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Abstract: The nutritive value (NV) of perennial ryegrass is an important driver of productivity for
grazing stock; therefore, improving NV parameters would be beneficial to meat and dairy producers.
NV is not actively targeted by most breeding programs due to NV measurement being prohibitively
slow and expensive. Nondestructive spectroscopy has the potential to reduce the time and cost
required to screen for NV parameters to make targeted breeding of NV practical. The application of
a field spectrometer was trialed to gather canopy spectra of individual ryegrass plants to develop
predictive models for eight NV parameters for breeding programs. The targeted NV parameters
included acid detergent fibre, ash, crude protein, dry matter, in vivo dry matter digestibility, in vivo
organic matter digestibility, neutral detergent fibre, and water-soluble carbohydrates. The models
were developed with partial least square regression. Model predicted ranking of plants had R2

between (0.87 and 0.39) and lab rankings of highest preforming plants. The highest ranked plants,
which are generally the selection target for breeding programs, were accurately identified with the
canopy-based model at a speed, cost and accuracy that is promising for NV breeding programs.

Keywords: hyperspectral sensors; perennial ryegrass; nutritive value; multiple linear regression;
nondestructive; recurrent selection; near infrared spectroscopy

1. Introduction

For Australian and New Zealand dairy producers, the availability of high quality pasture is a
requirement for remaining competitive in global markets [1]. Perennial ryegrass is the dominant forage
pasture for temperate regions, due to its high nutritive value (NV) and tolerance of grazing [2,3]. NV
refers to multiple traits which contribute to the amount of energy and nutrients that can be obtained
by grazing stock, thereby contributing towards the total liveweight gain or milk production of the
animals [3]. There is some disagreement on the relative importance of various traits but most forage
scientists agree that important traits include cell wall constituents such as acid detergent fibre (ADF),
neutral detergent fibre (NDF), as well as the dry matter percentage (DM), crude protein (CP), in vivo
dry matter digestibility (IVVDMD), in vivo organic matter digestibility (IVVOMD) and water soluble
carbohydrates (WSC) [4–10]. Improvement of these NV traits would increase the amount of nutrition
available for stock without increasing the yield and would decrease the need for costly supplements.
Despite the economic importance of NV, the difficulties in screening parameters have limited perennial
ryegrass breeding programs actively targeting NV traits [9,11,12].
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The biggest obstacle for improvement of NV is the expense and time required for analysis, which
currently entails destructive harvesting and preparation for lab-based methods, demanding high
human labour [13–15]. This presents a problem considering large amounts of analysis are required
for breeding programs due to the quantitative genetics of the traits and several aspects of perennial
ryegrass biology [16]. Perennial ryegrass is prone to inbreeding depression; therefore, a large breeding
pool is needed to maintain the necessary genetic diversity while at the same time increasing desired
alleles [17,18]. Breeding for NV requires a throughput of phenotyping that is not practical with the
traditional methods of NV analysis [17,19]. Currently, wet chemistry and lab-based spectroscopy
are the industry standards for the prediction of NV parameters in forage. Lab-based near-infrared
spectroscopy (NIRS) has been determined to be a reliable measure of ADF, ash, CP, IVVDMD, IVVOMD,
NDF and WSC in perennial ryegrass [20,21]. Though NIRS is relatively fast and efficient compared
to wet chemistry, the transport and preparation for lab analysis renders NV analysis prohibitively
expensive for large breeding populations [22,23]. Forage samples are oven dried and ground to a
fine powder before NIRS, this requires destructive harvesting of samples and as well as handling and
transport. Grinding has high labour requirements due to the process of cleaning grinding machinery
between samples to prevent contamination [24]. Canopy spectra, or spectra captured directly from
the growing plants, can be collected without destructive harvesting, transport or sample preparation
removing much of the human labour. Platforms for automation, such as vehicles and drones, can be
incorporated to further reduce time and cost [25].

Field-based canopy spectra are not without challenges; compared to the dried, ground samples,
the sample presentation and field conditions include higher noise, or spectral signals not relating to the
biophysical parameters of the ryegrass [26,27]. Atmospheric turbidity has a profound influence on solar
radiance and must be considered if sunlight is used as the energy source for spectroscopy [28]. Lack of
sample preparation also introduces noise, as the drying and grinding of samples for lab-based NIRS are
important for improving accuracy and robustness of the technique [29]. When spectral collection is in
situ, the variation in leaf size, shape and illumination create optical phenomena which are a large source
of noise [30]. Multiple scattering occurs due to energy reflected by multiple leaves of various length
and width at different inclinations to the energy source and reflectance from neighbouring material [30].
When using canopy spectra the background variation must be overcome with preprocessing, data
mining algorithms and model building [30]. There are many techniques for finding meaningful
information within data with high levels of background variation [31,32]; such as response linearisation
which apply logarithmic transformation, baseline corrections, derivatives which can enhance peaks
and troughs [33]. To find the meaningful patterns in spectra, it is vital that the necessary range and
resolution of the electromagnetic spectrum is captured. When measuring some plant traits, broad
bandwidths may be used to develop simple regression equations or vegetation indices. For complex
traits like NV finding relationships between reflectance spectra and internal biochemical parameters of
plants requires high spectral range and spectral resolution [34,35]. The need for high spectral range and
resolution may limit the platforms for data collection to ground-based options at this stage. Studies
that have used ground-based sensors have produced models with high predictive ability for NV traits
in crops compared to aerial systems [1,36–38].

This paper will examine the feasibility of using canopy spectra to make predictions about NV
parameters for individual perennial ryegrass plants in a large breeding pool. The predictive ability of
models created with canopy spectra will be tested by comparing predicted results with laboratory
results for eight NV parameters ADF, ash, CP, IVVDMD, IVVOMD, NDF and WSC. If this method
provides a way of ranking large numbers of individual ryegrass plants for these eight NV parameters,
it may be possible to improve NV through selective breeding programs.

2. Materials and Methods

The canopy spectra were collected using a portable spectrometer that can be field deployed, the
ASD FieldSpec 4®(Boulder, CO, USA). Methods for controlling and eliminating solar radiation and
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other environmental variances, to reduce day-to-day variation were applied. The approach aims to
create predictive models to nondestructively assess the NV of ryegrass plants in a rapid manner to
enable plant breeding to deliver gains for this important trait. Canopy spectra from a field trial of
perennial ryegrass were captured throughout the various growth stages of the crop, a subset of the
plants were then analyzed for NV parameters in the laboratory [39]. This data was used to create
predictive models based on canopy spectra that were then used to predict NV parameters in the
remaining plants.

2.1. Sample Population and Study Area

The study was conducted on a trial site situated in Hamilton Victoria Australia (-37.819460:
142.062250) [40]. The plants used in this experiment are part of a field study for genomic subselection
(GSS). The GSS field trial has 50 breeding cultivars of perennial ryegrass, each cultivar is grown in plots
of three lines of 32 plants, 96 plants per plot (Figure 1). All 50 plots are replicated ten times to allow for
environmental variance [40]. A library of perennial ryegrass spectra and lab analyzed NV parameters
was created to begin building predictive models. This required both canopy reflectance and destructive
harvests for lab analysis of the same plants. For this field trial destructive harvests were conducted
whenever the plants reach a three-leaf growth stage as both maintenance of vegetative growth and to
collect plant material for analysis in various studies. The harvests were approximately once a month in
the spring and less often in winter and autumn. In summer, the grass goes into a dormancy phase so
does not require harvesting. The lines that were included for developing the predictive model were
chosen due to their inclusion in a genomic subselection study. Having genotypic and phenotypic data
for the same plants will be useful in future research.
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Figure 1. The field trial of 50 experimental perennial ryegrass cultivars grown as 48,000 individual
plants in 50 plots of 96 with ten replicates.

The number of plants harvested for lab analysis varied, due to several factors; weather, technical
issues with the new equipment and constraints set by other experiments conducted on the field trial.
In September, spectra from genotype A were captured; however, the destructive harvest was not able
to be incorporated for lab results due to conflicts with other experiments; for this reason it was decided
this genotype should not be used in future and genotype B and genotype C were selected for use
instead. In total, 1704 plants were measured for canopy reflectance spectra, and a subset of 190 were
analyzed for NV parameters in the laboratory (Table 1).
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Table 1. The dates, breeding line and number of canopy spectra collection and vegetation harvested for
lab analysis.

Date Breeding Line Spectra Collected NV Lab Results

23/08/2018 A 316 0
24/08/2018 D 27 27
24/08/2018 E 18 18
24/08/2018 F 31 31
27/09/2018 A 288 0
12/10/2018 B 454 84
11/10/2018 C 474 0
30/11/2018 B 94 30

total 1704 190

2.2. Spectral Collection

Ryegrass plants were sampled using the ASD FieldSpec®HiRes 4, and spectra was collected from
23rd August 2018 to 30th November 2018 (winter–spring). The ground field of view was at nadir using
a fitted attachment to hold the sensor at a uniform angle and height, with a spirit level to insure the
sensor was always level. Whole plants were measured under a light shield for excluding spectral
signals from sunlight, atmosphere and the surroundings. An inverted plastic bin painted with mat
black paint (black 2.0) was used to exclude natural light, three 50-watt, 12-volt, tungsten halogen lamps
providing wavelengths ranging from 300–2500 nm were fitted inside the bin to provide the light source
(Figure 2A). The spectrometer was fitted with a 10◦ lens, scrambler and pistol-grip attachment and was
calibrated using a Spectralon®white reference panel on an adjustable tripod to keep it level. The white
reference panel was placed under the light shield with the light source during calibration. The bin
was placed over each individual plant, blocking sunlight, a skirt of black fabric around the rim of the
bin prevented light from entering gaps left by uneven ground (Figure 2B). The lens of the FieldSpec
was inserted into a hole in the bin, between the lights. Once the lens was inserted, 50 measurements
of reflectance spectra were collected and averaged using ASD RS3™ Software. The plant was then
harvested using hand shears, cutting the plant at 5 cm from the ground.
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Figure 2. (A) The light shield, showing the light fittings and the entrance point for the sensor, ensuring
the lens will be held at a uniform depth and angle; (B) The light shield is moved over individual
perennial ryegrass plants in the field and the spectra is recorded.

2.3. Laboratory Analysis

Individual plants were harvested for laboratory analysis at each harvest, all plants were unique
genotypes from four breeding lines B, D, E, and F. Some plants were dead or did not produce enough
biomass for laboratory analysis and these sample were discarded. The total number of lab-analyzed
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plants was 190 for the four destructive harvests. The plant tissue was weighed, then oven dried at
60 ◦C for 48 hours, and ground in a Foss cyclone grinder with a 1 mm grating [29,41]. The sample
were analyzed for eight NV parameters using a Foss NIRSTM XDS rapid content analyzer (HillerØd,
Denmark). This data was then used to create predictive models for each NV parameter; ADF, ash, CP,
DM, IVVDMD, IVVOMD, NDF, and WSC.

2.4. Model Building

The samples collected from August to October (159) of ryegrass with both spectra and lab results
were split 70/30 into a calibration (109) and validation set (50). The spectra were preprocessed using
intrasoft international®software WinISI 10.1. The resolution was reduced to from 1 nm to 2 nm to
reduce dimensionality and two rounds of smoothing were applied with a gap of 8 nm. Various scatter
corrections were tested to determine the best for each parameter, these included standard normal
variant (SNV), detrend, standard multiplicative scatter correction MSC, weighted MSC, Inverse MSC,
scale and offset, scale and linear, scale and quadratic, and derivative, scale and offset. For each model
a range of derivatives were tested, none, 1st, 2nd and 3rd derivatives were applied to the spectra to
find the best option for modelling for each parameter. Three types of linear dimensionality reduction
were then trialed for building the models; principal component analysis (PCA), partial least squares
regression (PLSR) and modified partial least squares regression (MPLSR). The water bands and areas
of high variability at the beginning and end of the spectra were removed, originally the range covered
350–2500 nm but was cut into three smaller bandwidths 454–1359 nm, 1425–1828 nm, and 1970–2450 nm.
These predictive models were created with samples from the 24th of the August 2018 to the 12th of
October 2018 using four genotypes B, D, E, and F. Plants were also sampled in November but at this
point in the plants growth cycle they were reproductive, and it was expected they may not fit the same
model as plants in the vegetative stage.

Hundreds of predictive models were created to try each combination of preprocessing and
dimensionality reduction but only the models with the highest predictive statistics were selected. The
predictive models were evaluated using statistical measures R2 (coefficient of determination), the t
statistic or standard error of covariance (SEC), standard error of prediction (SEP) and standard error
of prediction covariance (SEPC). Models were also validated by splitting the data into a calibration
set which was used to build the models, and a validation set which was used to test the predictive
ability of the models. This was done by first using PCA to create score files for each sample, then an
algorithm within the WinISI software was used to split the data. The same statistic measurements
were used to evaluate the predictive ability in validation of the models R2, SEC, SEP and SEPC. The
predictive ability of models was also confirmed by ranking each sample for how high or low the plant
was in each NV parameter based on the model and lab values then compared the ranking.

3. Results

3.1. PLS Models Descriptive Statistic

Table 2 shows the cross-validation statistic of the eight NV predictive models created using this
calibration set using the leave-one-out method. The cross validation of the models showed high r2

between 0.79 and 0.98, and acceptable SEC, SEP and SEPC, all being under 2, except for WSC, NDF and
DM which were under 3 (Table 2). The number of wavelengths used in developing these models was
887 for each model but the number of samples included in the calibration varied for each parameter
from 103 to 105 out of a possible 109. For all parameters the most successful models used MPLSR as the
regression technique and took the first derivative. For ADF the most successful pretreatment had no
scatter correction (Table 2), for ash weighted MSC was the best scatter correction (Table 2), for CP the
scatter correction was derivative, remove, scale and offset (Table 2), for DM the scatter correction was
SNV, IVVDMD used derivative, scale and offset (Table 2), IVVOMD used remove, scale and quadratic
(Table 2), NDF used SNV and for WSC the scatter correction was standard MSC (Table 2).
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Table 2. Statistics from model created with 70% of the 109 samples with both lab results and spectra (cross validation leave-one-out). Statistics include the mean,
standard deviation (SD), the estimated minimum (Est.Min) and maximum (Est.Max), standard error of covariance (SEC), standard error of prediction (SEP) the
coefficient of determination (R2), and standard error of prediction covariance (SEPC) and the number of wavelengths included in the model (λN).

Statistic ADF ASH CP DM IVVDMD IVVOMD NDF WSC

Scatter correction none weighted MSC derivative scale
& offset SNV derivative scale

& offset
remove, scale &

offset SNV MSC

Derivative, gap, smooth 1, smooth 2 1,8,1,1 1,8,1,1 1,8,1,1 1,8,1,1 1,8,1,1 1,8,1,1 1,8,1,1 1,8,1,1
Samples (N) 103 102 105 103 104 104 104 105

Mean 24.42 9.82 11.59 24.63 76.77 72.89 46.17 24.25
SD 1.59 1.96 3.38 2.94 2.73 2.13 3.54 2.87

Est. Min 19.65 3.94 1.44 15.81 68.58 66.48 35.56 15.63
Est. Max 29.20 15.71 21.74 33.46 84.96 79.29 56.78 32.87

SEC 0.73 0.46 0.66 1.18 0.78 0.74 1.47 0.44
R2 0.79 0.95 0.96 0.84 0.92 0.88 0.83 0.98

SEPC 1.37 0.98 1.38 2.11 1.69 1.56 2.87 2.46
λN 887 887 887 887 887 887 887 887

The models with the most promising cross validation statistics were tested with the 30% validation set of 50 samples, that were independent from those used in the model building. The
models did not perform as well with independent samples with R2 ranging from 0.11 to 0.74 (Table 3).
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Table 3. Statistics from comparing results predicted with the above-mentioned models compared to
lab results of 50 independent samples. This includes the slope of the regression line, the y-intercept,
the bias, standard error of covariance (SEC), standard error of prediction (SEP) and standard error of
prediction covariance (SEPC), the coefficient of determination (R2), the predicted and actual average,
and the predicted and actual standard deviation (SD).

Statistic ADF ash CP DM IVVDMD IVVOMD NDF WSC

N 50 50 50 50 50 50 50 50
Slope 0.75 0.72 0.84 0.54 0.95 0.87 0.68 0.50

Y-intercept 6.01 3.00 2.10 10.80 4.50 9.42 14.28 12.18
Bias −0.07 0.31 0.26 −0.44 0.33 0.07 −0.66 0.18
SEC 1.28 1.40 1.84 2.85 1.52 1.39 2.85 2.86
SEP 1.27 1.51 1.91 2.95 1.53 1.38 3.03 3.03

SEPC 1.28 1.49 1.92 2.95 1.51 1.39 2.99 3.06
R2 0.22 0.51 0.74 0.11 0.69 0.52 0.35 0.64

Predicted ave 24.34 9.73 11.59 24.32 76.52 72.94 46.59 23.98
Actual ave 24.27 10.03 11.86 23.88 76.85 73.01 45.94 24.16

Predicted SD 0.88 1.95 3.69 1.81 2.39 1.63 3.04 2.30
Actual SD 1.43 1.98 3.60 2.99 2.72 1.98 3.50 3.06

The models reduced predictive perform compared to internal cross validation when used to predict independent
samples may suggest the models are overfitted. The model may require more training data to help find patterns
relating to NV amongst the background variation from interference.

3.2. Robustness of the Predictive Model

Towards the end of October, the plants transitioned from vegetative to reproductive with the
emergence of inflorescence. This resulted in significant physiological differences in the plants and high
variation in spectral signatures. The field models’ predictions of all parameters failed to show any
significant correlation to lab parameters (Table 4). The reproductive samples collected on the 30th of
November 2018 were excluded from this study with the intent of creating a second calibration for
plants that have become reproductive. This includes 94 canopy spectra and 30 lab results.

Table 4. Descriptive statistics for comparing lab results to model predictions of 30 samples from 30
November 2018 (plants in reproductive phase) using the above models. This includes the slope of the
regression line, the y-intercept, the Bias, standard error of covariance (SEC), standard error of prediction
(SEP) and standard error of prediction covariance (SEPC), the coefficient of determination (R2), the
predicted and actual average, and the predicted and actual standard deviation (SD).

Statistic ADF ash CP DM IVVDMD IVVOMD NDF WSC

Samples (N) 30 30 30 30 30 30 30 30
Slope 0.61 0.47 0.68 0.69 0.70 0.64 1.08 0.78

Intercept 9.33 3.69 3.02 13.85 21.58 23.81 −2.30 5.23
Bias 0.19 −0.80 −0.15 6.03 −1.30 −2.32 1.22 −0.91
SEC 1.59 0.79 1.11 1.60 2.25 2.14 3.41 2.48
SEP 1.58 1.16 1.13 6.24 2.55 3.13 3.51 2.59

SEPC 1.59 0.86 1.14 1.63 2.23 2.14 3.35 2.47
R2 0.10 0.14 0.29 0.26 0.07 0.09 0.15 0.24

Predicted Ave 23.51 8.45 10.02 25.44 75.33 72.62 45.11 27.38
Actual Ave 23.70 7.65 9.88 31.47 74.03 70.30 46.33 26.48

Predicted SD 0.85 0.67 1.02 1.34 0.90 1.04 1.33 1.76
Actual SD 1.64 0.84 1.30 1.83 2.30 2.21 3.64 2.79

3.3. Predictive Ability of Field Model

The predictive abilities of these models were first tested by using the field model to predict NV
parameters then comparing the predicted values to lab-based NIRS. Plant samples were assigned a
ranking based on the lab analysis. For some traits, improvement would mean reduction if the trait is
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a barrier to digestion, and these were ranked lowest to highest so that, for example, the plant with
the lowest ADF was ranked number one for ADF. These traits included ADF, ash and NDF. The
remaining traits increases productivity and were ranked highest to lowest, for example the plant with
the highest WSC was ranked number one for WSC. The rankings were repeating using NV values
from the predictive models. This illustrated the performance of predictive models for ranking each
plant compared to lab results. The following graphs show the predictive ability of the models for the
eight NV parameters, ADF, ash, CP, DM, IVVDMD, NDF, IVVOMD, and WSC (Figure 3).

 2 of 14 

 

3.2. Predictive Ability of Field Model 

The predictive abilities of these models were first tested by using the field model to predict NV 
parameters then comparing the predicted values to lab-based NIRS. Plant samples were assigned a 
ranking based on the lab analysis. For some traits, improvement would mean reduction if the trait is 
a barrier to digestion, and these were ranked lowest to highest so that, for example, the plant with 
the lowest ADF was ranked number one for ADF. These traits included ADF, ash and NDF. The 
remaining traits increases productivity and were ranked highest to lowest, for example the plant with 
the highest WSC was ranked number one for WSC. The rankings were repeating using NV values 
from the predictive models. This illustrated the performance of predictive models for ranking each 
plant compared to lab results. The following graphs show the predictive ability of the models for the 
eight NV parameters, ADF, ash, CP, DM, IVVDMD, NDF, IVVOMD, and WSC (Figure 3). 

  

  

y = 0.8876x + 8.9376
R² = 0.7878

0
20
40
60
80

100
120
140
160
180

0 20 40 60 80 100 120 140 160 180

Pr
ed

ict
ed

 A
DF

 ra
nk

Lab ADF rank

ADF predicted/ lab rank 
lowest to highest

A

y = 0.9226x + 6.1567
R² = 0.8511

0
20
40
60
80

100
120
140
160
180

0 20 40 60 80 100 120 140 160 180

Pr
ed

ict
ed

 a
sh

 ra
nk

lab ash rank

ASH predictied/lab rank 
lowest to 
highest

B

y = 0.9315x + 5.4432
R² = 0.8678

0
20
40
60
80

100
120
140
160
180

0 20 40 60 80 100 120 140 160 180

Pr
ed

ict
ed

 C
P 

ra
nk

Lab CP rank

CP predicted/lab rank 
highest to lowest

C

y = 0.6258x + 29.748
R² = 0.3916

0
20
40
60
80

100
120
140
160
180

0 20 40 60 80 100 120 140 160 180

Pr
ed

ict
ed

 D
M

 %
 ra

nk

Lab DM% rank

DM rank highest to lowestD

Figure 3. Cont.



Agronomy 2019, 9, 293 9 of 14

 3 of 14 

 

  

  

Figure 3. (A) compares the ADF rankings of 159 plants determined by the model to the rankings 
determined by lab analysis with R2 of 0.7878. (B) compares the ash rankings of 159 plants determined 
by the model to the rankings determined by lab analysis with R2 of 0.8511. (C) compares the CP 
rankings of 159 plants determined by the model to the rankings determined by lab analysis with R2 
of 0.8678. (D) compares the DM rankings of 159 plants determined by the model to the rankings 
determined by weighing the plants before and after drying with R2 of 0.3916. (E) compares the 
IVVDMD rankings of 159 plants determined by the model to the rankings determined by lab analysis 
with R2 of 0.7745. (F) compares the IVVOMD rankings of 159 plants determined by the model to the 
rankings determined by lab analysis with R2 of 0.789. (G) compares the NDF rankings of 159 plants 
determined by the model to the rankings determined by lab analysis with R2 of 0.6697. (H) compares 
the WSC rankings of 159 plants determined by the model to the rankings determined by lab analysis 
with R2 of 0.6709. 

3.3. Prediction of NV Parameters in Plants Using the Field Model 

This method of sampling allowed for capturing spectra of 480 plants per day with two people 
working standard hours. The previously developed models allowed for processing of this spectra 
into predictions of the eight NV parameters for all plants that had been measured for canopy spectra; 
between August and October, this included 1610 plants. All traits showed normal distributions, the 
top percentile plants for each trait was easily identified (Table 5).  

y = 0.88x + 9.5375
R² = 0.7745

0
20
40
60
80

100
120
140
160
180

0 20 40 60 80 100 120 140 160 180

Pr
ed

ict
ed

 IV
VD

M
D 

ra
nk

Lab IVVDMD rank

IVVDMD predicted/lab rank 
highest to lowest

E

y = 0.8883x + 8.8817
R² = 0.789

0
20
40
60
80

100
120
140
160
180

0 20 40 60 80 100 120 140 160 180

Pr
ed

ict
ed

 IV
VO

M
D 

ra
nk

Lab IVVOMD rank

IVVOMD predicted/lab rank 
highest to lowest

F

y = 0.8184x + 14.44
R² = 0.6697

0
20
40
60
80

100
120
140
160
180

0 20 40 60 80 100 120 140 160 180

Pr
ed

ict
ed

 N
DF

 ra
nk

Lab NDF rank

NDF predicted/ lab rank 
lowest to highest

G

y = 0.8191x + 14.385
R² = 0.6709

0
20
40
60
80

100
120
140
160
180

0 20 40 60 80 100 120 140 160 180

Pr
ed

ict
ed

 W
SC

 ra
nk

Lab WSC rank

WSC predicted/lab rank 
highest to lowest

H

Figure 3. (A) compares the ADF rankings of 159 plants determined by the model to the rankings
determined by lab analysis with R2 of 0.7878. (B) compares the ash rankings of 159 plants determined by
the model to the rankings determined by lab analysis with R2 of 0.8511. (C) compares the CP rankings
of 159 plants determined by the model to the rankings determined by lab analysis with R2 of 0.8678.
(D) compares the DM rankings of 159 plants determined by the model to the rankings determined by
weighing the plants before and after drying with R2 of 0.3916. (E) compares the IVVDMD rankings of
159 plants determined by the model to the rankings determined by lab analysis with R2 of 0.7745. (F)
compares the IVVOMD rankings of 159 plants determined by the model to the rankings determined by
lab analysis with R2 of 0.789. (G) compares the NDF rankings of 159 plants determined by the model
to the rankings determined by lab analysis with R2 of 0.6697. (H) compares the WSC rankings of 159
plants determined by the model to the rankings determined by lab analysis with R2 of 0.6709.

3.4. Prediction of NV Parameters in Plants Using the Field Model

This method of sampling allowed for capturing spectra of 480 plants per day with two people
working standard hours. The previously developed models allowed for processing of this spectra
into predictions of the eight NV parameters for all plants that had been measured for canopy spectra;
between August and October, this included 1610 plants. All traits showed normal distributions, the
top percentile plants for each trait was easily identified (Table 5).
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Table 5. Canopy spectra from 1610 plants was analyzed using the previously tested predictive models,
the average, minimum and maximum predicted value for each NV parameter in all 1610 samples are
shown below.

ADF Ash CP DM IVVDMD NDF IVVOMD WSC

average 24.24 9.86 11.24 24.71 76.37 45.37 72.94 23.81
minimum 20.35 5.50 4.03 19.11 68.44 29.83 63.42 12.92
maximum 29.45 15.71 23.42 33.37 90.65 55.61 82.83 31.79

4. Discussion

4.1. Predictive Model Performance

When creating predictive models for pasture NV parameters Pullanagari et al. (2012) achieved R2

for CP of 0.72, ADF of 0.59, NDF of 0.45, ash of 0.67, and organic matter digestibility (OMD) if 0.76 [36].
The models created in this study had lower predictive ability than the models developed by Pullanagari.
This may have been due to this higher temporal range of data, with sample collections happening
between August and October (winter–spring). In Pullanagari’s study, samples were collected between
April and May (Autumn) [1,36]. The difficulty in combining more than one growth stage within a
single predictive model has been previously documented, with large changes in parameters from the
vegetative state to the reproductive state making it difficult to create robust models [21,27]. Though
plants that had fully transitioned into the reproductive phase were removed from this calibration,
many of the samples from October were beginning to transition, with plants elongating and therefore
having a higher stem to leaf ratio. Using only samples from within the same month or two months may
show higher predictive ability; however, this model was intended to be robust, covering the greatest
length of a growing season as possible while still making appropriate choices for selection. Predictions
may prove to be more accurate if models are developed for every two months, but for the purposes of
selection of the top 10% for each parameter, the current models are adequate.

The models created in this study did not perform as well with independent samples as they did in
the cross validation, with R2 of 0.22 for ADF, 0.11 for DM, 0.35 for NDF and 0.14 for WSC (Table 3).
There was some concern that the WSC models would be affected by changing WSC throughout the day
as WSC levels are lower at night and early morning. This could be an explanation as to why the WSC
models did not perform well; however, no significant relationship (R2 0.01) between time of day and
WSC was detected. Models did perform well for ash with an R2 of 0.51, CP with R2 of 0.74, IVVDMD
with R2 of 0.69, and IVVOMD with R2 0.52. The models were created with the aim of providing a tool
for selection in breeding programs, it was expected to have a degree of accuracy sacrificed for the
speed and efficiency needed to measure the large numbers required for improvement of NV through
traditional breeding programs. This system showed a high degree of correlation between the rankings
of individual plants for each parameter except for DM, with R2 between lab rankings and model
rankings between 0.67 and 0.87. Though DM did not have a significant R2 (0.39), when the model was
used to select the top 10% highest DM plants and this selection was compared to the top 10% selected
using lab results, the same plants were selected 80% of the time. The plants at either end of the model
generally are identified by the model as being in the top or bottom percentile, it is the middle plants
with less variability that failed to match lab results. This is an advantage as it is these percentiles that
are targeted in breeding programs [42].

4.2. Interaction Between Parameters

Though these models could be utilized to select for improvement for individual traits, ideally
multiple traits could be selected for at once. Unfortunately, there is no system for ranking pasture that
utilizes measures of all eight NV parameters combined, such as the AFIA rubric for grading hay and
silage [43]. There was no significant relationship between most parameters except for NDF, which
showed a negative correlation to IVVDMD R2 of 0.534 and IVVOMD R2 0.692 (Figure 4). The rankings
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for these parameters also showed correlations with R2 of 0.61 and 0.66 (Figure 5). This makes it possible
to select plants that both rank low in NDF and high in digestibility. For the other parameters, it would
be useful to assign weights to the different parameters and create a rubric for overall NV.
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Figure 4. (A) Parameters IVVDMD and NDF showed R2 of 0.5335 for correlation between model
predicted results for 159 plants; (B) NDF and IVVOMD rankings showed R2 of 0.6924 for the correlation
between model predicted results for 159 plants.
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between rankings of 1610 plants. (B) NDF and IVVOMD rankings showed R2 of 0.660 for the correlation
between rankings of 1610 plants.

5. Conclusions

This system has demonstrated a degree of confidence in prediction to be effectively used for
selection of individuals for improvement of NV parameters. This method of field spectroscopy was
able to predict eight NV parameters with an accuracy comparable to lab-based spectroscopy but with
a significant increase in speed. This allowed for processing of 1610 samples with low human labor
in comparison to a lab-based approach. The speed of the system could be further improved with



Agronomy 2019, 9, 293 12 of 14

the addition of automation; for example, with the addition of a plant and ground-based vehicle to
transport the sensor and robotics to lift and lower the light-shield and a GPS navigation system to
locate specific plants. The current system without further development would enable hundreds to
thousands of samples to be routinely measured to further understand changes of pasture quality
over time and response to the environment. This will deliver more detailed understanding than has
been realistically been possible to achieve previously. The frequency of measurement of this method
allows one to examine how NV parameters change over time and respond to environmental changes
such as rain and heat waves. Measuring a greater number of genotypes would also provide valuable
information about the breeding lines, especially if these plants are also genotyped.
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