with that of WT (33.2% vs. 6.03%) was significantly decreased by p53 knockout in 
AEC2 cells (18.80%) (Figure 3A,B), suggesting that p53 mediated AEC2 senescence in-
duced by TERC deficiency. In addition, staining of cleaved caspase-3 in AEC2 cells 
showed that increased cleaved caspase-3 in G2 TERC KO AEC2 was significantly de-
creased in G2 TERC and p53 double-knockout AEC2 (57.1% vs. 17.1%) (Figure 4A,B), sug-
gesting that, in addition to cell senescence, AEC2 apoptosis induced by TERC deficiency 
is mediated by a p53-dependent mechanism. Furthermore, staining for the AEC1 cell 

Figure 5. Significant elevation of AEC1 cell marker T1α in both late-generation mouse lungs and isolated AEC2 cells,
which was not rescued by p53−/−. (A) qPCR analysis of T1α mRNA levels from the indicated number of lungs. Data are
expressed as mean ± SE values. (B) qPCR analysis of T1α mRNA levels with AEC2 cell RNAs isolated from lungs by
FACS sorting. Data are expressed as mean ± SE values based on the indicated animal numbers used to isolate lung AEC2
cells. (C) Representative T1α immunofluorescence staining of WT, G3Terc−/−, G2Terc−/−, and G2Terc−/−p53−/− mouse
lungs (magnification: 40×). Scale bar = 30 µm. (D) Quantification of T1α stained rate by cell counting (as in (A)). Data are
mean ± SE values based on the indicated number of lungs. Statistical significance is indicated by * p < 0.05, ** p < 0.01,
*** p < 0.001.

3.6. Rescue of Alveolar Stem Cell Senescence and Apoptosis in the Late Generation of TERC KO
Mice by p53 Deficiency

To understand the molecular mechanism of AEC2 cellular senescence and apoptosis
caused by telomere shortening, mice carrying the Terc−/− allele were crossed with the
p53−/− allele to generate double-knockout mice of TERC and p53. A comparison of the
SAHF-associated Hp1γ expression in AEC2 cells of G2 TERC and p53 double-knockout
mouse lungs with that of G2 TERC KO mouse lungs by immunofluorescence double stain-
ing showed that the increased Hp1γ staining in AEC2 cells in G2 TERC KO mouse lungs
compared with that of WT (33.2% vs. 6.03%) was significantly decreased by p53 knockout
in AEC2 cells (18.80%) (Figure 3A,B), suggesting that p53 mediated AEC2 senescence in-
duced by TERC deficiency. In addition, staining of cleaved caspase-3 in AEC2 cells showed
that increased cleaved caspase-3 in G2 TERC KO AEC2 was significantly decreased in G2
TERC and p53 double-knockout AEC2 (57.1% vs. 17.1%) (Figure 4A,B), suggesting that,
in addition to cell senescence, AEC2 apoptosis induced by TERC deficiency is mediated
by a p53-dependent mechanism. Furthermore, staining for the AEC1 cell marker T1α
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showed that increased T1α in G2 TERC KO AEC2 cells was not affected by G2 TERC and
p53 double knockouts in the mouse lungs (Figure 5C,D), suggesting that TERC KO-induced
T1α elevation in AEC2 is mediated by a mechanism independent of p53.

4. Discussion

Telomeres are nucleotide–protein complexes that maintain stable chromosome ends [36].
In mammalian somatic cells, telomere length becomes progressively shorter with each
cell division due to the DNA end replication problem, but telomere length is maintained
by telomerase activity [37]. In order to study the impacts of telomere shortening, several
telomerase knockout mouse models have been generated, and late generations of TERC
knockout mice possess significantly shorter telomeres [19]. The abnormalities identified
in lung tissues in the TERC knockout model include poor alveolar integrity, compro-
mised regenerative ability under partial pneumonectomy, and pulmonary fibrosis induced
by telomere dysfunction and shortening [20,24,38,39]. In the present study, we demon-
strate that naturally aged mice develop pulmonary senescence and IPF-like lesions with
activation of the p53 signalling pathway. The DNA damage response is activation by
telomerase deficiency in the AEC2 stem cells as a major population of cellular senescence
with increased staining of the cell cycle inhibitors p21, p16, and SAHF-associated Hp1γ in
the lungs of mice after three generations of telomerase RNA component deficiency. The
data confirmed previous findings that telomere shortening promotes pulmonary stem
cell senescence, consistent with a common cellular basis for the development of telomere
shortening-associated diseases in the respiratory system such as IPF and COPD [20,24].
In addition, we demonstrate that TERC deficiency also triggers AEC2 cell apoptosis with
increased apoptosis-associated cleaved caspase-3, suggesting that the reduced population
of AEC2 stem cells in telomerase deficiency [20] is due to not only permanent arrest of the
cell cycle but also increased apoptotic cell death. Moreover, this study reveals that both
AEC2 cell senescence and AEC2 cell apoptosis are dependent on p53, which is consistent
with previous observations supporting a role for p53 as a central control mechanism for
both cell senescence and apoptosis that is promoted by defects in telomeres [40] as well as
mitochondrial dysfunction [41].

At the whole organ level of late-generation TERC KO mouse lungs, besides high levels
of cellular senescence features including increased p21 and SA-β-gal activities in association
with GLB1, the natural killer cell marker NK1.1 is strongly up-regulated in G3 TERC-
deficient lungs. Consistent with the involvement of innate immune cells, especially natural
killer cells, our previous studies demonstrated significant cytokine storms in the lungs of
telomerase deficiency, including markedly elevated IL-1, IL-6, CXCL15, IL-10, TNF-alpha,
and CCL2, with IL-6 and CXCL15 spillover into the bronchial alveolar lavage fluids [20].
An increased infiltration of NK cells may thus provide a clue in further investigations into
telomerase deficiency-associated SALI for potential intervention strategies. It is possible
that compromised telomere maintenance triggers epigenetic alterations, resulting in altered
gene expressions and DNA damage-related immune response serving as DNA damage-
associated molecular patterns in SALI and lung ageing [26,42].

Previous studies demonstrated that telomere maintenance plays a significant role in
regulating fibroblast transdifferentiation in fibrotic pathogenesis [27]. In an attempt to
determine the effect of TERC deficiency on AEC2 differentiation, we demonstrate that the
AEC1 marker T1α levels are surprisingly increased in the lungs of the late-generation TERC
knockout mice and in isolated AEC2 cells. Since T1α is an apical membrane protein re-
quired in AEC1 cells as a differentiation marker for AEC1 cells [3,33], our data suggest that
telomere shortening promotes cellular differentiation from AEC2 cells to AEC1 cells. More-
over, these results show that T1α up-regulation is not mediated by p53 as p53 deletion does
not inhibit T1α. It is possible that telomere shortening leads to altered gene expressions
via telomere position effect [43] and/or alternative splicing of a suite of genes related to
genome stability, DNA repair, and chromosome remodelling [44]. Thus, TERC deficiency-
caused telomere maintenance failure may result in a heterogeneous population of AEC2
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with not only increased senescence and apoptosis but also enhanced differentiation. Fur-
ther studies are required to determine the mechanisms controlling AEC2 fate decisions,
e.g., between senescence and apoptosis; between differentiation and transdifferentiation;
between senescent cell resistance and susceptibility to cell death; and between different
forms of cell deaths such as apoptosis, pyroptosis, and autophagic cell death [45,46]. Stud-
ies are also required to determine if an alternative anti-apoptotic function of human TERC
involves hTERP encoded by TERC, as reported recently [21].

In conclusion, pulmonary ageing and IPF-like lesions occur in the natural ageing pro-
cess whereby pulmonary stem cells mediate telomerase deficiency-induced SALI, causing
pulmonary senescence and fibrosis. Cellular mechanisms of pulmonary senescence include
increased senescence, apoptosis, and differentiation of the alveolar stem cells. AEC2 stem
cell senescence and apoptosis are mediated at least in part by the tumour suppressor
protein p53-dependent mechanisms involving p21, whereas AEC2 differentiation is p53-
independent, providing a molecular basis for further investigation in age-related lung
diseases such as IPF and COPD.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/cells10112892/s1, Figure S1: RT-qPCR analysis of Terc and Tert mRNA levels in late-
generation Terc−/−mouse lungs, Figure S2: Significant increased mRNA levels of AEC1 marker AQP5
in late-generation Terc−/− mouse lungs, Table S1: Primer sequences used for real-time qPCR analysis.
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