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Abstract: The establishment and application of a spectral library is a critical step in the standardization
and automation of remote sensing interpretation and mapping. Currently, most spectral libraries are
designed to support the classification of land cover types, whereas few are dedicated to agricultural
remote sensing monitoring. Here, we gathered spectral observation data on plants in multiple
experimental scenarios into a spectral database to investigate methods for crop classification (16 crop
species) and status monitoring (tea plant and rice growth). We proposed a set of screening methods
for spectral features related to plant classification and status monitoring (band reflectance, vegetation
index, spectral differentiation, spectral continuum characteristics) that are based on ISODATA and
JM distance. Next, we investigated the performance of different machine learning classifiers in the
spectral library application, including K-nearest neighbor (KNN), Random Forest (RF), and a genetic
algorithm coupled with a support vector machine (GA-SVM). The optimal combination of spectral
features and the classifier with the highest classification accuracy were selected for crop classification
and status monitoring scenarios. The GA-SVM classifier performed the best, which produced an
accuracy of OAA = 0.94, Kappa = 0.93 for crop classification in a complex scenario (crops mixed
with 71 non-crop plant species), and promising accuracies for tea plant growth monitoring (OAA =

0.98, Kappa = 0.97) and rice growth stage monitoring (OAA = 0.92, Kappa = 0.90). Therefore, the
establishment of a plant spectral library combined with relevant feature extraction and a classification
algorithm effectively supports agricultural monitoring by remote sensing.
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1. Introduction

Agricultural remote sensing technology plays an important role in agricultural macromanagement,
providing an efficient tool for monitoring agricultural field distribution [1] and crop growth [2], and
for estimating of crop yields [3]. Hyperspectral remote sensing can obtain rich spectral information
about plants and detect their physiological and biochemical status. Compared with multi-spectral
remote sensing technology, hyperspectral remote sensing provides more detailed plant monitoring
information, especially in complex scenarios [4] (e.g., mixed crop planting or mixed crop growth
status). With the recent development and maturity of airborne and space-borne hyperspectral sensors,
hyperspectral remote sensing is becoming an increasingly important technology with great potential
for the remote monitoring of vegetation and agriculture [5].

Plant classification and growth status monitoring are useful applications of remote sensing
technology and much progress has been made in combining hyperspectral technology and machine
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learning methods in recent years. Table 1 shows some applications of machine learning. Pu and Liu [6]
used hyperspectral data measured on the ground to identify 13 species of trees distributed in Tampa,
Florida, USA, by segmented canonical discriminant analysis (CDA), segmented principal component
analysis (PCA), segmented stepwise discriminate analysis (SDA), and segmented maximum likelihood
classifier (MLC). With this method, the highest identification accuracy the authors achieved was
96%. Underwood et al. [7,8] used multiple minimum noise fraction (MNF) converted from AVIRIS
hyperspectral image data to successfully classify three exotic plant species (iceplant, jubata grass,
and blue gum) along the California coast based on MLC. Huang et al. [9] used UAV hyperspectral
data and the maximum likelihood (ML) method to successfully identify saplings in wooded areas
with a high accuracy of 95.7%. In terms of monitoring plant growth status, Yuan et al. [10] used UAV
hyperspectral data to analyze soybean growth from leaf count estimates by combining random forest
(RF), artificial neural network (ANN), and support vector machine (SVM) classifiers. The approach
achieved an identification accuracy of R2 = 0.749 (R2 is the validation coefficient of the regression
model). Backhaus et al. [11] used hyperspectral image data to monitor nitrogen levels in tobacco leaves,
combining the classification methods of SVM, supervised relevance neural gas (SRNG), generalized
relevance learning vector quantization (GRLVQ), and radial basis function (RBF), and achieved 99.8%
accuracy in the classification of nutritional status. Senthilnath et al. [12] used satellite hyperspectral
image data and the iterative self-organizing data analysis (ISODATA), the artificial immune system
(AIS), the hierarchical artificial immune system (HAIS), and the niche stratified artificial immune
system (NHAIS) classification method to successfully identify three growth stages of wheat crops and
monitor growth, achieving an 81.5% identification accuracy. Duarte-Carvajalino [13] monitored potato
late blight using UAV hyperspectral data and color images combined with the multi-layer perceptron
(MLP), the support vector regression (SVR), the random forest (RF), and the convolutional neural
network (CNN) classifiers, achieving a disease identification accuracy of R2 = 0.74.

Table 1. Application of Machine Learning.

Monitoring Contents Machine Learning Methods Accuracy Reference

Urban tree species (13 species)

Segmented canonical discriminant
analysis (CDA),

segmented principal component
analysis (PCA),

segmented stepwise discriminate
analysis (SDA), and segmented

maximum likelihood classifier (MLC)

OAA:76–96% Pu and Liu [6]

Invasive species (Carpobrotus
edulis, Cortaderia jubata,

Eucalyptus globulus)

PCA and minimum noise fraction
(MNF) OAA:37–75% Underwood et al. [7]

Nonnative plant species
(Carpobrotus edulis, jubata

grass, and Cortaderia jubata)
MLC OAA:55–97% Underwood et al. [8]

Juvenile tree species (9 species) Maximum likelihood (ML) OAA:68–96% Huang et al. [9]

Soybean growth
Random forest (RF), artificial neural

network (ANN), support vector
machine (SVM)

R2:0.674–0.749 Yuan et al. [10]

Tobacco leaf nitrogen levels

SVM, supervised relevance neural gas
(SRNG), generalized relevance

learning vector quantization
(GRLVQ), radial basis function (RBF)

OAA:2.2–99.8% Backhaus et al. [11]

Wheat growth stages

iterative self-organizing data analysis
(ISODATA), artificial immune system
(AIS), hierarchical artificial immune

system (HAIS),
niche stratified artificial immune

system (NHAIS)

OAA:59.5–81.5% Senthilnath et al. [12]

Potato disease (Late Blight)

Multi-layer perceptron (MLP),
convolutional neural network (CNN),

support vector regression (SVR),
random forest (RF)

R2:0.44–0.74 Duarte-Carvajalino [13]
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A critical step in the standardization and automation of remote sensing monitoring of plants is
the establishment of a plant spectral library. Some spectral libraries have been created and applied,
including spectral collections by NASA’s Jet Propulsion Laboratory (JPL), Johns Hopkins University
(JHU), and the United States Geological Survey (USGS), which include spectra from rocks, minerals,
lunar soils, terrestrial soils, manmade materials, meteorites, vegetation, snow, and ice [14]. However,
most spectral libraries were designed to support comprehensive classification of land cover types
rather than for agricultural remote sensing monitoring. Nidamanuri et al. [15] used HyMAP airborne
hyperspectral images to establish a spectral library containing five crops (alfalfa, winter barley, winter
rape, winter rye, and winter wheat) and achieved a crop classification accuracy of 82% by searching and
matching the spectral library. This demonstrates that the joint hyperspectral remote sensing data and
spectral library approach can be used to successfully monitor crops remotely. However, little research
has been conducted on the construction and application of spectral libraries designed specifically for
crop monitoring. In addition, spectral library-related techniques have largely been used for plant
classification rather than for plant status monitoring, which is essential in agricultural production
management. In this study, to promote the development of spectral library-based agricultural
monitoring, the specific objectives were to: (1) obtain spectral data sets for crop classification in complex
scenarios (crops mixed with non-crop plant species) and spectral data for crop status monitoring
(i.e., growth vigor of tea plant and growth stages of rice) and used the tea plant data to construct a
crop spectral library; (2) presented a set of spectral feature optimization methods and classification
modeling methods for crop classification and status monitoring; (3) evaluated the effectiveness of the
spectral library-based methods in crop classification and status monitoring.

2. Materials and Methods

2.1. Data Acquisition for Construction of a Crop Spectral Library

2.1.1. Experiment 1: Spectral Data Collection for Crop Classification

In this study, 16 major crops were selected for canopy spectral collection in the range of longitude
119.94◦–120.35◦ and latitude 30.08◦–30.32◦ in Hangzhou, Zhejiang province, from May to September
2017. Crops are often mixed with non-crop plants (e.g., urban garden and wetland plants) in the
same landscape, so crop classification based on satellite or UAV remote sensing images under natural
circumstances would include these non-crop plants. Therefore, in this study, we selected 71 non-crop
plants commonly found in the study area for spectral collection. In terms of plant species investigation,
some spectral collection points contained clear classification information on plant tags and could be
used directly. When no listing information was available, species information was determined by
an experienced plant ecologist according to the book of “Flora of China.” During the plant survey,
each plant species was photographed for reference. The specific information collected on the 87
plant species (crops + non-crop plants) is shown in Table A1 (Appendix A). The canopy spectral
measurement for each species was repeated 25 times, providing a total of 2,175 pieces of original data
were obtained. A small number of abnormal spectra were removed after data examination, for a final
total of 2,147 spectra.

2.1.2. Experiment 2: Spectral Data Collection for Crop Growth Monitoring

Crop growth monitoring included two experiments: (1) growth status of tea plants and (2) growth
stages of rice. We obtained canopy spectra and ancillary information for different crop statuses. Specific
experimental information is shown in Table 2.
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Table 2. Crop growth status monitoring information in Experiment 2.

Plants’ Name Status Time Location Sample Size

Tea tree Growth
(Three levels) August 2017 Hangzhou, China

tea laboratory base

14 × 10 (poor growth) +
16 × 10 (medium growth) +
16 × 10 (good growth) = 460

Rice Growing stage
(Five stages) August 2018

Fu yang,
Hangzhou, China

National Rice
Research Institute

5 (stages) × 12 (plots) × 5 = 300

Experiment on Tea Plant Growth Vigor Monitoring

The tea plant growth monitoring experiment was conducted in August 2017 at the experimental
base of Tea Research Institute, Chinese Academy of Agricultural Sciences in Hangzhou. The
experimental base contains a total of 46 experimental plots (14 experimental plots applied less
nutrition, 16 experimental plots applied the recommended rate of nutrition and 16 experimental plots
applied over the recommended rate of nutrition) in which we obtained different levels of tea plant
growth vigor by controlling nutrient inputs. In addition to collecting spectral data for each plot
(10 times measurements in each plot), we also investigated tea plants growth vigor in the field. Vigor
was evaluated by experienced cultivation experts from the China Tea Institute based on the following
criteria: (1) good growth: lush leaf growth with 100% coverage, bright green leaf color, and normal
plant height; (2) medium growth: sparse leaves, partial gaps in the canopy, dark green leaf color, and
relatively low plant height; (3) poor growth: sparse leaves, crown gap, gray leaf color, relatively low
plant height, and partial water loss and wilting in some leaves. Figure 1 demonstrated tea plants from
the experimental area under different growth vigor.
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Figure 1. Examples of tea plant growth status in the study area (poor growth (a), medium growth (b),
and good growth (c), respectively).

Experiment on Rice Growth Stage Monitoring

The experiment was conducted in August 2018 at the experimental base of China National Rice
Research Institute (CNRRI) for monitoring rice growth stages. Rice seedlings were transplanted into
the experimental field on five different dates (1 week apart in sequence). Grade 5 was the latest sowing
date and grade 1 was the earliest. Each treatment contained 12 plots and each plot area was 2 m
× 4 m. Conventional management of fertilization and irrigation was applied in all treatments. In
addition to collecting spectrometric data for each plot, rice growth stage was investigated by a rice
cultivation expert from the CNRRI. Rice growth stage in each plot was observed during the elongation
and booting stages.

2.1.3. Measurement of Crop Canopy Hyperspectral Data

Plant canopy spectra were measured using an ASD FieldSpec4 Pro FR (350–2500 nm) spectrometer
in strict accordance with standard methods. The spectral resolution of the instrument is 3 nm in the
350–1000 nm range and 10 nm in the 1000–2500 nm range. During observation, the probe was pointed
vertically downward at a height of 0.6 m above the ground and a field angle of 25◦. In addition, each
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spectral reading is an average of 10 repeats of spectral records, which thus guaranteed the stability and
high quality of the spectral data. Reflectance was obtained by calibration with a standard reference
plate before and after each measurement. We used ViewSpec software and resampled the spectral
curves to 1 nm. All spectroscopic measurements were made on clear, cloudless days between 10:00
and 14:00 (local time).

2.2. Extraction and Analysis of Spectral Features

2.2.1. Extraction of Spectral Features

Given the relatively large number of wavebands of spectral measurements (n = 2151) compared
with directly using the spectral bands in classification, analysis efficiency can be enhanced by using
fewer selected spectral features. Here we selected and extracted different types of spectral features for
analysis according to the spectral characteristics of plants, including: (1) some original spectral bands;
(2) a set of derivative and continuum-removal spectral features (Der & Con features) that can highlight
the characteristics of peaks and valleys in spectral curves (Table 3); (3) a total of 26 classic VIs related to
plant structure, pigments, and water content, as well as other biochemical properties such as cellulose
and lignin (Table 4).

Table 3. Derivative and continuous removal spectral features used in this study.

Feature Type Position Band Range (nm) Feature

First derivative feature

Blue edge 490–540
Maximum differential value (BMV)

Position of the maximum differential
value (BPMV)

Sum of differential values (BSV)

Yellow edge 540–620
Maximum differential value (YMV)

Position of the maximum differential
value (YPMV)

Sum of differential values (YSV)

Red edge 660–780
Maximum differential value (RMV)

Position of the maximum differential
value (RPMV)

Sum of differential values (RSV)

Continuous removal
feature

Near infrared 530–770
Depth
Width
Area

Table 4. Vegetation indices used in this study.

Spectral Index Characteristics & Functions Definition Reference

Structure (LAI, crown closure, Green biomass, Species, etc.)

ATSAVI, Adjusted Transformed
Soil-Adjusted VI

Less affected by soil
background and better for
estimating homogeneous

canopy

a × (R800 − a × R670 − b)/
[(a × R800 + R670 − a × b + X ×

(1 + a
2
)],

where X = 0.08,
a = 1.22, and b = 0.03

Baret and Guyot 1991 [16]

GI, Greenness Index
Estimate biochemical

constituents and LAI at leaf
and canopy levels

R554/R677 Zarco-Tejada et al. 2005 [17]

MSAVI, Improved Soil Adjusted
Vegetation Index

A more sensitive indicator of
vegetation amount than SAVI

at canopy level

0.5 × [2R800 + 1 − ((2R800 + 1)
× 2 − 8(R800 − R670)) × 1/2] Qi et al. 1994 [18]

NBNDVI, Narrow-Band
Normalized Difference Vegetation

Index

Responds to change in the
amount of green biomass and
more efficiently in vegetation
with low to moderate density

(R850 − R680)/(R850 + R680) Rouse et al. 1973 [19]

NRI, Normalized Ratio Index
A sensitive indicator of

biomass, N concentration and
height of crop (wheat)

(R874 − R1225)/(R874 + R1225) Koppe et al. 2010 [20]
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Table 4. Cont.

Spectral Index Characteristics & Functions Definition Reference

PSND, Pigment-Specific
Normalized Difference

Estimate LAI and Cars at leaf
or canopy level (R800 − R470)/(R800 + R470) Blackburn.1998 [21]

PVIhyp, Hyperspectral
Perpendicular VI

More efficiently quantify the
low amount of vegetation by
minimizing soil background

influence on vegetation
spectrum

(R1148 − aR807 − b)/(1 + a
2
) ×

1/2,
a = 1.17, b = 3.37

Schlerf et al. 2005 [22]

sLAIDI, Normalization or
Standard of the LAIDI

Sensitive to LAI variation at
canopy level with a saturation

point >8

S × (R1050 − R1250)/(R1050 +
R1250),

where S = 5
Delalieux et al. 2008 [23]

SPVI, Spectral polygon vegetation
index Estimate LAI and canopy Chls 0.4 × [3.7 × (R800 − R670) − 1.2

× |R530 − R670|] Vincini et al. 2006 [24]

Pigments (Chls, Cars, and Anths)
PRI, Photochemical /Physiological

Reflectance Index
Estimate carotenoid pigment

contents in foliage (R531 − R570)/(R531 + R570) Gamon et al. 1992 [25]

ARI, Anthocyanin Reflectance
Index

Estimate Anths content from
reflectance changes in the
green region at leaf level

(R550) − 1 − (R700) − 1 Gitelson et al. 2001 [26]

BRI, Blue Red Pigment Index
Estimate Chls and Cars

content at leaf and canopy
levels

R450/R690 Zarco-Tejada et al. 2005 [17]

CI, Chlorophyll Index Estimate Chls content in
broadleaf tree leaves

(R750 − R705)/(R750 + R705);
R750/[(R700 + R710) − 1]

Gitelson and Merzlyak 1996
[27]; Gitelson et al. 2005 [28]

CRI, Carotenoid Reflectance Index Sufficient to estimate total
Cars content in plant leaves

CRI550 = (R510) − 1 − (R550) −
1;

CRI700 = (R510) − 1 − (R700) − 1
Gitelson et al. 2002 [29]

LCI, Leaf Chlorophyll Index

Estimate Chl content in higher
plants, sensitive to variation in

reflectance caused by Chl
absorption

(R850 − R710)/(R850 + R680) Datt. 1999 [30]

MCARI, Modified Chlorophyll
Absorption in Reflectance Index

Respond to Chl variation and
estimate Chl absorption

[(R701 − R671) − 0.2(R701 −

R549)] (R701/R671) Daughtry et al. 2000 [31]

NPCI, Normalized Pigment
Chlorophyll ratio Index

Assess Cars/Chl ratio at leaf
level (R680 − R430)/(R680 + R430) Peñuelas et al. 1994 [32]

Other Biochemicals

CAI, Cellulose Absorption Index
Cellulose & lignin absorption
features, discriminates plant

litter from soils
0.5 × (R2020 + R2220) − R2100 Nagler et al. 2000 [33]

NDLI, Normalized Difference
Lignin Index

Quantify variation of canopy
lignin concentration in native

shrub vegetation

[log(1/R1754) −
log(1/R1680)]/log(1/R1754) +

log(1/R1680)]
Serrano et al. 2002 [34]

NDNI, Normalized Difference
Nitrogen Index

Quantify variation of canopy
N concentration in native

shrub vegetation

[log(1/R1510) − log(1/R1680)]/
[log(1/R1510) + log(1/R1680)] Serrano et al. 2002 [34]

Water

LWVI-1, Leaf Water VI 1 Estimate leaf water content, an
NDWI variant (R1094 − R893)/(R1094 + R893) Galvão et al. 2005 [35]

NDII, Normalized Difference
Infrared Index

Detect variation of leaf water
content (R819 − R1600)/(R819 + R1600) Hardinsky et al. 1983 [36]

NDWI, ND Water Index

Improving the accuracy in
retrieving the vegetation water

content at both leaf and
canopy levels

(R860 − R1240)/(R860 + R1240) Gao 1996 [37]

RATIO975, 3-band ratio at 975 nm Estimate relative water
content <60% at leaf level

2 × R960-990/(R920-940 +
R1090-1110) Pu et al. 2003 [38]

SIWSI, Shortwave Infrared Water
Stress Index

Estimate leaf or canopy water
stress, especially in the
semiarid environment

(R860 − R1640)/(R860 + R1640) Fensholt and Sandholt 2003
[39]

WI, Water Index Quantify relative water
content at leaf level R900/R970 Peñuelas et al. 1997 [40]
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2.2.2. Sensitivity Analysis of Spectral Features

To select features that can be effectively used for crop classification and status monitoring, we
combined the iterative self-organizing data analysis algorithm (ISODATA) and Jeffries-Matusita (JM)
distance to conduct a sensitivity analysis on the spectral features. ISODATA is an adaptive clustering
algorithm developed based on the principle of the k-means algorithm [41]; JM distance is a distance
parameter calculated based on the probability distribution of sample features and is used to reflect the
distinguishing ability of spectral features [42]. Based on the spectral data of the training samples, we
calculated the JM distance of each band and the spectral features between each of the two categories
(two different species or two different statuses). After traversing all categories, the JM distance was
averaged to quantify the spectral discrimination ability of the band and spectral feature. We used
ISODATA to cluster the spectral bands of 350–2500 nm to reduce the high correlation between adjacent
bands of the original hyperspectral data. The bands with the largest JM distance in their groups were
then selected as the optimal bands. For other spectral features, we ranked all features according to JM
distance and conducted pair-by-pair cross-correlation analyses on features from the first 25% of the
JM distances. We then removed the lower JM distance of the two features above the threshold (R2 <

0.9) until all the correlations between the features were lower than the threshold. The same features
selection method was used for both the application of plant classification and status monitoring.

2.3. Classification Models and Accuracy Assessment

Three representative classifiers for the application of the spectral library were selected: KNN, RF,
and SVM coupled with a genetic algorithm (GA-SVM). KNN is a memory-based classifier, which does
not require model fitting. Instead, the samples were classified using the majority vote among the k
neighbors. Such non-parametric classifiers are featured as simple and fast [43]. The RF classifier consists
of a combination of tree classifiers where each classifier is generated using a random vector sampled
independently from the input vector. Based on the idea of bagging, the RF classifier averages many
noisy but approximately unbiased models, and hence reduces variance [44]. SVM is a discriminative
classifier formally defined by a separating hyperplane. It uses labeled training samples to output an
optimal hyperplane which is used to categorize new samples. This classifier addresses the small-size
training set problem and has a good generalization capacity. SVM was coupled with GA to optimize
the SVM parameters [4,45,46].

A complete calibration and validation strategy were adopted in the modeling process. 60% of
the samples from the spectral feature sets were randomly selected as training data to establish a
classification model using KNN, RF, and GA-SVM algorithms, respectively. The remaining 40% of the
data were used for independent model validation. Meanwhile, we compared the performances of
models constructed by the optimal selected bands, by indices, and by bands plus indices to analyze the
classification abilities of the different types of spectral features in the application of the spectral library.
The overall accuracy (OAA) and the Kappa coefficient were calculated from confusion matrices to
evaluate the classification accuracies [47]. The formula of the OAA is:

OAA =
number of corrected classified samples

number of total samples
× 100% (1)

The formula of the kappa coefficient is:

Kappa =

∑r
i=1 Xii −

∑r
i=1(Xi+ ∗X+i)

N2
−
∑r

i=1(Xi+ ∗X+i)
(2)

where r represents the number of rows and columns in the confusion matrix; Xii represents the number
of samples in row i and column i; Xi+ represents marginal total of row i; Xi+ represents marginal total
of column i; and N represents the total number of samples. All statistical analysis and modeling were
conducted using the MATLAB R2014a software (MathWorks Inc., Natick, Massachusetts, USA).
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3. Results and Discussion

3.1. Sensitive Features for Vegetation Classification and Growth Status Monitoring

The ISODATA analysis yielded 10 clusters of spectral bands for further screening. In Figure 2,
bands from the same ISODATA cluster are marked in the same color. Most bands belonging to a single
cluster are adjacent to each other but some nonadjacent bands were also found to be correlated and
were therefore classified into one cluster. To obtain sensitive bands, we chose the bands with the largest
JM distance in each cluster and removed bands with too close separation (<10 nm). The optimal group
of chosen bands included 396 nm, 417 nm, 527 nm, 676 nm, 699 nm, 1333 nm, 1457 nm, 1484 nm,
and 1545 nm. These bands display high sensitivity to different crop species and low information
redundancy. The optimal spectral features obtained by JM distance and inter-correlation analysis were:
water index (WI), width of the continuous removal feature (Width), blue–red pigment index (BRI),
physiological reflectance index (PRI), normalized difference infrared index (NDII), greenness index
(GI), normalized ratio index (NRI), and standard of the LAIDI (sLAIDI).

Figure 2. (a) Canopy spectra of sixteen crops; (b) the results of band JM distance ISODATA clustering.
(The species ID is referred from the Table A1. The same color indicates the same cluster.).

The optimal bands are distributed in the blue, green, and red spectral regions, which are related
to pigment absorption and reflection positions; the near-infrared band, which is associated with lignin
and cellulose; and the shortwave near-infrared region, which is related to plant water content [4,48]. In
addition, the optimal spectral features are associated with the physiological and biochemical status
and canopy structure of plants. Importantly, these factors vary significantly in different species, which
suggests that the spectral features can be used for remote species identification.

Figures 3 and 4 show the results of the feature selection analysis for monitoring the growth vigor
of tea plants and rice, respectively. The optimized spectral bands and spectral features are summarized
in Table 5. Seven sensitive bands were selected for tea plant growth vigor monitoring and ten for rice
growth stage monitoring, which are distributed in the blue, green, red, red edge, and infrared spectral
regions. Both groups contain bands at the red edge, near-infrared and shortwave near-infrared regions,
plus a similar band at the red-edge region. These bands are related to the spectral characteristics
of chlorophyll absorption, water absorption, and crop biophysical status changes. There were also
some differences in the composition of the optimal bands between the two scenarios. For example, tea
plant growth vigor monitoring included the 823 nm band, which is related to leaf internal structure
and canopy structure of the tea plant. Rice growth stage monitoring included a unique blue band
and a green band, which are both related to crop pigments. Changes in pigment contents indicate
physiological and biochemical changes in rice at different growth stages.
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Figure 3. (a) Canopy spectra for different tea plant growth stages; (b) the results of band JM distance
ISODATA clustering. The same color indicates the same cluster.

Figure 4. (a) Canopy spectra for different rice growth stages; (b) the results of band JM distance
ISODATA clustering. The same color indicates the same cluster.

Table 5. Selected spectral features for crop classification and growing status monitoring.

Application Scene
Selected Spectral Features

Bands (nm) First Derivative
Feature

Continuous
Removal Feature VIs

Crop classification
396,417,527,

676,699,1333,
1457,484,1445

None Width sLAIDI, NRI, GI, NDII,
PRI, BRI, WI

Growth monitoring of
tea trees

673,733,761,
823,1454,1517,

2024
None Depth

LWVI-1, WI, sLAIDI,
SIWSI, PVIhyp, NDII,
NBNDVI, NRI, NDWI

Growth stage
monitoring of rice

431,534,721,
749,1026,333,

1497,1599,660,
2023

BSV, YSV, BMV None PRI, CRI700, ARI, NPCI,
RATIO975, BRI, LWVI-1

For spectral features, the tea plant growth vigor and rice growth stage monitoring scenarios
yielded unique sensitive spectral feature sets, respectively. It is noticed that the spectral indices
sensitive to tea plant growth vigor were mainly related to canopy structure, leaf area index, nutrition,
and water content. For rice, the sensitive spectral indices were mainly related to pigment. The sensitive
features of tea plant growth vigor monitoring did not include spectral differential features, but did
include the continuum removal depth features. The sensitive features of rice growth stage monitoring
did not include continuum features but did include two spectral differential features around the blue
edge position, which is consistent with the distribution of the sensitive band feature. This position is
sensitive to variations in chlorophyll content, which is an important indicator of the rice growth stage.
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Table 5 summarizes the selected spectral bands and features for crop classification and growth
status monitoring. In this study, these features serving as the spectral “fingerprint” in application of
the spectral library for crop classification and growth status monitoring.

3.2. Spectral Library-Based Crop Classification

The optimized spectral features for crop classification can be categorized as follows: spectral
bands, spectral features, bands + features. In order to test crop classification in a real landscape, we
established a classification model that incorporated data on all 87 plant species (i.e., 16 crops + 71
non-crop plants) and then evaluated the model’s classification accuracy for 16 crops. Figure 5 shows
the classification results and accuracy evaluation of the three classifiers (in the form of a confusion
matrix heat map).
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using RF, (d–f) are results using GA-SVM, and (g–i) are results using K-nearest neighbors (KNN)).

Spectral bands used alone consistently produced the lowest accuracy, whereas bands + features
produced the highest accuracy. Spectral features used alone produced slightly lower accuracy than
bands + features, suggesting that the combination of the two types of features enhances or amplifies the
sensitive information of certain plants in the spectrum. Such a pattern is apparent in the classification
of the Camellia yuhsienensis Hu (crop no. 13 crop in Figure 5), which was barely classified using spectral
bands alone, but was clearly classified using spectral features or both types of features. In terms of the
crop classification performance of different classifiers, the GA-SVM outperformed RF and KNN under
all feature combinations. KNN performed significantly poorer than the other classifiers. This may be
due to KNN’s simple and straightforward analytical principle, which was insufficient for handling the
relatively complex scenario examined in this study. However, based on the “no-free-lunch-theorem”
raised by Wolpert [49], classifier performance is probably also case sensitive. This suggests that it is
necessary to perform an independent test to identify optimal algorithms when attempting to classify
crops mixed with non-crop species. Here, we created a spectral library that included 16 crop species
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and 71 non-crop species and used it to simulate crop classification in an actual setting. Our feature
sensitivity analysis identified the spectral features that reflect differences in plant categories. An
optimized machine learning algorithm was then used to improve plant classification accuracy. The
results demonstrate that the plant spectral library can be used for accurate crop classification.

3.3. Spectral Library-Based Crop Growing Status Monitoring

The same feature combination method was used for crop growth status monitoring as was used
for crop classification to investigate the performance of the different classifiers. Figures 6 and 7
show the precision of the different classification models for tea plant growth vigor and rice growth
stage, respectively.
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Figure 6. Visualization of tea plant growth vigor monitoring results using a confusion matrix heat map.
((a–c) are results using RF, (d–f) are results using GA-SVM, and (g–i) are results using KNN).

Table 6 summarizes classification accuracy of all the spectral library-based application scenarios,
model accuracy depended on the type and combination of features used. For rice growth stage, models
based on spectral bands alone were the least accurate and models based on spectral features alone
were the most accurate. Models based on both features were slightly less accurate than those based
on index features alone, which indicates a certain extent of over-fitting. In contrast, in the case of the
GA-SVM classifier for tea plant growth monitoring, the accuracies of models based on spectral bands
or spectral features alone were similar, whereas the highest accuracy (OAA = 0.98, Kappa = 0.97) was
obtained by using both types of features. This demonstrates that spectral bands and spectral features
can complement each other and improve classification accuracy. The overall comparison of the three
algorithms was similar to that for plant classification. Regardless of the monitoring scenario, GA-SVM
was the most accurate classification model.
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Table 6. Classification accuracy of all the spectral library-based application scenarios.

Application Scene Feature Selected
RF GA-SVM KNN

OAA KAPPA OAA KAPPA OAA KAPPA

Crop classification
Spectral bands 0.82 0.81 0.90 0.90 0.65 0.62

Spectral features 0.91 0.90 0.94 0.93 0.82 0.81
Band + Features 0.93 0.92 0.94 0.93 0.83 0.82

Growth monitoring
of tea trees

Spectral bands 0.80 0.71 0.89 0.84 0.74 0.62
Spectral features 0.86 0.80 0.88 0.81 0.79 0.68
Band + Features 0.86 0.79 0.98 0.97 0.77 0.65

Growth stage
monitoring of rice

Spectral bands 0.76 0.70 0.88 0.85 0.71 0.64
Spectral features 0.87 0.83 0.92 0.90 0.79 0.74
Band + Features 0.85 0.81 0.92 0.90 0.77 0.71

In this study, we used the sensitive spectral features of tea plants in three different growth stages
and rice in five different growth stages and combined the data with an optimized machine learning
algorithm to build a model with high classification accuracy. This enabled effective monitoring of the
growth vigor of tea plants and growth stage of rice and demonstrates the feasibility of applying a crop
spectral library in crop status monitoring.

4. Conclusions

This study based on hyperspectral measurements of crops proposes the construction and
application of a crop spectral library for crop classification and growth status monitoring. The
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following conclusions could be achieved: (1) The spectral library-based crop classification and growing
status monitoring are feasible. (2) ISODATA, JM distance, correlation analysis, and strict feature
screening methods can be used to identify sensitive spectral features suitable for crop classification,
tea plant growth vigor monitoring, and rice growth stage monitoring. (3) The use of different feature
combinations and classifier selections affect the accuracy of crop classification and status monitoring.
This study tested three types of machine learning classifiers, including KNN, RF, and GA-SVM, and
found that crop classification based on spectral features and GA-SVM achieved the highest classification
accuracy (OAA = 0.94, Kappa = 0.93). In terms of crop growth status monitoring, the use of Bands +

Features and GA-SVM achieved the highest classification accuracy for both the tea plant growth vigor
monitoring (OAA = 0.98, Kappa = 0.97) and rice growth stage monitoring (OAA = 0.92, Kappa = 0.90).

The approaches presented in this study provide broad support for remote sensing-based monitoring
of crops at large scales. The emergence of UAV-mounted hyperspectral cameras enables flexible and
affordable acquisition of hyperspectral images. In addition, currently operational and future satellite
hyperspectral sensors (e.g., CHRIS, HyspIRI, GF-5) provide an important opportunity for implementing
crop species mapping and crop growth status monitoring over large areas. Future research should focus
on further testing and evaluation of spectral library-based crop monitoring technologies that use UAV
and satellite hyperspectral images to support large scale agricultural monitoring and administration.
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Appendix A

Table A1. Plant species information. (ID 1–16 are crops; ID 17–87 are non-crop plants).

ID Plant Common
Name Species Name ID Plant Common

Name Species Name

1 Citrus Citrus reticulata
Blanco 45 Phaseolus Vulgaris Radermachera sinica

(Hance) Hemsl.

2 Peach Amygdalus persica
Linn. 46 Larix

Principis-Rupprechtii

Larix gmelinii var.
principis-rupprechtii

(Mayr) Pilg.

3 Ginkgo Ginkgo biloba L. 47 Banana Musa basjoo Siebold

4 Loquat Eriobotrya japonica
(Thunb.) Lindl. 48 Calycanthaceae Calycanthaecae

5 Shaddock Citrus maxima
(Burm.) Osbeck 49 Podocarpus Podocarpus macrophyllus

D. Don

6 Cowpea Vigna unguiculate
(Linn.) Walp. 50 Bougainvillea Bougainvillea spectabilis

Willd.

7 Soybean Glycine max (L.) Merr. 51 Japanese
Five-Needle Pine

Pinus parviflora Sieb. et
Zucc.

8 Sweet Potato Ipomoea batatas (L.)
Poir. 52 Evergreen Rohdea japonica (Thunb.)

Roth

9 Peanut Arachis hypogaea Linn. 53 Platycladus
Orientalis

Platycladus orientalis
(Linn.) Franco

10 Amaranth Amaranthus tricolor
Linn. 54 Ligustrum Lucidum Ligustrum lucidum Ait.
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Table A1. Cont.

ID Plant Common
Name Species Name ID Plant Common

Name Species Name

11 Eggplant Solanum melongena
Linn. 55 Phyllostachys

Crenata
Bambusa multiplex’

Fernleaf’ R. A. Young

12 Sesame Sesamum indicum
Linn. 56 Cycas Cycas revoluta Thunb

13
Youxian
Camellia
Oleifera

Camellia yuhsienensis
Hu 57 Elm Ulmus pumila L.

14 Rice Oryza sativa 58 Pseudolarix Pseudolarix amabilis
(Nelson) Rehd.

15 Wheat Triticum aestivum
Linn. 59 Forsythia Duranta erecta L.

16 Tea Camellia sinensis (L.)
O. Ktze. 60 Dragon Cypress Juniperus chinensis’

Kaizuka’

17 Buxus
Microphylla

Buxus sinica var.
parvifolia M. Cheng 61 Sunflower Helianthus annuus Linn.

18 Herb Trinity Viola tricolor Linn. 62 Zelkova
Schneideriana

Zelkova schneideriana
Hand. -Mazz.

19 Elaeocarpus
Decipiens

Elaeocarpus decipiens
Hemsl. 63 Bambusa Multiplex

Bambusa multiplex
’Alphonso-Karrii’ R. A.

Young

20 Handkerchief
Tree

Davidia involucrate
Baill. 64 Yulan Magnolia Yulania denudate (Desr.)

D. L. Fu

21 Camphor Tree Cinnamomum
camphora (L.) J.Presl. 65 Wisteria Wisteria sinensis (Sims)

Sweet

22 Michelia
Maudiae

Michelia maudiae
Dunn. 66 Rhus Succedanea

Toxicodendron
succedaneum (Linn.) O.

Kuntze

23 Chinese
Pagoda Tree

Sophora japonica’
Pendula’ Hort. 67 Hibiscus Mutabilis Hibiscus mutabilis Linn.

24 Plum Blossom Armeniaca mume Sieb. 68 Awn Miscanthus sinensis
Anderss.

25 Red Wooden Loropetalum chinense
var. rubrum Yieh 69 Ilex Crenata Ilex crenata Thunb.

26 Magnolia Magnolia grandiflora
L. 70 Willow Salix babylonica Linn.

27 Japanese Maple Acer palmatum Thunb. 71 Rudbeckia Laciniata Rudbeckia laciniate Linn.

28 Cedar Cedrus deodara (Roxb.)
G. Don 72 Eleusine Indica Eleusine indica (Linn.)

Gaertn.

29 White Oak Quercus fabri Hance 73 Soapberry Sapindus Saponaria L.

30 Pampasgrass
Cortaderia selloana

(Schult.) Aschers. et
Graebn.

74 Reed Bamboo Arundo donax L.

31 Red Maple Acer palmatum’
Atropurpureum’ 75 Banana Shrub Michelia figo (Lour.)

Spreng.

32 Sweet-Scented
Osmanthus

Osmanthus fragrans
Lour. 76 Sedum Sinensis Sedum sarmentosum

Bunge

33 Hackberry Celtis sinensis Pers. 77 Rhododendron Rhododendron simsii
Planch.

34 Illicium
Lanceolatum

Illicium lanceolatum A.
C. Sm. 78 Lotus Nelumbo nucifera Gaertn.

35 Bambusa
Vulgaris Schrad

Phyllostachys
aureosulcata’
Spectabilis’

79 Pyracantha Pyracantha fortuneana
(Maxim.) Li

36 Ilex Cornuta Ilex cornuta Lindl. et
Paxt. 80 Hasaki Euonymus japonicus’

Aureo-marginatus’

37 Canna Canna indica L. 81 Ligustrum Lucidum Ligustrum vicaryi Rehder

38 Petunia
Hybrida

Petunia hybrida
Vilmorin 82 Paspalum Paspalum thunbergii

Kunth ex Steud.
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Table A1. Cont.

ID Plant Common
Name Species Name ID Plant Common

Name Species Name

39 Liquidambar
Formosana

Liquidambar
formosana Hance 83 Torenia Fournieri Torenia fournieri Linden.

ex Fourn.

40 Palm Trachycarpus fortune
(Hook.) H. Wendl. 84 Graperoot Mahonia fortune (Lindl.)

Fedde

41 Dalbergia Dalbergia hupeana
Hance 85 Moor Besom Photinia serratifolia (Desf.)

Kalkman

42
Camellia

Puniceiflora
Chang

Camellia puniceiflora
H. T. Chang 86 Pink Dianthus chinensis Linn.

43 Carbungi Typha angustifolia L. 87 Marigold Tagetes erecta Linn.

44 Phyllostachys
Heterocycla

Phyllostachys edulis’
Heterocycla’
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45. Belgiu, M.; Drăguţ, L. Random forest in remote sensing: A review of applications and future directions.
Isprs-J. Photogramm. Remote Sens. 2016, 114, 24–31. [CrossRef]

46. Chi, M.; Feng, R.; Bruzzone, L. Classification of hyperspectral remote-sensing data with primal SVM for
small-sized training dataset problem. Adv. Space Res. 2008, 41, 1793–1799. [CrossRef]

47. Congalton, R.G.; Mead, R.A. A quantitative method to test for consistency and correctness in
photo-interpretation. Photogramm. Eng. Remote Sens. 1983, 49, 69–74.

48. Curran, P.J. Remote sensing of foliar chemistry. Remote Sens. Environ. 1989, 30, 271–278. [CrossRef]
49. Wolpert, D.H. The Lack of A Priori Distinctions Between Learning Algorithms. Neural Comput. 1996, 8,

1341–1390. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1080/014311697217396
http://dx.doi.org/10.1109/TPAMI.1981.4767177
http://dx.doi.org/10.1080/01431160412331269698
http://dx.doi.org/10.1016/j.isprsjprs.2016.01.011
http://dx.doi.org/10.1016/j.asr.2008.02.012
http://dx.doi.org/10.1016/0034-4257(89)90069-2
http://dx.doi.org/10.1162/neco.1996.8.7.1341
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Data Acquisition for Construction of a Crop Spectral Library 
	Experiment 1: Spectral Data Collection for Crop Classification 
	Experiment 2: Spectral Data Collection for Crop Growth Monitoring 
	Measurement of Crop Canopy Hyperspectral Data 

	Extraction and Analysis of Spectral Features 
	Extraction of Spectral Features 
	Sensitivity Analysis of Spectral Features 

	Classification Models and Accuracy Assessment 

	Results and Discussion 
	Sensitive Features for Vegetation Classification and Growth Status Monitoring 
	Spectral Library-Based Crop Classification 
	Spectral Library-Based Crop Growing Status Monitoring 

	Conclusions 
	
	References

