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Abstract: Climate change is viewed as a cause in accelerating the rate of invasion by alien species
in addition to the globalization of anthropogenic activities. Ecological niche modeling has become
an instrument in predicting invasion from natural or invaded ranges to uninvaded ranges based on
the presence records of organisms and environmental parameters. This study explored the changes
in the distributions of globally noxious alien species (Aegratina adenophora, Ageratum conyzoides,
Chromolaena odorata, Lantana camara, Mikania micrantha, and Parthenium hysterophorus) in Bhutan,
to provide evidence that even a mountain environment is under the threat of invasion given the
change in climatic conditions. With fairly high accuracy, the model results suggest that there will be a
potential increase in the areas of invasion among most of the species, except Parthenium hysterophorus,
which will experience a northerly shift and decline in distribution. The results also indicate changes
in patterns of invasion, some becoming more concentrated toward a given direction, while others
become more dispersed over time. This study provides a framework that can be used in the strategic
control of the species, future detection surveys, and further research.

Keywords: climate change; directional distributions; ecological niche modelling; Maxent; predicted
invasion; partial area under curve

1. Introduction

There is abundant evidence that climate change may profoundly affect the geographic distribution
of organisms [1–8]. Global warming may result in the expansion in the habitat range of invasive species
and the contraction or displacement of the habitat range of indigenous species [6–10]. The invasion
risk remains very high given the current rate of global warming (0.8–1.2 ◦C per decade according to
the Intergovernmental Panel on Climate Change (IPCC) [11].) There is also a strong concordance that
most invasive species are phenotypically plastic to novel environments [12–14]. Climate change is a
catalyst in facilitating the hybridization and introgression of invasive species establishment [15,16].
Through hybrid vigor, invasion success has been predicted to enhance the evolutionary potential
within populations [17], as in the case of a cosmopolitan weed, Silene vulgaris.

Mountain ecosystems are theoretically less vulnerable to invasions due to indomitable barriers of
steep slopes and inhospitable environmental conditions that prevent the dispersal of propagules [18].
However, shifts in land management and economic activities such as the development of hiking trails,
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recreational amenities for ecotourism, deforestation, and upland agriculture adoption [19], compounded
by climatic change, have exposed vulnerable mountains to disturbance [20–24]. The warming climate
has resulted in an altitudinal upward shifting of cold-temperate species (e.g., Fagus sylvatica) and
Mediterranean species (Quercus ilex) in Catalina, Spain [25]. In Bhutan, farmers have reported that
due to climate change, invasive plants have started to colonize highland pasture, preventing the
regeneration of fodder grasses [26]. Given a change in climatic conditions, adjacent lowland flora
heavily influence species composition in mountain communities [27]. Mountain environments are
rated as highly sensitive to climate change due to a short growing season and limited niches for
resident species [28–32]. Human activities and climate change has led to invasions in mountainous
areas in Europe, Australia, South Africa, Kashmir, Hawaii, the United States Pacific Northwest, and
Chile [20]. Furthermore, alien invasive weeds are habitat generalists, with high plasticity to adapt
to wide ranges of climatic conditions [33–37]. Species tolerant of wider environmental conditions
are frequently associated with the following physiological traits: an efficient use of nutrients in low
nutrient soils, higher root–shoot ratio in arid systems and a lower root–shoot ratio in light-limited
systems for resource acquisition, lower leaf construction costs and higher photosynthetic energy use
efficiency as well as early phenology in arid systems [38,39].

With its inhospitable terrain and strong conservation strategies (maintaining 60% or more forest
cover, with more than 51% designated as protected areas and with a rigid forest management rule
of one-third annual allowable cut [40]), can Bhutan thwart invasion from alien species? No scientific
evidence exists to corroborate the effectiveness of such strategies, especially in ecologically sensitive
areas such as Bhutan and alpine regions [24,31]. Already, more than 46 alien plant species have
been recorded in Bhutan [41,42]. Invasive species such as Ageratina adenophora, Ageratum conyzoides,
Chromolaena odorata, Lantana camara, Mikania micrantha, and Parthenium hysterophorus were selected as
target species of study in Bhutan (Figure A1 and Table 1).

Table 1. Outline of the species geographical distributions with their impacts.

Species Native Range Invaded Area in
Bhutan Impact Reference

Ageratina
adenophora Mexico

Punakha, Trongsa,
Samtse, Wangdue,
and Phuentsholing

Toxic to animal health, and
displaces native vegetation

Grierson and
Long [43]

Ageratum conyzoides Central America and South
America

Mongar, Sarpang,
and Wangdue

Causes liver cancer in humans and
inhibits the growth of other plants Parker [44]

Chromolaena odorata Southeastern USA, Mexico,
and South America

Punakha, Trongsa
Wangdue, Mongar,
and Phuentsholing

Toxic to animal health and causes
asthma in humans

Bhutan
Biodiversity
Portal [45]

Lantana camara
Mexico, Central America, the
Caribbean, and tropical South

America

Wangdue and
Phuentsholing

Causes allergenic rhinititis, a type
of child cirrhosis via

pollen-contaminated milk

Bhutan
Biodiversity
Portal [45]

Mikania micrantha
Mexico, Central America, the
Caribbean, and tropical South

America

Chhukha, Mongar,
Samtse, and

Sarpang

Can damage perennial crops by
twinning and entanglement, and

reduces biodiversity through
competition

Parker [44]

Parthenium
hysterophorus

Mexico, Central America, the
Caribbean, and South America

Mongar, Tashigang,
Tongsa, and

Wangdi

Causes severe allergic illness in
adult human males, when in

contact with the pollen.
Parker [44]

In Bhutan, although information on the impacts of these species are lacking, most have been
reported to reduce crop productivity, and some of them have been described as encroaching the forest
understory, particularly, A. adenophora, C. odorata, and M. micrantha [46]. Given the negative impacts
of these species on the economy, biodiversity, and society, it is not only crucial to predict potential
invasions in new areas, but more so in a climate change scenario. In general, models predict that climate
change will not only redistribute species, but also move them poleward in latitudes and upward in
altitudes [47,48].
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Ecological niche modeling (ENM) is now widely used in predicting the distributions of species
due to ample species records in museums, on paper maps, online e.g., Global Biodiversity Information
Facility, etc., and adequate environmental data in the form of raster/grid-cells due to advances
in geographic information systems (GIS) and satellite-based remote sensing [49–53]. Ecological
niche modeling uses computerized algorithms to predict the distributions of a species across a
geographical space and time, based on observed distributions of a species as a function of environmental
conditions [54]. In particular, the presence only correlative modeling has gained in popularity over
presence–absence modeling as the locational records of species are amassed mostly in the form of
presence only, and not presence–absence localities [21,55–57]. Additionally, the absence records are
dubious in their affirmation as they can be affected by many factors including the inaccessibility
of the site, not being detected during the survey, or may have experienced local extinction due to
disturbances [58]. Maxent has often performed better than other approaches such as artificial neural
network, Bioclim, Domain, ENFA, GAM, GARP etc., [59,60] because it can cope with sparse, irregularly
sampled data and minor location errors [61]. Additionally, it has the advantages that it (1) requires
only presence data, (2) can handle both continuous and categorical variables, and (3) can converge
to optimal probability [62]. Maxent works based on Gibbs probability distributions of the maximum
entropy given the constraints.

qλ(X) = eλ. f (x), (1)

where x is pixel in the study area, λ is vector of coefficients (feature weights), and f is vector of
all features.

This study tested the theory of alien invasive species being highly adaptable to a wide variety
of environmental conditions by using a topographically variable landscape (ranging from 100 to
>7500 m.a.s.l.) and highly heterogeneous ecoregions (ranging from alpine to tropical climatic zones).
Two different climatic scenarios, the average of 1960 to 1990 (hereafter referred to as current) and
the average of 2041 to 2060 (hereafter referred to as future) were used to model current and future
spatial distributions of the species. The objectives were to (1) compare the model evaluation techniques
of partial area under curve (PAUC) and full area under the curve (FAUC) in the current and future
climatic scenarios, (2) assess the predicted distributional change under two climatic conditions, and (3)
test the statistical significance of change.

2. Materials and Methods

2.1. Defining Survey Site and Species Record Sampling

The study was conducted in Bhutan, located on the southern slopes of the Himalayan Mountains
between 26◦45′00′′ and 28◦10′00′′ N, and 88◦45′00′′ and 92◦10′00′′ E, with altitudes ranging from
100 m on the Indian border to 7500 m bordering Tibet [63]. The country encompasses 38,394 km2 [42].

Suitable survey sites were defined within the species’ altitudinal range, below a 45◦ slope, outside
human settlements, roads, and rivers by using extraction and clip tools in ArcGIS 10.1. Then, we drew
polygon grids of 1 km × 1 km, each containing a point using the fishnet tool in ArcGIS 10.1. The total
points within the fishnet polygons were considered as the pseudo-population of the species. From these,
30% were randomly sampled and uploaded onto GPS units for ground surveys (candidates/presurvey
points, Table 2). After every 1 km along the road within the survey sites, a species search was conducted
up to approximately 250 m on either side of the road. Recordings (field records/post survey points,
Table 2) were conducted only if the species cover was ≥5% within a 10 × 10 m2 plot to avoid source–sink
population errors [64].

Samples from easily accessible areas such as roadside or nearby settlements were found to be
biased and autocorrelated [61]. Autocorrelation was mediated in SDMTools v2.3 [65] by using the
following procedures: (1) Principal component analysis to construct climatic heterogeneity surface,
(2) Calculation of climatic heterogeneity using the percent of eigenvalues from the principal components,
and (3) Rarefication of occurrence data using the spatially rarefy occurrence data tool. The resulting
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climate heterogeneity surface is shown in Figure S1 and the number of records after rarefication is
shown in the last column of Table 2.

Table 2. Number of candidates (pre-survey), field detected records (post-survey), and rarefied records
for five species.

Species Pre-Survey Post-Survey Rarified Record

Ageratina adenophora 132 336 48
Ageratum conyzoides 170 172 27
Chromolaena odorata 200 89 30

Lantana camara 200 71 18
Mikania micrantha 200 147 26

Parthenium hysterophorus 282 167 20

Total 1184 982 169

2.2. Environmental Data Processing

The current and future bioclimatic variables comprising a total of 19 temperature and precipitation
parameters were collated from worldclim.org [66] (Table A1). Following Ashraf et al. [60], the
multicollinearity of current bioclimatic variables was evaluated using the Pearson correlation in
SDMTools [65]. Bioclimatic variables with an average (Avg) Pearson’s r ≥ 0.9 were removed (with
the exception of annual mean temperature, since it is considered as a proximal and important
climatic variable). Isothermality, maximum temperature of the warmest month, annual precipitation,
precipitation of the wettest month, precipitation of the driest month, precipitation seasonality,
precipitation of the wettest quarter, precipitation of warmest quarter, and precipitation of the coldest
quarter were used for modeling (the boldface values in Table 3 indicate the selected variables).
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Table 3. Pearson’s correlation matrix indicating the above and below threshold correlations. Variables corresponding to the boldface values were selected for ecological
niche modeling (ENM).

Bio 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 Avg

1 0.9 0 1 1 1 0.9 1 1 1 1 0.9 0.9 0.9 0.3 0.9 0.9 0.9 0.9 0.9
2 0.3 1 0.9 0.9 1 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.2 0.9 1 1 0.9 0.8
3 0.1 0.1 0 0.2 0 0 0 0 0.2 0.2 0.1 0.3 0.2 0.2 0.2 0.2 0.1
4 0.9 1 1 0.9 1 0.9 1 1 0.9 0.9 0.2 1 1 1 0.9 0.9
5 1 0.9 1 1 1 1 0.9 0.9 0.9 0.3 0.9 0.9 0.9 0.8 0.9
6 1 1 1 1 1 0.9 0.9 0.9 0.3 0.9 1 0.9 0.9 0.9
7 0.9 1 0.9 0.9 1 0.9 0.9 0.2 0.9 1 1 0.9 0.9
8 1 1 1 0.9 0.9 0.9 0.3 0.9 0.9 0.9 0.8 0.9
9 1 1 0.9 0.9 0.9 0.3 0.9 0.9 0.9 0.9 0.9
10 1 0.9 0.9 0.9 0.3 0.9 0.9 0.9 0.8 0.8
11 0.9 0.9 0.9 0.3 0.9 0.9 0.9 0.9 0.8
12 1 0.9 0.1 1 0.9 1 0.9 0.8
13 0.9 0 1 0.9 1 0.8 0.8
14 0.2 0.9 0.9 0.9 0.9 0.8
15 0 0.3 0 0.4 0.2
16 0.9 1 0.8 0.9
17 0.9 1 0.9
18 0.8 0.8
19 0.8
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2.3. Model Calibration

Maxent 3.3.3k [67] was downloaded using http://www.cs.princeton.edu/~{}schapire/maxent.
After feeding Maxent with the species records (rarefied) and climatic variables (current and future),
ENM was calibrated as follows: feature types = linear, quadratic, product, and threshold; regularization
multiplier = 2; maximum number of background points = 10,000; replicates per species = 10; maximum
iteration per species per replicate = 500; convergence threshold = 0.001. Replicated run type = 10-fold
cross validation. The remaining parameters were maintained at their default values.

In addition to the FAUC (defined as the full spectrum of areal predictions, ranging from 0–1)
of the receiver-operating characteristic (ROC), PAUC (defined as the subset of full spectrum of areal
predictions) was used to evaluate the performance of the model (AUC is a statistical test defined by the
sensitivity along Y-axis and 1 – specificity along the X-axis). PAUC is known to avoid some omission
errors, which are common in FAUC [58,60]. Using the online tools at http://shiny.conabio.gob.mx:
3838/nichetoolb2/, PAUC was calibrated with an omission error threshold of E = 10 and 500 replicates
with 50% bootstrap resampling. Direct count of the proportion of replicate analyses with an AUC
ratio ≤ 1.0 was used to test the significance of the partial ROCs [60]. Departure of AUC ratio from
unity (i.e., >1) indicated a good performance of the model.

2.4. Statistical Testing of Model Predicted Areas of Invasion

To carry out the significance test in areas of predicted invasion change between the current
and future climatic conditions, ENM outputs from Maxent were converted into binary suitability
(0 = unsuitable and 1= suitable as shown in Figure A2) using the 10-percentile threshold and computed
the difference in areas of predicted invasion using ArcGIS 10.1. The differences obtained as cell values
were then converted into polygons to compute the areas and enable statistical analysis of the mean area
comparisons between increase, decrease, and no change. For visual illustration, hexagonal binning
was used (Figure 1). The statistical significance of change in the invasion areas of increase and decrease
between the current and future climatic conditions was tested using the Wilcoxon Signed Rank Test for
each species. A Mann–Whitney U test was used for an overall comparison between the increase and
decrease in areas of predicted invasion with all species combined.

2.5. Tracking Directional Distributions between Two Climatic Conditions

Using the spatial statistic tool in ArcGIS 10.1, directional distribution (standard deviational ellipse)
was computed (see Equations (2)–(5)) for the predicted areas of invasion for each species, under each
climatic condition. The standard deviational ellipse tool can capture the directional distributions by the
angle of rotation (the angle from north clockwise to the axis), the deviation along the major axis (the
longer one), and the deviation along the minor axis (the shorter one) [68]. The ellipse was calibrated at
one standard deviation with the area of polygons as the weight to the mean centroid of the polygons.
This method provides directional distribution patterns with xy distances and angle of rotation.

Calculate the mean center of the polygons:

(
xmc,ymc,

)
=

(∑n
i=1 xi

n
,

∑n
i=1 yi

n

)
, (2)

where:
xmc,ymc, = coordinatesofthemeancenter,
xi, yi = coordinates o f polygon i,
n = number o f polygons.
In order to calculate the angle of rotation and deviational ellipse in Equation (4) and (5), respectively,

the coordinates ((xi, yi) of the mean center were transformed as shown in Equation (3).

http://www.cs.princeton.edu/~{}schapire/maxent
http://shiny.conabio.gob.mx:3838/nichetoolb2/
http://shiny.conabio.gob.mx:3838/nichetoolb2/
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Transform the coordinates of the mean center:

x′i = xi − xmc,y
′

i = yi − ymc. (3)

Calculate the angle of rotation:

tanθ =

(∑n
i=1 x′2i −

∑n
i=1 y′2i

)
+

√(∑n
i=1 x′2i −

∑n
i=1 y′2i

)
+ 4

(∑n
i=1 x′2i

∑n
i=1 y′2i

)
2
(∑n

i=1 x′2i
∑n

i=1 y′2i
) . (4)

Calculate the deviational ellipse along the x and y axes:

δx =

√∑n
i=1

(
x′i cosθ− y′i sinθ

)2

n
,δy =

√∑n
i=1

(
x′i sinθ− y′i cosθ

)2

n
. (5)

3. Results and Discussion

3.1. Model Evaluation

The model yielded predictions of invasion that were statistically significant (p < 0.05) from a
random chance in all species and in both climatic conditions. The AUC ratios (AUCc = AUC current
and AUC f = AUC future) were well departed from ≤1 in both climate scenarios. However, the
AUC ratios and mean PAUCs decreased from current to future scenarios across all species (Table 4).
This concurs with the axiom that the accuracy of any model decays with extrapolation both temporally
and spatially [69]. Model evaluation using the PAUC approach improved its performance over the

FAUC since PAUCc > FAUCc across all species, as shown in Table 4. This improvement suggests that
the Maxent prediction along a restricted range (region of interest) of ROC is more useful than its entire
length, as found by Peterson et al. [58]. Lantana camara and P. hysterophorus performed better than the
rest of the species in all scenarios, consistent with the premise that species with restricted climatic
ranges require PAUC as a model evaluation technique. Mean partial AUCs were not highly deviant
between the current and future scenarios, indicating the Maxent’s high accuracy in model transfer for
the target species and the landscape.

Table 4. Model performance based on area under curve (AUC) ratios and mean partial AUCs at
α = 0.05.

Species N Ratio AUCc Ratio AUC f PAUCc PAUCf FAUCc

Ageratina adenophora 48 1.76 ± 0.05 1.71 ± 0.07 0.88 0.86 0.79
Ageratum conyzoides 27 1.76 ± 0.08 1.74 ± 0.08 0.88 0.87 0.77
Chromolaena odorata 30 1.82 ± 0.09 1.76 ± 0.09 0.91 0.88 0.83

Lantana camara 18 1.93 ± 0.04 1.92 ± 0.04 0.97 0.96 0.86
Mikania micrantha 26 1.85 ± 0.05 1.81 ± 0.04 0.93 0.90 0.81

Parthenium hysterophorus 20 1.94 ± 0.03 1.92 ± 0.03 0.97 0.96 0.93

3.2. Spatial Change Analysis

For P. hysterophorus, the area of expansion (0.55%) was much less than its area of contraction (5.26%)
under the future climatic condition (Figure 1a) when compared with the other species (Figure S2).
In terms of absolute change, the area of invasion increased in the case of A. conyzoides (Ac), C. odorata
(Co), L. camara (Lc), and M. micrantha (Mm), while it decreased for A. adenophora (Aa = 27.07% to
26.85%) and P. hysterophorus (Ph = 8.36% to 4.15%) (Figure 1b). Ageratina adenophora and A. conyzoides
appeared to be the most gregarious species (Figure S2), while P. hysterophorus appeared to be the
most intolerant to changes in climatic conditions. According to Wan et al. [70], A. adenophora exhibits
morphological and structural plasticity to adapt to the environment in invaded areas through genetic
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diversification. Furthermore, He et al. [71] reported a positive correlation between the stomatal density
and altitude, thus attributing A. adenophora’s adaptability to higher temperature and lower humidity in
high altitude areas. Similar to the report by Lamsal et al. [21], the spread of P. hysterophorus decreased
in this study, which could be because this species thrives mostly in agroecosystems and grasslands [22],
and in Bhutan, the land cover is dominated by forests, as high as 71%. Parthenium hysterophorus is
also very sensitive to photoperiodic fluxes and temperature changes [72], which are very common
in Bhutan due to its high topographical variability [73,74]. In contrast, A. adenophora, A. conyzoides,
C. odorata, L. camara, and M. micrantha are characterized as forest understory invaders with a high
dispersal mobility [22].
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Figure 1. (a) Hexagonally binned-map illustrating the rate of change in areas of distribution of
P. hysterophorus across the study area. Contraction = decrease in rate, Expansion = increase in rate,
and No Change = neither a decrease nor increase in rate with respect to the future climate scenario.
(b) Percent of predicted invasion by areas in the current and future climatic scenarios. Aa = A. adenophora,
Ac = A. conyzoides, Co = C. odorata, Lc = L. camara, Mm = M. micrantha, and Ph = P. hysterophorus.
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3.3. Testing the Statistical Significance of Changes

The model predictions of decrease and increase in areas of invasion in the future climatic scenario
were tested using Wilcoxon Signed-Ranks Tests. The decrease in area (4.15%) was significant for
P. hysterophorus (Z = 2.766, p = 0.006), and the decrease in area (26.85%) was non-significant for
A. adenophora (Z = 0.371, p = 0.711). The increase in area (17.59%) was significant for C. odorata (Z = 2.785,
p = 0.005), while the increase in areas (25.82%, 8.44%, and 17.15%) were non-significant for A. conyzoides
(Z = 1.063, p = 0.288), L. camara (Z = 0.642, p = 0.521), and M. micrantha (Z = 0.751, p = 0.453), respectively.
Therefore, P. hysterophorus can be characterized as intolerant, and C. odorata is adaptable to changing
climate (see the rate of change in Figure S2 and standard ellipse in Figure S3). However, P. hysterophorus
was predicted to be highly invasive under future climatic scenarios in the landscape of Nepal [22].
This difference could be attributed to the fact that Bhutan is predominantly covered by forests [75,76],
which act as natural barriers to the mobility of the species. Parthenium hysterophorus seeds are mainly
dispersed by vehicular movements and are found in disturbed areas such as agricultural lands,
roadsides, river banks, and wastelands [22].

A Mann–Whitney U test showed that there was no significant difference (U = 6413057, p = 0.645)
between the increase in area of predicted invasion compared to the decrease in area of predicted
invasion when all species were combined across the study area (Figure 2). This underscores the fact
that Bhutan has primarily intact forests, of which 52% are totally protected as national parks, wildlife
sanctuaries, and biological corridors [76]. Furthermore, the species in question more or less prefer
habitats along roadsides, degraded lands, pastures, and agricultural fields.
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between the two climate scenarios.

3.4. Cardinal Directions of Distributions

The directional distribution in the current climatic scenario (blue ellipse) followed angles of
rotation from 87.06◦ to 89.73◦ northeast and 92.22◦ to 92.88◦ southeast, while in the future (orange
ellipse) it followed from 78.74◦ to 89.99◦ northeast and 90.41◦ to 93.04◦ southeast (see Supplementary
Material Figure S3). The directional distribution of A. conyzoides became almost a perfect circle in the



Agronomy 2019, 9, 442 10 of 16

future climatic scenario, which according to the algorithm of standard deviational ellipse represents a
dispersion in distribution. There was also a notable northward shift in the distribution of P. hysterophorus
from the current to the future scenario as seen in Figure 3. Such observations are in accordance with
the findings that climate change can disrupt species distributional patterns [64,77–80] by the process of
colonization and removal of local species through competition.
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3.5. Limitations and Caveats of the Model

As in the case of any correlative modeling, Maxent modeling has its limitations. Maxent assumes
that the sampling effort is uniform across the entire area of interest and that the prevalence of occurrence
is 50% or more, while in practice, the models are developed from the occurrence records of accessible
areas, thus tending toward a spatial bias [61,81]. Furthermore, the interpretation of the results should
be treated from an inductive rather than deductive perspective, which means that such models are to
build rather than test the hypothesis. As such, models demand several iterations to account for the
effects of sample sizes [82,83], the spatial scales of the area of interest, the spatial resolutions of the
predictors [84], the selection of biologically meaningful environmental predictors [85], and different
filtering levels of autocorrelations of occurrence records [86] to enhance model fidelity and consistency.

To circumvent the limitations above, this study undertook measures such as planning the sampling
design by considering the population viability within the plots and reduction of spatial autocorrelation.
Furthermore, the multicollinearity of predictor variables was removed and their biological usefulness
considered. This study, therefore, remains fairly robust, relative to those that have resorted to using
secondary data from museums, herbaria, or online databases (e.g., GBIF) that have been collected on
an ad hoc basis.

4. Conclusions

Our model predictions conformed to the established theory that invasion is facilitated by climate
change since areas of predicted invasion increased during future climate scenarios. One notable
indication of this study was that the projection of current to future predictions could lead to weaker
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power of the Maxent model (partial AUC values decreased from current to future climate scenarios).
This occurs when the correlation between the response and predictors may only be adequate over a
narrow range of spatial and temporal scales. Among the six species, C. odorata could become more
prevalent over time, while P. hysterophorus may be very sensitive to climate change, as indicated by
its northward shift with a decrease in extent. Despite expansion in areas under the future climatic
condition, most species appear to limit their invasion to the southern region (S2: 26◦52′30′′ N to
27◦18′0′′ N) of the country. Lantana camara turned out to be the most stable species to change in climatic
conditions (No change = 97.49%), in contrast to P. hysterophorus, which was the most unstable species
to climate change (No change = 94.19%). Statistical non-significance of the Mann–Whitney U test
reinforced that overall, there is no significant impact of climatic change on invasion. Such a unique
result could be due to the country’s strong policies on environmental protection such as the delimitation
of protected areas, banning slash and burn agriculture practices, and the plant quarantine act. However,
the ruggedness of the mountain terrain cannot be overruled as a limiting factor. This study not
only points out which species are more likely to respond positively and negatively to changes in
climatic conditions, but also provides the directions of potential spread in the geographical space.
This approach can serve as the basis for strategic control (e.g., plant quarantine policy implementation
using transborder screening) of the species in question as well as further studies into these species
such as detection surveys.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4395/9/8/442/s1,
Figure S1: Sample rarefication using climatic heterogeneity; Figure S2: Change maps of six species between the
current and future climatic scenarios; Figure S3: Species wise directional distributions between current and future
climatic scenarios.
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Table A1. Bioclimatic variables derived from temperature and precipitation with the definitions of the
abbreviation, scaling factor, and measurement unit.

Label Variable Scaling Factor Units

BIO1 Annual mean Temperature 10 Degree Celsius
BIO2 Mean Diurnal Range (Mean of monthly (max temp-min temp)) 10 Degree Celsius
BIO3 Isothermality (BIO2/BIO7) 100 Degree Celsius
BIO4 Temperature seasonality (standard deviation) 100 Degree Celsius
BIO5 Max Temperature of Warmest Month 10 Degree Celsius
BIO6 Min Temperature of Coldest Month 10 Degree Celsius
BIO7 Temperature annual Range (BIO5-BIO6) 10 Degree Celsius
BIO8 Mean Temperature of Wettest Quarter 10 Degree Celsius
BIO9 Mean Temperature of Driest Quarter 10 Degree Celsius
BIO10 Mean Temperature of Warmest Quarter 10 Degree Celsius
BIO11 Mean Temperature of Coldest Quarter1 10 Degree Celsius
BIO12 Annual 1Precipitation 1 Millimetres
BIO13 Precipitation of Wettest Month 1 Millimetres
BIO14 Precipitation of Driest Month 1 Millimetres
BIO15 Precipitation Seasonality (Coefficient of variation) 100 Fraction
BIO16 Precipitation of Wettest Quarter 1 Millimetres
BIO17 Precipitation of Driest Quarter 1 Millimetres
BIO18 Precipitation of Warmest Quarter 1 Millimetres
BIO19 Precipitation of Coldest Quarter 1 Millimetres
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