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Abstract: The spatial and temporal variability of crop parameters are fundamental in precision
agriculture. Remote sensing of crop canopy can provide important indications on the growth
variability and help understand the complex factors influencing crop yield. Plant biomass is
considered an important parameter for crop management and yield estimation, especially for
grassland and cover crops. A recent approach introduced to model crop biomass consists in the use
of RGB (red, green, blue) stereo images acquired from unmanned aerial vehicles (UAV) coupled with
photogrammetric softwares to predict biomass through plant height (PHT) information. In this study,
we generated prediction models for fresh (FBM) and dry biomass (DBM) of black oat crop based on
multi-temporal UAV RGB imaging. Flight missions were carried during the growing season to obtain
crop surface models (CSMs), with an additional flight before sowing to generate a digital terrain model
(DTM). During each mission, 30 plots with a size of 0.25 m2 were distributed across the field to carry
ground measurements of PHT and biomass. Furthermore, estimation models were established based
on PHT derived from CSMs and field measurements, which were later used to build prediction maps
of FBM and DBM. The study demonstrates that UAV RGB imaging can precisely estimate canopy
height (R2 = 0.68–0.92, RMSE = 0.019–0.037 m) during the growing period. FBM and DBM models
using PHT derived from UAV imaging yielded R2 values between 0.69 and 0.94 when analyzing each
mission individually, with best results during the flowering stage (R2 = 0.92–0.94). Robust models
using datasets from different growth stages were built and tested using cross-validation, resulting in
R2 values of 0.52 for FBM and 0.84 for DBM. Prediction maps of FBM and DBM yield were obtained
using calibrated models applied to CSMs, resulting in a feasible way to illustrate the spatial and
temporal variability of biomass. Altogether the results of the study demonstrate that UAV RGB
imaging can be a useful tool to predict and explore the spatial and temporal variability of black oat
biomass, with potential use in precision farming.

Keywords: structure from motion; yield maps; remote sensing; precision agriculture; plant height;
unmanned aerial vehicle; crop surface model

1. Introduction

Monitoring biophysical parameters from crop canopy throughout the growing season is essential
to understand variations in crop development and its relation with environmental factors and
management practices [1,2]. Thus, the spatial and temporal variability of biophysical parameters can
be further used to increase crop productivity and farm profitability by improving the management
of farm inputs following precision agriculture concepts. Among other biophysical variables, plant
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biomass is widely discussed [3]. Biomass is positively correlated with grain yield in many crops [4–6],
used for nitrogen management as an input variable for the nitrogen nutrition index (NNI) [7–9] aside
from its direct relationship with forage mass for grassland [10]. Hence, several techniques have been
developed to estimate plant biomass in different crops throughout the years.

Black oat (Avena strigosa Schreb.) is a double-purpose crop used both as a temperate annual
forage and as a cover crop under no-tillage system in South America [11]. In both cases quantifying
biomass plays a key role, considered an essential parameter for effective pasture management [10]
and an important aspect to evaluate no-tillage system performance through straw production [12,13].
Because plant biomass can only be direct determined by destructive methods, other plant parameters
are commonly used as estimators, such as plant height (PHT), which is usually correlated with plant
biomass [8,14]. In these situations, PHT is commonly measured manually through a point-wise
sampling conducted with a ruler stick or using a rising plate meter (RPM) in case of grassland [10,15].
Biomass can also be evaluated using proximal sensing methods, based on leaf area index (LAI), which
is determined by devices that measure sunlight interception of canopy [16], vegetation indices (VIs)
calculated from canopy reflectance in the visible and near infrared spectrum measured by active optical
sensors [17,18] or using ultrasound sensors [19] and terrestrial laser scanning (TLS) [8] that estimate
canopy height. Even though these techniques have shown potential in biomass monitoring, high
measurement density is needed to reflect the spatial patterns within the field, which usually make
these methods labor-intensive [19,20].

As an alternative, biomass can be estimated by remote sensing sensors attached on unmanned
aerial vehicles (UAVs), such as airborne light detection and ranging (LiDAR) [21] and imaging
sensors [22]. UAVs are considered an emerging tool for small-scale remote sensing [23,24], delivering
ultra-high resolution data of crop canopy with a flexible temporal resolution which makes UAVs highly
suitable to monitor spatial and temporal variability of crop growth [1,25,26]. From consumer-grade
digital cameras mounted on these platforms, red green blue (RGB) aerial imaging with cm-resolution
can easily be obtained [26] and processed through structure from motion (SfM) based softwares, which
features photogrammetric algorithms specifically developed for UAV imagery, resulting in 3D point
clouds and ultra-high detail orthophotos [27].

Exploring 3D point clouds from crop canopies derived from UAV-RGB imagery, PHT can be
remotely sensed [6]. This concept has been introduced by Hoffmeister et al. [28], in which pixel-wise
PHT is obtained by subtracting a digital terrain model (DTM) from a CSM with centimeter resolution.
Since PHT is usually correlated with plant biomass, many studies were developed to analyze the
performance of CSMs obtained from RGB imagery to estimate biomass in agricultural crops as a
non-destructive method. This technique has been successfully implemented for winter wheat [1],
barley [6,26], maize [29], onion [30], and grassland [31], with non-linear relationships between biomass
and PHT obtained from CSMs. In addition, some of these studies have compared the results from
SfM approach to other remotely sensed techniques, such as LiDAR and TLS, observing competitive
results [32].

Even though some studies have shown the potential of UAV imaging coupled with SfM algorithms
in biomass modeling, no study has explored the use of this information for biomass mapping, which
is fundamental to implement this technique in precision farming. Another gap is the lack of studies
using this method for grassland and cover crops that have heterogeneous canopies, such as black
oats. Therefore, the objective of this study was to assess the potential of CSM-based plant height
information obtained from RGB imaging in biomass modeling for black oat crop. In order to investigate
this relationship flight missions were carried out throughout the growth stages focusing on the
following specific objectives: (1) the comparison of PHT information obtained from CSMs with in-field
measurements; (2) to develop regression models to predict fresh and dry biomass from CSM-based
PHT at different growth stages; (3) to generate prediction maps for yield biomass illustrating the spatial
and temporal variability of this attribute.
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2. Materials and Methods

2.1. Test Site

The study was conducted within the research station (25◦41′33′′ S, 53◦05′43′′ W, altitude 530 m) of
Federal University of Technology - Paraná (UTFPR), campus Dois Vizinhos, Southwest of Parana state,
Brazil. The soil classification is Haplustox soil, with clay texture. The weather classification, according
to Köppen, is subtropical humid (Cfa) [33], with an average annual rainfall of 2048 mm and average
annual temperature of 18.4 ◦C.

The black oat (Avena strigosa Schreb.) crop was sown on June 19th, 2017 at 70 kg ha−1 in rows
0.13 m apart. The experimental field had an area of 1470 m2, divided into 30 plots of 7 × 7 m where
different levels and types of fertilizers were tested.

2.2. UAV Platform

A DJI Phantom 3 Advanced (SZ DJI Technology Co., Shenzhen, China) quadcopter was used
during the missions to capture RGB images. The built-in RGB camera uses a 1/2.3” complementary
metal-oxide semiconductor (CMOS) sensor with 12 megapixels (4000 × 3000) with f/2.8 fixed lens
and 94◦ field of view, mounted onto a gimbal underneath the copter. The embedded GNSS (global
navigation satellite system) receiver coupled with a navigation control system allows autonomous
flight missions using pre-loaded flight plans from third-party software.

2.3. Data Acquisition

Three missions (M1-M3) were carried out over the black oat canopy during crop growth with an
additional mission (M0) conducted before sowing to model terrain surface. More details regarding
each mission objective and flight conditions are enlisted in Table 1.

Table 1. Flight mission details. ID = mission number; DTM = digital terrain model; DSM = digital
surface model; DAS = days after sowing; GSD = ground sample distance.

ID Date Mission
Objective

Growth Stage
(DAS)

Wind
Speed 1

Images
Collected

Point Density
(pt·m−2)

Image
Overlap 2

GSD
(cm·px−1)

M0 4 June 2017 DTM - 1.1 150 3228 >9 1.76
M1 11 August 2017 DSM Booting (53) 4.1 142 2916 >9 1.85
M2 25 August 2017 DSM Flowering (67) 3.4 179 4056 >9 1.57
M3 6 September 2017 DSM Grain filling (79) 3.3 153 3052 >9 1.81

1 Averaged wind speed considering wind gusts. 2 Number of images covering the same part of the experimental field.

Each mission was planned using DroneDeploy software (DroneDeploy Inc., San Francisco, CA,
USA) on a smartphone and uploaded to the UAV beforehand, covering approximately 2.200 m2.
The flights were conducted autonomously at 25 m above ground level, configured to capture images
with 90% of side and forward overlap. Flight missions were scheduled and performed just before the
sampling events, around 12:00 a.m. local time, avoiding differences in sun conditions. For further
georeferencing procedures, four ground control points (GCPs) were previously distributed and located
in the field, using wooden poles fixed in the ground with targets attached on the top. The coordinates
of GCPs were measured following a post-processing kinematic (PPK) method, with a double frequency
(L1/L2) receiver as the base station (GTR-G2 TechGeo, Brazil) and a single frequency (L1) receiver
as rover (GTR-ABT TechGeo, Brazil). The expected accuracy of the PPK method for the mentioned
receivers is 0.005 m for both horizontal and vertical positioning.

After each flight mission was completed, ground sampling was carried out. The sample location
was randomly defined within each plot, using a squared metal frame of 0.5 × 0.5 m to delimit the
area to be sampled. Average plant height was obtained using a folding yardstick, considering the
vertical distance from soil surface to the highest part of the plant at 8 random locations, followed by
destructive above-ground biomass sampling of the delimitated area (0.25 m2). The sampled material
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was then packed in paper bags determining FBM immediately. For obtaining DBM, the samples were
then dried at 65 ◦C for 72 h in a compartment drier.

Subsequent to each ground sample carried out, an additional flight configured with the same
previously settings described was performed. The purpose of this flight was to generate an orthomosaic
that was later used to delimitate the sampled area of each plot. Digital terrain models obtained from
this dataset was not used during the analysis.

2.4. Data Processing and Analysis

RGB imagery datasets were processed using the photogrammetry software Agisoft PhotoScan
(v. 1.2.6, Agisoft LLC, St. Petersburg, Russia). The software features Structure from Motion algorithm
(SfM) to stitch and estimate a 3D point cloud from overlapped images [27]. The workflow was
implemented according to Schirrmann et al. [1] with the following major steps: (1) GCPs import;
(2) images alignment resulting in a sparse cloud; (3) optimize alignment using GCPs; (4) building a
dense cloud point with mild depth filtering; (5) building a digital surface model (DSM) and orthomosaic.
All these processes were performed within three hours on a laptop with a six-core Intel Core i7-8750H
2.2 GHz processor (Intel Corp., Santa Clara, CA, USA) with 16 Gb RAM and a NVIDIA GTX 1060M
6 Gb graphic card (NVIDIA Inc., Santa Clara, CA, USA).

Further processing was carried out in ArcGIS software (v. 10.2.2, ESRI Ltd., Redlands, CA, USA).
First of all, the DTM and DSMs were clipped using the area of study shapefile. In the next step,
the CSMs were generated individually using the DSM from M1, M2 and M3 subtracted from DTM
obtained from M0. The CSMs represent the distance between the top of the canopy and ground level
which corresponds to plant height [28]. In order to extract values from CSMs at the corresponded
sampled area, the orthomosaics built from images taken after sampling procedures were used. For each
mission, 30 polygons of 0.5 × 0.5 m were placed over the sampled area within the plots. The paper
bags containing the biomass collected were used as targets, facilitating the detection of sampled areas.
Once all the 30 polygons were in place they were used as a mask to extract statistics variables from
the respective CSM (Figure 1) which were later compared with the ground-measured data of the
corresponding plot in the regression analysis.
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Figure 1. Procedure to extract plot-wise variables from UAV-based dataset. (a) Orthomosaic built from
images collected after sampling procedure; (b) Mask created for the sampled area; (c) Extraction of
CSM data using generated masks.

2.5. Statistical Analysis

The correlation and regression analyses were performed in SigmaPlot (v.12, Systat Software,
Inc., Chicago, IL, USA). Firstly, the mean PHT obtained from each plot using CSM was evaluated
against the mean PHT obtained from the reference ground measurements. This process was carried
out individually for each mission. The same procedure was applied for FBM and DBM, comparing
the aboveground biomass sampled and PHT derived from CSM, resulting in regression models for
each mission.
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Additionally, a cross-validation analysis was performed combining datasets of all missions.
The multi-temporal dataset (n = 90) was split randomly, using a proportional number of samples
of each mission. 70% of the data (n = 63) was used for calibration, combining PHTCSM versus FBM
and DBM, and 30% of the dataset (n = 27) was used for validation, using a linear regression between
estimated and observed biomass.

The regression results were further compared based on the coefficient of determination values
(R2), classified as high (R2 > 0.7), medium (0.5 < R2 < 0.7) and low (R2 < 0.5) [6]. Residuals were
assessed based on mean error (ME), mean absolute error (MAE), root mean square error (RMSE) and
relative root mean square error (rRMSE).

3. Results

Three UAV missions were flown during the growing season, between 11 August and 9 September
2017. The phenological stages of black oats varied from booting (M1), flowering (M2) and grain
filling (M3). At each mission, the growth stages presented some variation across the plots due to
experimental treatments.

The dataset variables presented in Table 2 were extracted from 0.25 m2 samples, at each plot and
mission. For UAV-based variables, the data were extracted using a mask created for each mission with
polygons that represent the sampled area location.

Table 2. Descriptive statistics of the crop parameters measured at the sample plots for M1, M2, and M3.
n = number of samples; SD = standard deviation.

Variable n Unit Abbreviation Mean Min Max SD Median

M
is

si
on

1 Reference plant height 30 m PHTref 0.20 0.12 0.31 0.05 0.18
CSM plant height 30 m PHTCSM 0.25 0.08 0.57 0.15 0.19

Fresh Biomass 30 kg·m−2 FBM 0.795 0.320 1.793 0.440 0.573
Dry Biomass 30 kg·m−2 DBM 0.149 0.069 0.304 0.068 0.121

M
is

si
on

2 Reference plant height 30 m PHTref 0.58 0.38 0.77 0.10 0.57
CSM plant height 30 m PHTCSM 0.46 0.10 0.71 0.15 0.47

Fresh Biomass 30 kg·m−2 FBM 1.869 0.655 3.230 0.685 1.811
Dry Biomass 30 kg·m−2 DBM 0.334 0.136 0.627 0.123 0.313

M
is

si
on

3 Reference plant height 30 m PHTref 0.65 0.50 0.81 0.07 0.65
CSM plant height 30 m PHTCSM 0.73 0.24 0.97 0.14 0.74

Fresh Biomass 30 kg·m−2 FBM 1.794 0.829 2.885 0.482 1.723
Dry Biomass 30 kg·m−2 DBM 0.497 0.255 0.815 0.130 0.486

3.1. Regression Analysis

Several regression models were generated using the plot-wise dataset. PHT derived from CSMs
was allocated as the dependent variable (x) together with the following independent variables (y):
PHTref; FBM and DBM, resulting in a regression model for each mission. Table 3 details the performance
of each regression, including the coefficient of determination (R2) and residuals.

Table 3. Regression models obtained between plant height and biomass for different missions and its
residuals. x = dependent variable; y = independent variable; ME = mean error; MAE = mean absolute
error; RMSE = root mean square error; rRMSE = relative RMSE; p < 0.001 for all R2.

Y x Model n R2 ME MAE RMSE rRMSE

M
is

si
on

1 PHTref PHTCSM 0.314x + 0.122 30 0.86 0.000 0.016 0.019 9.6

FBM PHTCSM 0.358 · exp(2.776x) 30 0.87 0.005 0.111 0.155 19.5
DBM PHTCSM 0.079 · exp(2.255x) 30 0.81 0.000 0.022 0.029 19.3

M
is

si
on

2 PHTref PHTCSM 0.624 x + 0.291 30 0.92 0.000 0.024 0.028 4.8

FBM PHTCSM 0.554 · exp(2.506x) 30 0.94 0.003 0.126 0.165 8.9
DBM PHTCSM 0.098 · exp(2.514x) 30 0.92 -0.002 0.025 0.035 10.5
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Table 3. Cont.

Y x Model n R2 ME MAE RMSE rRMSE

M
is

si
on

3 PHTref PHTCSM 0.408x + 0.354 30 0.68 0.000 0.030 0.037 5.7

FBM PHTCSM 0.435 · exp(1.899x) 30 0.69 0.001 0.208 0.265 14.8
DBM PHTCSM 0.124 · exp(1.864x) 30 0.69 0.001 0.058 0.071 14.3

3.1.1. Plant Height

The regression models between PHTCSM and reference measurements (PHTref) yielded R2 values
from 0.68 to 0.92 (Figure 2). The best results were observed during M2 with an R2 = 0.92 and RMSE of
0.028 m, whereas the M3 provided the lowest performance, with an R2 = 0.68 and RMSE of 0.037 m.
No evidence of systematic tendency was observed throughout the missions (Mean Error), but the
standard deviation (SD) from PHTCSM was slightly higher than PHTref (Table 2).Agronomy 2019, 9, x FOR PEER REVIEW 7 of 15 

 

 
Figure 2. Linear regression between plant height deviated from CSM (PHTCSM) and manual height 
measurements (PHTref) for each mission. p < 0.001 for all R². Symbols indicate datasets from Mission 
1 (●), Mission 2 (▲), and Mission 3 (∎). 

3.1.2. Biomass 

Different regression models were obtained for FBM and DBM. First, we developed different 
models for each individual mission (Figure 3). Regarding FBM, the best results were observed during 
M2, with an R² of 0.94 and RMSE of 0.165 kg m-2. On the other hand, the last mission generated 
weakest results, with an R² of 0.69 and RMSE of 0.265 kg m-2. DBM results showed the same pattern 
of FBM, in which M2 yielded an R² of 0.92 and RMSE equal to 0.035 kg m-2 and M3 resulted in an R² 
of 0.69 with an RMSE of 0.071 kg m-2. During the first mission, the highest relative errors were 
observed, resulting in an rRMSE of 19.5% for FBM and 19.3% for DBM, nearly double compared to 
M2 results. 

Figure 2. Linear regression between plant height deviated from CSM (PHTCSM) and manual height
measurements (PHTref) for each mission. p < 0.001 for all R2. Symbols indicate datasets from Mission 1
(�), Mission 2 (N), and Mission 3 (�).

3.1.2. Biomass

Different regression models were obtained for FBM and DBM. First, we developed different
models for each individual mission (Figure 3). Regarding FBM, the best results were observed during
M2, with an R2 of 0.94 and RMSE of 0.165 kg m−2. On the other hand, the last mission generated
weakest results, with an R2 of 0.69 and RMSE of 0.265 kg m−2. DBM results showed the same pattern of
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FBM, in which M2 yielded an R2 of 0.92 and RMSE equal to 0.035 kg m−2 and M3 resulted in an R2 of
0.69 with an RMSE of 0.071 kg m−2. During the first mission, the highest relative errors were observed,
resulting in an rRMSE of 19.5% for FBM and 19.3% for DBM, nearly double compared to M2 results.Agronomy 2019, 9, x FOR PEER REVIEW 8 of 15 
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Figure 3. Regression models between FBM/DBM and PHTCSM for each mission. p < 0.001 for all R2.
Symbols indicate datasets from Mission 1 (�), Mission 2 (N), and Mission 3 (�).

In a second step, new regression models to predict biomass were built for the whole dataset (M1,
M2, and M3) and tested through cross-validation. The data was split into a 70% calibration and 30%
validation dataset with the regression results summarized in Table 4.
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Table 4. Cross-validation results between fresh/dry biomass and PHTCSM for all missions. x = dependent
variable; y = independent variable; ME = mean error; MAE = mean absolute error; RMSE = root mean
square error; rRMSE = relative RMSE; p < 0.001 for all R2.

y x Model n R2 ME MAE RMSE rRMSE

C
al

. FBM PHTCSM 0.707 · exp(1.438x) 63 0.64 0.013 0.354 0.438 29.1
DBM PHTCSM 0.109 · exp(2.056x) 63 0.89 0.004 0.048 0.064 19.1

V
al

. FBM PHTCSM 1.206x − 0.3220 27 0.52 0.020 0.394 0.506 35.2
DBM PHTCSM 1.086x − 0.0335 27 0.84 0.006 0.052 0.063 20.3

The results obtained from cross-validation tests were higher for DBM prediction model (Table 4).
The calibration regression yielded an R2 of 0.89 for DBM and of 0.64 for FBM, with relative errors
(rRMSE) of 19.1% and 29.1%, respectively. Considering the results from validation datasets, DBM was
predicted with an rRMSE of 20.3% through a model that explained 84% of the dataset’s variability,
whereas the FBM results were lower, with R2 = 0.52 and rRMSE of 35.2%. Figure 4 illustrates the results
described whereby higher scattering is observed for FBM when all missions are analyzed together.
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3.2. Biomass Prediction Maps

In order to illustrate the spatial and temporal variability of biomass predicted across the test site,
several maps were generated estimating FBM and DBM from PHTCSM and calibrated models obtained
for different growing stages (Figure 5).
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4. Discussion

Considering that plant height usually has a strong correlation with crop biomass [9,15,34], we first
assessed the performance of CSMs based on SfM approach to predict plant height. Ground-based
PHT reference measurements were compared to PHTCSM resulting in linear regression models with R2

between 0.68 and 0.92. Similar results obtained through SfM algorithms applied to UAV-based imagery
were observed for barley (R2 = 0.92) [6], winter wheat (R2 = 0.87–0.96) [1], onion (R2 = 0.82) [30], maize
(R2 = 0.88) [29], grassland (R2 = 0.56–0.70) [31] and mixed crops (R2 = 0.80–0.87) [35]. On the other
hand, laser scanner approaches based on terrestrial platforms (TLS) achieved R2 values between 0.88
and 0.99 in barley crop [36] and between 0.93 and 0.99 in wheat, oilseed rape and winter rye [37],
whereas Li et al. [3] predicted PHT in maize crop with an R2 of 0.79 using an airborne sensor (LiDAR).

During the booting stage (M1) the lowest average plant height measured was observed (0.2 m),
which provided the highest relative error (rRMSE) observed (9.6%). As stated by Possoch et al. [10], this
limitation must be considered when applied to lower canopies, given that further biomass estimation
error might exceed the limits required for practical applications. The highest value of R2 was observed
in M2 (R2 = 0.92), where most parts of the plots had plants at the beginning of reproductive stage
reaching the highest PHT amplitude and variability between plots (Table 2). This characteristic
resulted in a regression model with well-distributed points which contributed to reaching a higher
correlation value. On the other hand, the lowest R2 obtained in M3 (R2 = 0.68) can be linked to
lodging occurrence. Due to the fertilizer treatments combined to a drought period, some plots had
an anticipated senesce and were more likely to lodging. In these plots, the PHT derived from CSMs
was lower than non-lodging plots with similar ground-based PHT reducing the performance of the
model. A similar condition was observed by Bendig et al. [6] in summer barley, where the inclusion
of lodging plots reduced the performance of biomass prediction models, recommending the use of
average maximum PHTCSM instead of average mean PHTCSM to mitigate this effect. This observation
can also indicate that the number of samples used to determine average PHT as the reference (n = 8) was
not sufficient to be compared with PHT obtained from CSMs in situations with high spatial variability
across the plot [35]. For each plot sampled (0.25 m2) the CSM-based average PHT was determined
based on approximately 700 pixels, which represents more than a pixel per plant. As a consequence,
PHT obtained from CSMs tend to be lower in comparison to ground measurements because not only
the top portion of the plants are represented in the CSMs, but also the lower parts, like leaves and
even the soil level depending on the crop structure, covering more details than ground-based PHT
measurements [6].

The regression models for biomass estimation performed differently across the growth stages
analyzed, varying according to the results observed in PHT analysis, with best performance during M2
and worst fits in M3, which indicates that biomass modeling is sensible to PHT accuracy. FBM models
yielded a coefficient of determination of 0.69-0.94, whereas DBM models achieved an R2 between 0.69
and 0.92. If considered the relative errors of the models (rRMSE), FBM was estimated with errors
between 8.9 (M2) and 19.5% (M1), whereas DBM was estimated with errors ranging from 10.5 (M2)
to 19.3% (M1). In absolute terms though, M1 yielded the lowest error, with 0.155 kg m−2 for FBM
and 0.029 kg m−2 for DBM, while M3 provided the highest residuals, with 0.265 kg m−2 for FBM and
0.071 kg m−2 for DBM. Even though regressions from M1 showed lower absolute residuals, biomass
prediction at this growth stage (booting) might not be suitable for practical applications due to higher
relative errors. According to Shirmman et al. [1], during early stages biomass is mainly stored in the
leaves and not in the stems, resulting in a weaker relationship between PHT and biomass. On the
other hand, missions conducted during flowering stage (M2) tend to provide more accurate biomass
prediction, with relative errors around 10%. Considering that during M3 plants are more suitable to
lodging and PHT growth rate decline with biomass increments due to grain filling, biomass prediction
becomes more complex and tend to be erroneous when using only PHT as a dependent variable.
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The cross-validation analysis conducted using the entire dataset (M1, M2, M3) aimed to
generate robust models, using PHTCSM to predict FBM and DBM across all growth stages
analyzed. The calibration step achieved an R2 of 0.64 for FBM and of 0.89 for DBM. Similar
results were reported using calibration datasets in barley (FBM-R2 = 0.81, DBM-R2 = 0.82) [6], maize
(DBM-R2 = 0.78) [3], onion (DBM-R2 = 0.76) [30], grassland (DBM-R2 = 0.62–0.81) [31] and multiple
crops (DBM-R2 = 0.58–0.74) [35]. As stated by Tilly et al. [8], PHT tends to perform better to predict
DBM than FBM, especially in multi-temporal analysis, since water content vary accordingly to plant
phenology, weather conditions and soil characteristics, adding noise to the FBM prediction model
which results in lower R2 values. To evaluate model residuals, we analyzed the results from validation
step. FBM was estimated with a relative error of 35.2% which is equal to 0.506 kg m−2, while DBM was
predicted with an error of 20.3%, equivalent to 0.063 kg m−2. Comparable results were found using a
multi-temporal SfM approach by Grüner et al. [31] in temperate grasslands, achieving relative errors
between 16 and 22% for DBM prediction. Another similar study was conducted by Bendig et al. [6],
estimating barley biomass with relative errors ranging from 54.04 to 67.72% for FBM and 68.41 to
84.61% for DBM, indicating lower accuracies in biomass estimation. However, several treatments were
tested in the experiment, including different cultivars and nitrogen rates, with 18 missions conducted
throughout the growing season, as opposed to a single cultivar and three missions carried out in
this study.

Compared to studies that estimated biomass from CSMs generated from laser scanner data,
UAV-SfM approach tends to provide lower accuracies [6]. These studies reported R2 values of 0.90 for
DBM of paddy rice [8], between 0.72 and 0.79 for DBM [38] and 0.91 to 0.95 for FBM [39] in winter
wheat and of 0.82 for DBM in maize [3]. Even though laser scanner approaches tend to provide more
accurate biomass predictions, most part of these studies rely on TLS data, which is usually suitable
for small areas [3]. In contrast, UAVs offer the advantage of a fast, cost-effective and more flexible
data acquisition method, and can usually cover larger areas [6]. Apart from methods using PHT,
several studies have predicted crop biomass using proximal sensed variables, such as LAI and VIs.
Harmoney et al. [40] examined different techniques to predict grassland biomass, including PHT and
LAI as predictor variables, concluded that canopy height was more accurate in six of the eight analyzed
species. Another study compared point-wise LAI data and PHT derived from UAV imaging in wheat
biomass modeling achieved pearson correlation coefficient between 0.82 and 0.98 for LAI and between
0.68 to 0.95 for PHT [1]. Using vegetation indices from visible and near infrared coupled with PHT
from CSMs, Bendig et al. [26] tested both VIs and PHT alone as well as combined. None of the VIs
tested performed better than PHT alone to predict biomass, although slightly higher R2 values were
observed when combining PHT with some of the tested VIs. Another approach that uses VIs to model
biomass consists of the use of active optical sensors attached to ground-driven vehicles. Erdle et al. [41]
evaluated the use of different active optical sensors to monitor biophysical parameters of wheat and
achieved R2 values between 0.56 and 0.83 for DBM prediction. Although these proximal sensing
methods have a clear potential to model biomass yield, they consist of point-wise data, and require
interpolation [1]. In this sense, UAVs images are more feasible and can deliver spatial information
with high resolution without interpolation processing.

Moreover, the prediction maps for yield biomass developed using multi-temporal CSMs and the
regression models obtained in this study can be useful in spatial variability analysis. Regarding the
concept of precision farming, yield maps are considered the starting point to identify spatial variations
and to describe their causes [42], which can be linked to soil and weather conditions together with
management strategies. Forage production can take advantage of this information to improve yields
and quality by means of increased precision in management strategies adopted as well as to make
adjustments in the number of animals according to the amount of forage available. The spatial and
temporal variability of biomass also can be used to evaluate the performance of cover crops in no-tillage
systems by modelling straw yield.
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In this study, the SfM approach using RGB-imagery enabled both PHT and biomass modelling
for black oats crop with the described uncertainties. The main source of error found was the lodging
occurrence, lowering the accuracy of PHT estimation and the biomass prediction. Higher relative errors
must be expected when applying this technique in lower canopies, especially during early growth stages,
and weaker relationships between PHT and biomass during grain filling. The amount of time required
for image acquisition and further processing should also be considered when adopting this method
in field-scale, since flight time and processing time increases proportionally to the size of analyzed
area. Further evaluations in field-scale and multiple years are important to ensure model robustness
and transferability, coupled with more studies focusing on reducing the time necessary for image
processing and acquisition and its impact on biomass modelling performance. This is an important
step to ensure the method’s feasibility for field conditions, which further studies should evaluate.

5. Conclusions

From UAV-imagery based on an RGB sensor, CSMs were obtained across different growth stages of
black oats. The coefficients of determination (R2 = 0.68–0.92) demonstrated a medium-high accuracy in
assessing multi-temporal PHT, with best results before senescence (R2 = 0.86–0.92). The multi-temporal
CSMs with ultra-high resolution allowed PHT spatial variability detection throughout the missions,
covering more details than point-wise ground measurements.

Furthermore, we investigated the relationship between PHT derived from CSMs and crop biomass.
Several models to estimate FBM and DBM at different growth stages were developed, explaining
69–94% of biomass variability. In addition, two models were built using observations from all missions,
with calibration and validation steps. The results showed that PHT is highly correlated with DBM and
medium correlated with FBM, estimating biomass with an rRMSE of 20.3% and 35.2%, respectively.

Based on multi-temporal CSMs and the models developed in this study, yield maps were built
illustrating spatial and temporal variability of FBM and DBM. This information expresses spatial
patterns that might be connected with environmental factors, such as soil heterogeneity, and can be
further used to optimize the crop management following PA concepts.
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