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Abstract

:

The establishment and application of a spectral library is a critical step in the standardization and automation of remote sensing interpretation and mapping. Currently, most spectral libraries are designed to support the classification of land cover types, whereas few are dedicated to agricultural remote sensing monitoring. Here, we gathered spectral observation data on plants in multiple experimental scenarios into a spectral database to investigate methods for crop classification (16 crop species) and status monitoring (tea plant and rice growth). We proposed a set of screening methods for spectral features related to plant classification and status monitoring (band reflectance, vegetation index, spectral differentiation, spectral continuum characteristics) that are based on ISODATA and JM distance. Next, we investigated the performance of different machine learning classifiers in the spectral library application, including K-nearest neighbor (KNN), Random Forest (RF), and a genetic algorithm coupled with a support vector machine (GA-SVM). The optimal combination of spectral features and the classifier with the highest classification accuracy were selected for crop classification and status monitoring scenarios. The GA-SVM classifier performed the best, which produced an accuracy of OAA = 0.94, Kappa = 0.93 for crop classification in a complex scenario (crops mixed with 71 non-crop plant species), and promising accuracies for tea plant growth monitoring (OAA = 0.98, Kappa = 0.97) and rice growth stage monitoring (OAA = 0.92, Kappa = 0.90). Therefore, the establishment of a plant spectral library combined with relevant feature extraction and a classification algorithm effectively supports agricultural monitoring by remote sensing.
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1. Introduction


Agricultural remote sensing technology plays an important role in agricultural macromanagement, providing an efficient tool for monitoring agricultural field distribution [1] and crop growth [2], and for estimating of crop yields [3]. Hyperspectral remote sensing can obtain rich spectral information about plants and detect their physiological and biochemical status. Compared with multi-spectral remote sensing technology, hyperspectral remote sensing provides more detailed plant monitoring information, especially in complex scenarios [4] (e.g., mixed crop planting or mixed crop growth status). With the recent development and maturity of airborne and space-borne hyperspectral sensors, hyperspectral remote sensing is becoming an increasingly important technology with great potential for the remote monitoring of vegetation and agriculture [5].



Plant classification and growth status monitoring are useful applications of remote sensing technology and much progress has been made in combining hyperspectral technology and machine learning methods in recent years. Table 1 shows some applications of machine learning. Pu and Liu [6] used hyperspectral data measured on the ground to identify 13 species of trees distributed in Tampa, Florida, USA, by segmented canonical discriminant analysis (CDA), segmented principal component analysis (PCA), segmented stepwise discriminate analysis (SDA), and segmented maximum likelihood classifier (MLC). With this method, the highest identification accuracy the authors achieved was 96%. Underwood et al. [7,8] used multiple minimum noise fraction (MNF) converted from AVIRIS hyperspectral image data to successfully classify three exotic plant species (iceplant, jubata grass, and blue gum) along the California coast based on MLC. Huang et al. [9] used UAV hyperspectral data and the maximum likelihood (ML) method to successfully identify saplings in wooded areas with a high accuracy of 95.7%. In terms of monitoring plant growth status, Yuan et al. [10] used UAV hyperspectral data to analyze soybean growth from leaf count estimates by combining random forest (RF), artificial neural network (ANN), and support vector machine (SVM) classifiers. The approach achieved an identification accuracy of R2 = 0.749 (R2 is the validation coefficient of the regression model). Backhaus et al. [11] used hyperspectral image data to monitor nitrogen levels in tobacco leaves, combining the classification methods of SVM, supervised relevance neural gas (SRNG), generalized relevance learning vector quantization (GRLVQ), and radial basis function (RBF), and achieved 99.8% accuracy in the classification of nutritional status. Senthilnath et al. [12] used satellite hyperspectral image data and the iterative self-organizing data analysis (ISODATA), the artificial immune system (AIS), the hierarchical artificial immune system (HAIS), and the niche stratified artificial immune system (NHAIS) classification method to successfully identify three growth stages of wheat crops and monitor growth, achieving an 81.5% identification accuracy. Duarte-Carvajalino [13] monitored potato late blight using UAV hyperspectral data and color images combined with the multi-layer perceptron (MLP), the support vector regression (SVR), the random forest (RF), and the convolutional neural network (CNN) classifiers, achieving a disease identification accuracy of R2 = 0.74.



A critical step in the standardization and automation of remote sensing monitoring of plants is the establishment of a plant spectral library. Some spectral libraries have been created and applied, including spectral collections by NASA’s Jet Propulsion Laboratory (JPL), Johns Hopkins University (JHU), and the United States Geological Survey (USGS), which include spectra from rocks, minerals, lunar soils, terrestrial soils, manmade materials, meteorites, vegetation, snow, and ice [14]. However, most spectral libraries were designed to support comprehensive classification of land cover types rather than for agricultural remote sensing monitoring. Nidamanuri et al. [15] used HyMAP airborne hyperspectral images to establish a spectral library containing five crops (alfalfa, winter barley, winter rape, winter rye, and winter wheat) and achieved a crop classification accuracy of 82% by searching and matching the spectral library. This demonstrates that the joint hyperspectral remote sensing data and spectral library approach can be used to successfully monitor crops remotely. However, little research has been conducted on the construction and application of spectral libraries designed specifically for crop monitoring. In addition, spectral library-related techniques have largely been used for plant classification rather than for plant status monitoring, which is essential in agricultural production management. In this study, to promote the development of spectral library-based agricultural monitoring, the specific objectives were to: (1) obtain spectral data sets for crop classification in complex scenarios (crops mixed with non-crop plant species) and spectral data for crop status monitoring (i.e., growth vigor of tea plant and growth stages of rice) and used the tea plant data to construct a crop spectral library; (2) presented a set of spectral feature optimization methods and classification modeling methods for crop classification and status monitoring; (3) evaluated the effectiveness of the spectral library-based methods in crop classification and status monitoring.




2. Materials and Methods


2.1. Data Acquisition for Construction of a Crop Spectral Library


2.1.1. Experiment 1: Spectral Data Collection for Crop Classification


In this study, 16 major crops were selected for canopy spectral collection in the range of longitude 119.94°–120.35° and latitude 30.08°–30.32° in Hangzhou, Zhejiang province, from May to September 2017. Crops are often mixed with non-crop plants (e.g., urban garden and wetland plants) in the same landscape, so crop classification based on satellite or UAV remote sensing images under natural circumstances would include these non-crop plants. Therefore, in this study, we selected 71 non-crop plants commonly found in the study area for spectral collection. In terms of plant species investigation, some spectral collection points contained clear classification information on plant tags and could be used directly. When no listing information was available, species information was determined by an experienced plant ecologist according to the book of “Flora of China.” During the plant survey, each plant species was photographed for reference. The specific information collected on the 87 plant species (crops + non-crop plants) is shown in Table A1 (Appendix A). The canopy spectral measurement for each species was repeated 25 times, providing a total of 2,175 pieces of original data were obtained. A small number of abnormal spectra were removed after data examination, for a final total of 2,147 spectra.




2.1.2. Experiment 2: Spectral Data Collection for Crop Growth Monitoring


Crop growth monitoring included two experiments: (1) growth status of tea plants and (2) growth stages of rice. We obtained canopy spectra and ancillary information for different crop statuses. Specific experimental information is shown in Table 2.



Experiment on Tea Plant Growth Vigor Monitoring


The tea plant growth monitoring experiment was conducted in August 2017 at the experimental base of Tea Research Institute, Chinese Academy of Agricultural Sciences in Hangzhou. The experimental base contains a total of 46 experimental plots (14 experimental plots applied less nutrition, 16 experimental plots applied the recommended rate of nutrition and 16 experimental plots applied over the recommended rate of nutrition) in which we obtained different levels of tea plant growth vigor by controlling nutrient inputs. In addition to collecting spectral data for each plot (10 times measurements in each plot), we also investigated tea plants growth vigor in the field. Vigor was evaluated by experienced cultivation experts from the China Tea Institute based on the following criteria: (1) good growth: lush leaf growth with 100% coverage, bright green leaf color, and normal plant height; (2) medium growth: sparse leaves, partial gaps in the canopy, dark green leaf color, and relatively low plant height; (3) poor growth: sparse leaves, crown gap, gray leaf color, relatively low plant height, and partial water loss and wilting in some leaves. Figure 1 demonstrated tea plants from the experimental area under different growth vigor.




Experiment on Rice Growth Stage Monitoring


The experiment was conducted in August 2018 at the experimental base of China National Rice Research Institute (CNRRI) for monitoring rice growth stages. Rice seedlings were transplanted into the experimental field on five different dates (1 week apart in sequence). Grade 5 was the latest sowing date and grade 1 was the earliest. Each treatment contained 12 plots and each plot area was 2 m × 4 m. Conventional management of fertilization and irrigation was applied in all treatments. In addition to collecting spectrometric data for each plot, rice growth stage was investigated by a rice cultivation expert from the CNRRI. Rice growth stage in each plot was observed during the elongation and booting stages.





2.1.3. Measurement of Crop Canopy Hyperspectral Data


Plant canopy spectra were measured using an ASD FieldSpec4 Pro FR (350–2500 nm) spectrometer in strict accordance with standard methods. The spectral resolution of the instrument is 3 nm in the 350–1000 nm range and 10 nm in the 1000–2500 nm range. During observation, the probe was pointed vertically downward at a height of 0.6 m above the ground and a field angle of 25°. In addition, each spectral reading is an average of 10 repeats of spectral records, which thus guaranteed the stability and high quality of the spectral data. Reflectance was obtained by calibration with a standard reference plate before and after each measurement. We used ViewSpec software and resampled the spectral curves to 1 nm. All spectroscopic measurements were made on clear, cloudless days between 10:00 and 14:00 (local time).





2.2. Extraction and Analysis of Spectral Features


2.2.1. Extraction of Spectral Features


Given the relatively large number of wavebands of spectral measurements (n = 2151) compared with directly using the spectral bands in classification, analysis efficiency can be enhanced by using fewer selected spectral features. Here we selected and extracted different types of spectral features for analysis according to the spectral characteristics of plants, including: (1) some original spectral bands; (2) a set of derivative and continuum-removal spectral features (Der & Con features) that can highlight the characteristics of peaks and valleys in spectral curves (Table 3); (3) a total of 26 classic VIs related to plant structure, pigments, and water content, as well as other biochemical properties such as cellulose and lignin (Table 4).




2.2.2. Sensitivity Analysis of Spectral Features


To select features that can be effectively used for crop classification and status monitoring, we combined the iterative self-organizing data analysis algorithm (ISODATA) and Jeffries-Matusita (JM) distance to conduct a sensitivity analysis on the spectral features. ISODATA is an adaptive clustering algorithm developed based on the principle of the k-means algorithm [41]; JM distance is a distance parameter calculated based on the probability distribution of sample features and is used to reflect the distinguishing ability of spectral features [42]. Based on the spectral data of the training samples, we calculated the JM distance of each band and the spectral features between each of the two categories (two different species or two different statuses). After traversing all categories, the JM distance was averaged to quantify the spectral discrimination ability of the band and spectral feature. We used ISODATA to cluster the spectral bands of 350–2500 nm to reduce the high correlation between adjacent bands of the original hyperspectral data. The bands with the largest JM distance in their groups were then selected as the optimal bands. For other spectral features, we ranked all features according to JM distance and conducted pair-by-pair cross-correlation analyses on features from the first 25% of the JM distances. We then removed the lower JM distance of the two features above the threshold (R2 < 0.9) until all the correlations between the features were lower than the threshold. The same features selection method was used for both the application of plant classification and status monitoring.





2.3. Classification Models and Accuracy Assessment


Three representative classifiers for the application of the spectral library were selected: KNN, RF, and SVM coupled with a genetic algorithm (GA-SVM). KNN is a memory-based classifier, which does not require model fitting. Instead, the samples were classified using the majority vote among the k neighbors. Such non-parametric classifiers are featured as simple and fast [43]. The RF classifier consists of a combination of tree classifiers where each classifier is generated using a random vector sampled independently from the input vector. Based on the idea of bagging, the RF classifier averages many noisy but approximately unbiased models, and hence reduces variance [44]. SVM is a discriminative classifier formally defined by a separating hyperplane. It uses labeled training samples to output an optimal hyperplane which is used to categorize new samples. This classifier addresses the small-size training set problem and has a good generalization capacity. SVM was coupled with GA to optimize the SVM parameters [4,45,46].



A complete calibration and validation strategy were adopted in the modeling process. 60% of the samples from the spectral feature sets were randomly selected as training data to establish a classification model using KNN, RF, and GA-SVM algorithms, respectively. The remaining 40% of the data were used for independent model validation. Meanwhile, we compared the performances of models constructed by the optimal selected bands, by indices, and by bands plus indices to analyze the classification abilities of the different types of spectral features in the application of the spectral library. The overall accuracy (OAA) and the Kappa coefficient were calculated from confusion matrices to evaluate the classification accuracies [47]. The formula of the OAA is:


   OAA  =    number   of   corrected   classified   samples     number   of   total   samples    × 100 %  



(1)







The formula of the kappa coefficient is:


   Kappa  =     ∑    i  = 1  r   X  ii   −   ∑    i  = 1  r  (  X  i +   ∗    X    + i   )    N 2  −   ∑    i  = 1  r  (  X  i +   ∗    X    + i   )    



(2)




where r represents the number of rows and columns in the confusion matrix; Xii represents the number of samples in row i and column i; Xi+ represents marginal total of row i; Xi+ represents marginal total of column i; and N represents the total number of samples. All statistical analysis and modeling were conducted using the MATLAB R2014a software (MathWorks Inc., Natick, Massachusetts, USA).





3. Results and Discussion


3.1. Sensitive Features for Vegetation Classification and Growth Status Monitoring


The ISODATA analysis yielded 10 clusters of spectral bands for further screening. In Figure 2, bands from the same ISODATA cluster are marked in the same color. Most bands belonging to a single cluster are adjacent to each other but some nonadjacent bands were also found to be correlated and were therefore classified into one cluster. To obtain sensitive bands, we chose the bands with the largest JM distance in each cluster and removed bands with too close separation (<10 nm). The optimal group of chosen bands included 396 nm, 417 nm, 527 nm, 676 nm, 699 nm, 1333 nm, 1457 nm, 1484 nm, and 1545 nm. These bands display high sensitivity to different crop species and low information redundancy. The optimal spectral features obtained by JM distance and inter-correlation analysis were: water index (WI), width of the continuous removal feature (Width), blue–red pigment index (BRI), physiological reflectance index (PRI), normalized difference infrared index (NDII), greenness index (GI), normalized ratio index (NRI), and standard of the LAIDI (sLAIDI).



The optimal bands are distributed in the blue, green, and red spectral regions, which are related to pigment absorption and reflection positions; the near-infrared band, which is associated with lignin and cellulose; and the shortwave near-infrared region, which is related to plant water content [4,48]. In addition, the optimal spectral features are associated with the physiological and biochemical status and canopy structure of plants. Importantly, these factors vary significantly in different species, which suggests that the spectral features can be used for remote species identification.



Figure 3 and Figure 4 show the results of the feature selection analysis for monitoring the growth vigor of tea plants and rice, respectively. The optimized spectral bands and spectral features are summarized in Table 5. Seven sensitive bands were selected for tea plant growth vigor monitoring and ten for rice growth stage monitoring, which are distributed in the blue, green, red, red edge, and infrared spectral regions. Both groups contain bands at the red edge, near-infrared and shortwave near-infrared regions, plus a similar band at the red-edge region. These bands are related to the spectral characteristics of chlorophyll absorption, water absorption, and crop biophysical status changes. There were also some differences in the composition of the optimal bands between the two scenarios. For example, tea plant growth vigor monitoring included the 823 nm band, which is related to leaf internal structure and canopy structure of the tea plant. Rice growth stage monitoring included a unique blue band and a green band, which are both related to crop pigments. Changes in pigment contents indicate physiological and biochemical changes in rice at different growth stages.



For spectral features, the tea plant growth vigor and rice growth stage monitoring scenarios yielded unique sensitive spectral feature sets, respectively. It is noticed that the spectral indices sensitive to tea plant growth vigor were mainly related to canopy structure, leaf area index, nutrition, and water content. For rice, the sensitive spectral indices were mainly related to pigment. The sensitive features of tea plant growth vigor monitoring did not include spectral differential features, but did include the continuum removal depth features. The sensitive features of rice growth stage monitoring did not include continuum features but did include two spectral differential features around the blue edge position, which is consistent with the distribution of the sensitive band feature. This position is sensitive to variations in chlorophyll content, which is an important indicator of the rice growth stage.



Table 5 summarizes the selected spectral bands and features for crop classification and growth status monitoring. In this study, these features serving as the spectral "fingerprint" in application of the spectral library for crop classification and growth status monitoring.




3.2. Spectral Library-Based Crop Classification


The optimized spectral features for crop classification can be categorized as follows: spectral bands, spectral features, bands + features. In order to test crop classification in a real landscape, we established a classification model that incorporated data on all 87 plant species (i.e., 16 crops + 71 non-crop plants) and then evaluated the model’s classification accuracy for 16 crops. Figure 5 shows the classification results and accuracy evaluation of the three classifiers (in the form of a confusion matrix heat map).



Spectral bands used alone consistently produced the lowest accuracy, whereas bands + features produced the highest accuracy. Spectral features used alone produced slightly lower accuracy than bands + features, suggesting that the combination of the two types of features enhances or amplifies the sensitive information of certain plants in the spectrum. Such a pattern is apparent in the classification of the Camellia yuhsienensis Hu (crop no. 13 crop in Figure 5), which was barely classified using spectral bands alone, but was clearly classified using spectral features or both types of features. In terms of the crop classification performance of different classifiers, the GA-SVM outperformed RF and KNN under all feature combinations. KNN performed significantly poorer than the other classifiers. This may be due to KNN’s simple and straightforward analytical principle, which was insufficient for handling the relatively complex scenario examined in this study. However, based on the “no-free-lunch-theorem” raised by Wolpert [49], classifier performance is probably also case sensitive. This suggests that it is necessary to perform an independent test to identify optimal algorithms when attempting to classify crops mixed with non-crop species. Here, we created a spectral library that included 16 crop species and 71 non-crop species and used it to simulate crop classification in an actual setting. Our feature sensitivity analysis identified the spectral features that reflect differences in plant categories. An optimized machine learning algorithm was then used to improve plant classification accuracy. The results demonstrate that the plant spectral library can be used for accurate crop classification.




3.3. Spectral Library-Based Crop Growing Status Monitoring


The same feature combination method was used for crop growth status monitoring as was used for crop classification to investigate the performance of the different classifiers. Figure 6 and Figure 7 show the precision of the different classification models for tea plant growth vigor and rice growth stage, respectively.



Table 6 summarizes classification accuracy of all the spectral library-based application scenarios, model accuracy depended on the type and combination of features used. For rice growth stage, models based on spectral bands alone were the least accurate and models based on spectral features alone were the most accurate. Models based on both features were slightly less accurate than those based on index features alone, which indicates a certain extent of over-fitting. In contrast, in the case of the GA-SVM classifier for tea plant growth monitoring, the accuracies of models based on spectral bands or spectral features alone were similar, whereas the highest accuracy (OAA = 0.98, Kappa = 0.97) was obtained by using both types of features. This demonstrates that spectral bands and spectral features can complement each other and improve classification accuracy. The overall comparison of the three algorithms was similar to that for plant classification. Regardless of the monitoring scenario, GA-SVM was the most accurate classification model.



In this study, we used the sensitive spectral features of tea plants in three different growth stages and rice in five different growth stages and combined the data with an optimized machine learning algorithm to build a model with high classification accuracy. This enabled effective monitoring of the growth vigor of tea plants and growth stage of rice and demonstrates the feasibility of applying a crop spectral library in crop status monitoring.





4. Conclusions


This study based on hyperspectral measurements of crops proposes the construction and application of a crop spectral library for crop classification and growth status monitoring. The following conclusions could be achieved: (1) The spectral library-based crop classification and growing status monitoring are feasible. (2) ISODATA, JM distance, correlation analysis, and strict feature screening methods can be used to identify sensitive spectral features suitable for crop classification, tea plant growth vigor monitoring, and rice growth stage monitoring. (3) The use of different feature combinations and classifier selections affect the accuracy of crop classification and status monitoring. This study tested three types of machine learning classifiers, including KNN, RF, and GA-SVM, and found that crop classification based on spectral features and GA-SVM achieved the highest classification accuracy (OAA = 0.94, Kappa = 0.93). In terms of crop growth status monitoring, the use of Bands + Features and GA-SVM achieved the highest classification accuracy for both the tea plant growth vigor monitoring (OAA = 0.98, Kappa = 0.97) and rice growth stage monitoring (OAA = 0.92, Kappa = 0.90).



The approaches presented in this study provide broad support for remote sensing-based monitoring of crops at large scales. The emergence of UAV-mounted hyperspectral cameras enables flexible and affordable acquisition of hyperspectral images. In addition, currently operational and future satellite hyperspectral sensors (e.g., CHRIS, HyspIRI, GF-5) provide an important opportunity for implementing crop species mapping and crop growth status monitoring over large areas. Future research should focus on further testing and evaluation of spectral library-based crop monitoring technologies that use UAV and satellite hyperspectral images to support large scale agricultural monitoring and administration.
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Table A1. Plant species information. (ID 1–16 are crops; ID 17–87 are non-crop plants).






Table A1. Plant species information. (ID 1–16 are crops; ID 17–87 are non-crop plants).













	ID
	Plant Common Name
	Species Name
	ID
	Plant Common Name
	Species Name





	1
	Citrus
	Citrus reticulata Blanco
	45
	Phaseolus Vulgaris
	Radermachera sinica (Hance) Hemsl.



	2
	Peach
	Amygdalus persica Linn.
	46
	Larix Principis-Rupprechtii
	Larix gmelinii var. principis-rupprechtii (Mayr) Pilg.



	3
	Ginkgo
	Ginkgo biloba L.
	47
	Banana
	Musa basjoo Siebold



	4
	Loquat
	Eriobotrya japonica (Thunb.) Lindl.
	48
	Calycanthaceae
	Calycanthaecae



	5
	Shaddock
	Citrus maxima (Burm.) Osbeck
	49
	Podocarpus
	Podocarpus macrophyllus D. Don



	6
	Cowpea
	Vigna unguiculate (Linn.) Walp.
	50
	Bougainvillea
	Bougainvillea spectabilis Willd.



	7
	Soybean
	Glycine max (L.) Merr.
	51
	Japanese Five-Needle Pine
	Pinus parviflora Sieb. et Zucc.



	8
	Sweet Potato
	Ipomoea batatas (L.) Poir.
	52
	Evergreen
	Rohdea japonica (Thunb.) Roth



	9
	Peanut
	Arachis hypogaea Linn.
	53
	Platycladus Orientalis
	Platycladus orientalis (Linn.) Franco



	10
	Amaranth
	Amaranthus tricolor Linn.
	54
	Ligustrum Lucidum
	Ligustrum lucidum Ait.



	11
	Eggplant
	Solanum melongena Linn.
	55
	Phyllostachys Crenata
	Bambusa multiplex’ Fernleaf’ R. A. Young



	12
	Sesame
	Sesamum indicum Linn.
	56
	Cycas
	Cycas revoluta Thunb



	13
	Youxian Camellia Oleifera
	Camellia yuhsienensis Hu
	57
	Elm
	Ulmus pumila L.



	14
	Rice
	Oryza sativa
	58
	Pseudolarix
	Pseudolarix amabilis (Nelson) Rehd.



	15
	Wheat
	Triticum aestivum Linn.
	59
	Forsythia
	Duranta erecta L.



	16
	Tea
	Camellia sinensis (L.) O. Ktze.
	60
	Dragon Cypress
	Juniperus chinensis’ Kaizuka’



	17
	Buxus Microphylla
	Buxus sinica var. parvifolia M. Cheng
	61
	Sunflower
	Helianthus annuus Linn.



	18
	Herb Trinity
	Viola tricolor Linn.
	62
	Zelkova Schneideriana
	Zelkova schneideriana Hand. -Mazz.



	19
	Elaeocarpus Decipiens
	Elaeocarpus decipiens Hemsl.
	63
	Bambusa Multiplex
	Bambusa multiplex ’Alphonso-Karrii’ R. A. Young



	20
	Handkerchief Tree
	Davidia involucrate Baill.
	64
	Yulan Magnolia
	Yulania denudate (Desr.) D. L. Fu



	21
	Camphor Tree
	Cinnamomum camphora (L.) J.Presl.
	65
	Wisteria
	Wisteria sinensis (Sims) Sweet



	22
	Michelia Maudiae
	Michelia maudiae Dunn.
	66
	Rhus Succedanea
	Toxicodendron succedaneum (Linn.) O. Kuntze



	23
	Chinese Pagoda Tree
	Sophora japonica’ Pendula’ Hort.
	67
	Hibiscus Mutabilis
	Hibiscus mutabilis Linn.



	24
	Plum Blossom
	Armeniaca mume Sieb.
	68
	Awn
	Miscanthus sinensis Anderss.



	25
	Red Wooden
	Loropetalum chinense var. rubrum Yieh
	69
	Ilex Crenata
	Ilex crenata Thunb.



	26
	Magnolia
	Magnolia grandiflora L.
	70
	Willow
	Salix babylonica Linn.



	27
	Japanese Maple
	Acer palmatum Thunb.
	71
	Rudbeckia Laciniata
	Rudbeckia laciniate Linn.



	28
	Cedar
	Cedrus deodara (Roxb.) G. Don
	72
	Eleusine Indica
	Eleusine indica (Linn.) Gaertn.



	29
	White Oak
	Quercus fabri Hance
	73
	Soapberry
	Sapindus Saponaria L.



	30
	Pampasgrass
	Cortaderia selloana (Schult.) Aschers. et Graebn.
	74
	Reed Bamboo
	Arundo donax L.



	31
	Red Maple
	Acer palmatum’ Atropurpureum’
	75
	Banana Shrub
	Michelia figo (Lour.) Spreng.



	32
	Sweet-Scented Osmanthus
	Osmanthus fragrans Lour.
	76
	Sedum Sinensis
	Sedum sarmentosum Bunge



	33
	Hackberry
	Celtis sinensis Pers.
	77
	Rhododendron
	Rhododendron simsii Planch.



	34
	Illicium Lanceolatum
	Illicium lanceolatum A. C. Sm.
	78
	Lotus
	Nelumbo nucifera Gaertn.



	35
	Bambusa Vulgaris Schrad
	Phyllostachys aureosulcata’ Spectabilis’
	79
	Pyracantha
	Pyracantha fortuneana (Maxim.) Li



	36
	Ilex Cornuta
	Ilex cornuta Lindl. et Paxt.
	80
	Hasaki
	Euonymus japonicus’ Aureo-marginatus’



	37
	Canna
	Canna indica L.
	81
	Ligustrum Lucidum
	Ligustrum vicaryi Rehder



	38
	Petunia Hybrida
	Petunia hybrida Vilmorin
	82
	Paspalum
	Paspalum thunbergii Kunth ex Steud.



	39
	Liquidambar Formosana
	Liquidambar formosana Hance
	83
	Torenia Fournieri
	Torenia fournieri Linden. ex Fourn.



	40
	Palm
	Trachycarpus fortune (Hook.) H. Wendl.
	84
	Graperoot
	Mahonia fortune (Lindl.) Fedde



	41
	Dalbergia
	Dalbergia hupeana Hance
	85
	Moor Besom
	Photinia serratifolia (Desf.) Kalkman



	42
	Camellia Puniceiflora Chang
	Camellia puniceiflora H. T. Chang
	86
	Pink
	Dianthus chinensis Linn.



	43
	Carbungi
	Typha angustifolia L.
	87
	Marigold
	Tagetes erecta Linn.



	44
	Phyllostachys Heterocycla
	Phyllostachys edulis’ Heterocycla’
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Figure 1. Examples of tea plant growth status in the study area (poor growth (a), medium growth (b), and good growth (c), respectively). 
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Figure 2. (a) Canopy spectra of sixteen crops; (b) the results of band JM distance ISODATA clustering. (The species ID is referred from the Table A1. The same color indicates the same cluster.). 
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Figure 3. (a) Canopy spectra for different tea plant growth stages; (b) the results of band JM distance ISODATA clustering. The same color indicates the same cluster. 
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Figure 4. (a) Canopy spectra for different rice growth stages; (b) the results of band JM distance ISODATA clustering. The same color indicates the same cluster. 
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Figure 5. Visualization of crop classification results using a confusion matrix heat map. ((a–c) are results using RF, (d–f) are results using GA-SVM, and (g–i) are results using K-nearest neighbors (KNN)). 
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Figure 6. Visualization of tea plant growth vigor monitoring results using a confusion matrix heat map. ((a–c) are results using RF, (d–f) are results using GA-SVM, and (g–i) are results using KNN). 
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Figure 7. Visualization of rice growth stage monitoring results using a confusion matrix heat map. ((a–c) are results using RF, (d–f) are results using GA-SVM, and (g–i) are results using KNN.). 
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Table 1. Application of Machine Learning.






Table 1. Application of Machine Learning.





	Monitoring Contents
	Machine Learning Methods
	Accuracy
	Reference





	Urban tree species (13 species)
	Segmented canonical discriminant analysis (CDA),

segmented principal component analysis (PCA),

segmented stepwise discriminate analysis (SDA), and segmented maximum likelihood classifier (MLC)
	OAA:76–96%
	Pu and Liu [6]



	Invasive species (Carpobrotus edulis, Cortaderia jubata, Eucalyptus globulus)
	PCA and minimum noise fraction (MNF)
	OAA:37–75%
	Underwood et al. [7]



	Nonnative plant species

(Carpobrotus edulis, jubata grass, and Cortaderia jubata)
	MLC
	OAA:55–97%
	Underwood et al. [8]



	Juvenile tree species (9 species)
	Maximum likelihood (ML)
	OAA:68–96%
	Huang et al. [9]



	Soybean growth
	Random forest (RF), artificial neural network (ANN), support vector machine (SVM)
	R2:0.674–0.749
	Yuan et al. [10]



	Tobacco leaf nitrogen levels
	SVM, supervised relevance neural gas (SRNG), generalized relevance learning vector quantization (GRLVQ), radial basis function (RBF)
	OAA:2.2–99.8%
	Backhaus et al. [11]



	Wheat growth stages
	iterative self-organizing data analysis (ISODATA), artificial immune system (AIS), hierarchical artificial immune system (HAIS),

niche stratified artificial immune system (NHAIS)
	OAA:59.5–81.5%
	Senthilnath et al. [12]



	Potato disease (Late Blight)
	Multi-layer perceptron (MLP), convolutional neural network (CNN), support vector regression (SVR), random forest (RF)
	R2:0.44–0.74
	Duarte-Carvajalino [13]
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Table 2. Crop growth status monitoring information in Experiment 2.
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	Plants’ Name
	Status
	Time
	Location
	Sample Size





	Tea tree
	Growth

(Three levels)
	August 2017
	Hangzhou, China tea laboratory base
	14 × 10 (poor growth) +

16 × 10 (medium growth) +

16 × 10 (good growth) = 460



	Rice
	Growing stage (Five stages)
	August 2018
	Fu yang, Hangzhou, China National Rice Research Institute
	5 (stages) × 12 (plots) × 5 = 300
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Table 3. Derivative and continuous removal spectral features used in this study.
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Feature Type

	
Position

	
Band Range (nm)

	
Feature






	
First derivative feature

	
Blue edge

	
490–540

	
Maximum differential value (BMV)




	
Position of the maximum differential value (BPMV)




	
Sum of differential values (BSV)




	
Yellow edge

	
540–620

	
Maximum differential value (YMV)




	
Position of the maximum differential value (YPMV)




	
Sum of differential values (YSV)




	
Red edge

	
660–780

	
Maximum differential value (RMV)




	
Position of the maximum differential value (RPMV)




	
Sum of differential values (RSV)




	
Continuous removal feature

	
Near infrared

	
530–770

	
Depth




	
Width




	
Area
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Table 4. Vegetation indices used in this study.






Table 4. Vegetation indices used in this study.





	
Spectral Index

	
Characteristics & Functions

	
Definition

	
Reference






	
Structure (LAI, crown closure, Green biomass, Species, etc.)




	
ATSAVI, Adjusted Transformed Soil-Adjusted VI

	
Less affected by soil background and better for estimating homogeneous canopy

	
a × (R800 − a × R670 − b)/

[(a × R800 + R670 − a × b + X × (1 + a²)],

where X = 0.08,

a = 1.22, and b = 0.03

	
Baret and Guyot 1991 [16]




	
GI, Greenness Index

	
Estimate biochemical constituents and LAI at leaf and canopy levels

	
R554/R677

	
Zarco-Tejada et al. 2005 [17]




	
MSAVI, Improved Soil Adjusted Vegetation Index

	
A more sensitive indicator of vegetation amount than SAVI at canopy level

	
0.5 × [2R800 + 1 − ((2R800 + 1) × 2 − 8(R800 − R670)) × 1/2]

	
Qi et al. 1994 [18]




	
NBNDVI, Narrow-Band Normalized Difference Vegetation Index

	
Responds to change in the amount of green biomass and more efficiently in vegetation with low to moderate density

	
(R850 − R680)/(R850 + R680)

	
Rouse et al. 1973 [19]




	
NRI, Normalized Ratio Index

	
A sensitive indicator of biomass, N concentration and height of crop (wheat)

	
(R874 − R1225)/(R874 + R1225)

	
Koppe et al. 2010 [20]




	
PSND, Pigment-Specific Normalized Difference

	
Estimate LAI and Cars at leaf or canopy level

	
(R800 − R470)/(R800 + R470)

	
Blackburn.1998 [21]




	
PVIhyp, Hyperspectral Perpendicular VI

	
More efficiently quantify the low amount of vegetation by minimizing soil background influence on vegetation spectrum

	
(R1148 − aR807 − b)/(1 + a²) × 1/2,

a = 1.17, b = 3.37

	
Schlerf et al. 2005 [22]




	
sLAIDI, Normalization or Standard of the LAIDI

	
Sensitive to LAI variation at canopy level with a saturation point >8

	
S × (R1050 − R1250)/(R1050 + R1250),

where S = 5

	
Delalieux et al. 2008 [23]




	
SPVI, Spectral polygon vegetation index

	
Estimate LAI and canopy Chls

	
0.4 × [3.7 × (R800 − R670) − 1.2 × |R530 − R670|]

	
Vincini et al. 2006 [24]




	
Pigments (Chls, Cars, and Anths)




	
PRI, Photochemical /Physiological Reflectance Index

	
Estimate carotenoid pigment contents in foliage

	
(R531 − R570)/(R531 + R570)

	
Gamon et al. 1992 [25]




	
ARI, Anthocyanin Reflectance Index

	
Estimate Anths content from reflectance changes in the green region at leaf level

	
(R550) − 1 − (R700) − 1

	
Gitelson et al. 2001 [26]




	
BRI, Blue Red Pigment Index

	
Estimate Chls and Cars content at leaf and canopy levels

	
R450/R690

	
Zarco-Tejada et al. 2005 [17]




	
CI, Chlorophyll Index

	
Estimate Chls content in broadleaf tree leaves

	
(R750 − R705)/(R750 + R705);

R750/[(R700 + R710) − 1]

	
Gitelson and Merzlyak 1996 [27]; Gitelson et al. 2005 [28]




	
CRI, Carotenoid Reflectance Index

	
Sufficient to estimate total Cars content in plant leaves

	
CRI550 = (R510) − 1 − (R550) − 1;

CRI700 = (R510) − 1 − (R700) − 1

	
Gitelson et al. 2002 [29]




	
LCI, Leaf Chlorophyll Index

	
Estimate Chl content in higher plants, sensitive to variation in reflectance caused by Chl absorption

	
(R850 − R710)/(R850 + R680)

	
Datt. 1999 [30]




	
MCARI, Modified Chlorophyll Absorption in Reflectance Index

	
Respond to Chl variation and estimate Chl absorption

	
[(R701 − R671) − 0.2(R701 − R549)] (R701/R671)

	
Daughtry et al. 2000 [31]




	
NPCI, Normalized Pigment Chlorophyll ratio Index

	
Assess Cars/Chl ratio at leaf level

	
(R680 − R430)/(R680 + R430)

	
Peñuelas et al. 1994 [32]




	
Other Biochemicals




	
CAI, Cellulose Absorption Index

	
Cellulose & lignin absorption features, discriminates plant litter from soils

	
0.5 × (R2020 + R2220) − R2100

	
Nagler et al. 2000 [33]




	
NDLI, Normalized Difference Lignin Index

	
Quantify variation of canopy lignin concentration in native shrub vegetation

	
[log(1/R1754) − log(1/R1680)]/log(1/R1754) + log(1/R1680)]

	
Serrano et al. 2002 [34]




	
NDNI, Normalized Difference Nitrogen Index

	
Quantify variation of canopy N concentration in native shrub vegetation

	
[log(1/R1510) − log(1/R1680)]/

[log(1/R1510) + log(1/R1680)]

	
Serrano et al. 2002 [34]




	
Water




	
LWVI-1, Leaf Water VI 1

	
Estimate leaf water content, an NDWI variant

	
(R1094 − R893)/(R1094 + R893)

	
Galvão et al. 2005 [35]




	
NDII, Normalized Difference Infrared Index

	
Detect variation of leaf water content

	
(R819 − R1600)/(R819 + R1600)

	
Hardinsky et al. 1983 [36]




	
NDWI, ND Water Index

	
Improving the accuracy in retrieving the vegetation water content at both leaf and canopy levels

	
(R860 − R1240)/(R860 + R1240)

	
Gao 1996 [37]




	
RATIO975, 3-band ratio at 975 nm

	
Estimate relative water content <60% at leaf level

	
2 × R960-990/(R920-940 + R1090-1110)

	
Pu et al. 2003 [38]




	
SIWSI, Shortwave Infrared Water Stress Index

	
Estimate leaf or canopy water stress, especially in the semiarid environment

	
(R860 − R1640)/(R860 + R1640)

	
Fensholt and Sandholt 2003 [39]




	
WI, Water Index

	
Quantify relative water content at leaf level

	
R900/R970

	
Peñuelas et al. 1997 [40]
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Table 5. Selected spectral features for crop classification and growing status monitoring.
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Application Scene

	
Selected Spectral Features




	
Bands (nm)

	
First Derivative Feature

	
Continuous Removal Feature

	
VIs






	
Crop classification

	
396,417,527,

676,699,1333,

1457,484,1445

	
None

	
Width

	
sLAIDI, NRI, GI, NDII, PRI, BRI, WI




	
Growth monitoring of tea trees

	
673,733,761,

823,1454,1517,

2024

	
None

	
Depth

	
LWVI-1, WI, sLAIDI, SIWSI, PVIhyp, NDII, NBNDVI, NRI, NDWI




	
Growth stage monitoring of rice

	
431,534,721,

749,1026,333,

1497,1599,660,

2023

	
BSV, YSV, BMV

	
None

	
PRI, CRI700, ARI, NPCI, RATIO975, BRI, LWVI-1
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Table 6. Classification accuracy of all the spectral library-based application scenarios.
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Application Scene

	
Feature Selected

	
RF

	
GA-SVM

	
KNN




	
OAA

	
KAPPA

	
OAA

	
KAPPA

	
OAA

	
KAPPA






	
Crop classification

	
Spectral bands

	
0.82

	
0.81

	
0.90

	
0.90

	
0.65

	
0.62




	
Spectral features

	
0.91

	
0.90

	
0.94

	
0.93

	
0.82

	
0.81




	
Band + Features

	
0.93

	
0.92

	
0.94

	
0.93

	
0.83

	
0.82




	
Growth monitoring of tea trees

	
Spectral bands

	
0.80

	
0.71

	
0.89

	
0.84

	
0.74

	
0.62




	
Spectral features

	
0.86

	
0.80

	
0.88

	
0.81

	
0.79

	
0.68




	
Band + Features

	
0.86

	
0.79

	
0.98

	
0.97

	
0.77

	
0.65




	
Growth stage monitoring of rice

	
Spectral bands

	
0.76

	
0.70

	
0.88

	
0.85

	
0.71

	
0.64




	
Spectral features

	
0.87

	
0.83

	
0.92

	
0.90

	
0.79

	
0.74




	
Band + Features

	
0.85

	
0.81

	
0.92

	
0.90

	
0.77

	
0.71
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