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Abstract: The bio-agronomical response, along with the arsenic (As) translocation and partitioning
were investigated in self-grafted melon “Proteo”, or grafted onto three interspecific (“RS841”,
“Shintoza”, and “Strong Tosa”) and two intraspecific hybrids (“Dinero” and “Magnus”). Plants were
grown in a soilless system and exposed to two As concentrations in the nutrient solution (0.002 and
3.80 mg L−1, referred to as As− and As+) for 30 days. The As+ treatment lowered the aboveground
dry biomass (−8%, on average), but the grafting combinations differed in terms of photosynthetic
response. As regards the metalloid absorption, the rootstocks revealed a different tendency to uptake
As into the root, where its concentration varied from 1633.57 to 369.10 mg kg−1 DW in “Magnus” and
“RS841”, respectively. The high bioaccumulation factors in root (ranging from 97.13 to 429.89) and the
low translocation factors in shoot (from 0.015 to 0.071) and pulp (from 0.002 to 0.008) under As+,
showed a high As mobility in the substrate–plant system, and a lower mobility inside the plants. This
tendency was higher in the intraspecific rootstocks. Nonetheless, the interspecific “RS841” proved to
be the best rootstock in maximizing yield and minimizing, at the same time, the As concentration into
the fruit.
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1. Introduction

Melon (Cucumis melo L.) is one of the major Cucurbit species, playing an important role in irrigated
farmlands of the Mediterranean area [1]. In these regions, the water intended for irrigation could be
contaminated with heavy metals as result of weathering of soil minerals and human activities [2].
Irrigation with contaminated water can affect food quality and safety for the presence of metalloids
and/or heavy metals harmful for human health [3,4]. Among these, arsenic (As) is a persistent,
non-degradable metalloid widely present in the environment both for geogenic or anthropogenic
reasons [5]. Most As compounds are odorless, tasteless, and water-soluble, creating a serious health
risk because of their carcinogenic potential [6]. This metalloid exists in plant organs both as inorganic
and organometallic species, whose concentration and oxidation states are dependent on the type and
amounts of sorbents in the substrate, pH, redox potential (Eh), and soil microbial activity [7,8].
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Arsenic is non-essential and generally toxic to plants. At high concentrations (depending on
the species) it interferes with multiple metabolic processes, leading to growth and yield disturbance,
and even plant death [9,10]. The As(III) root uptake (i.e., the dominating form in anaerobic root
environments) occurs by passive transmembrane transport involving members of the nodulin 26-like
intrinsic protein family of plant aquaporins [11]. As(V), which dominates in aerobic root environments,
enters plant roots via phosphate (Pi) transporters, as the oxyanion chemical structure of As(V) is
analogous to Pi [12]. As a consequence, As(V) compete with Pi absorption and P-dependent metabolic
processes during ATP synthesis, with subsequent disturbance of major biological functions [13,14].

The efficiency of As translocation from roots to shoots via xylem loading affects the plants’ As
tolerance and their proneness to accumulate this metalloid into the edible fraction, so posing potential
risks to human health [14].

In horticultural systems, vegetable grafting is a multipurpose technique improving crops
performances and product quality under both optimal and suboptimal growth conditions [15–17]. It
has been proposed as a means to reduce the heavy metals uptake and translocation to the shoots and
the edible parts [18,19], although the mechanisms underlying such impediment are still unclear [20].
Thus, investigating the use of melon rootstocks could be useful for understanding the behavior of
different grafting combinations, with the view to improve crop performances and product safety in
As-polluted areas.

Considering the above, the objective of this research was to study the effects of different rootstock
genotypes on As uptake, accumulation, and partitioning, as well as on agronomical and physiological
response of melon plants subjected to a high concentration of the metalloid in the root environment.
To this end, the present experiment was performed to investigate: (i) If As concentration in the
nutrient solution influences its uptake and translocation in melon plants; (ii) if and how the different
rootstocks can mitigate the As accumulation within plant organs; (iii) the possible role of different
rootstock genotypes in modulating the bio-agronomical response of melon plants to the elevated As
concentration in the root zone.

2. Materials and Methods

2.1. Experimental Site, Plant Material, and Management Practices

The experiment was conducted in 2014, in a greenhouse situated in the coastal area of Eastern
Sicily (37◦24′26” N, 15◦03′37” E, 6 m a.s.l.). The local climate is semi-arid/Mediterranean, with mild
and wet winters, and hot, dry summers. A 1000 m2, east–west-oriented, multi-aisle greenhouse was
used, having a steel tubular structure and covered with polycarbonate slabs. Mean air temperature,
relative humidity and global radiation inside the greenhouse (two sets of sensors in the center of each
experimental plot) were recorded on a data logger (CR10 X; Campbell Scientific Ltd., Loughborough,
UK). Melon cv. “Proteo” F1 (Syngenta Seed, Basel, Switzerland) belonging to the Reticulatus group was
used as scion. Five F1 rootstock genotypes were included in the study, of which 2 were intraspecific,
namely “Dinero” (Syngenta Seed) and “Magnus” (Agris), and 3 were interspecific (Cucurbita maxima
Duchesne × C. moschata Duchesne ex Poir.), namely “RS841” (DeRuiter Seeds, Oxnard, CA, USA)
“Shintoza” (Fenix, Belpasso, Italy) and ‘Strong Tosa’ (Syngenta Seed). Self-grafted “Proteo” was used
as control. Splice-grafted plantlets were used, whereas plastic clips were applied to secure the creation
of the graft union. Plantlets were obtained from a specialized nursery and transplanted at the stage of
3 true leaves on April 22, in 5 L pots filled with perlite (3–5 mm). Pots were placed in troughs (5 per
main plot) of an open soilless system, placed at 5 cm from the soil surface and with a distance of 50
cm between pots and 100 cm between troughs, obtaining a plant density of 2 plants m−2. During the
trial, the crop was fertigated with a nutrient solution having the following composition, including
the starting well water (mmol L−1): 11.2 NO3

−, 0.3 NH4
+, 1.3 H2PO4

−, 6.6 K+, 0.9 SO4
2−, 3.4 Ca2+,

2.5 Mg2+. The concentration of microelements (µmol L−1) was: 15 Fe3+, 10 Mn2+, 0.75 Cu2+, 5 Zn2+,
30 B3+, 0.5 Mo6+. The pH was maintained at 5.9 by adding H2SO4 (95% concentration, 1.83 kg L−1).
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Bumblebees were introduced into the greenhouse to maximize pollination. Stems were left to grow
horizontally, whereas plants were pruned by removing the lateral shoots. Only 1 lateral ramification
per plant was left, bearing 2 fruits. In order to evaluate the effects of studied factors at the same date,
the trial was stopped when the first fruit was fully ripe (i.e., 45 days after transplant). Fifteen days after
transplanting, the nutrient solution was differentiated to obtain 2 As concentrations, a control solution
(0.002 mg L−1 As, which was the concentration in the starting fertigation solution, hereafter As−) and
an As-enriched one (3.8 mg L−1 As, hereafter As+) obtained by adding sodium arsenate (Na2HAsO4

7H2O, 24% As content). The As+ treatment was chosen to simulate the working condition of a soil
having 55 ppm of As, ~7.0% of which was bioavailable (a common situation in As contaminated
soils). The nutrient solutions were supplied using a drip irrigation system with one emitter per plant
(4 L h−1). The amount of nutrient solution supplied at each irrigation was quantified on a weekly basis,
according to the volume of the substrate exploited by the roots and the corresponding water contained
in the substrate at the intervals from −10 to −50 hPa of matrix potential (12 mL 100 mL−1).

The experiment was arranged in a randomized split-plot design with three replicates, assigning
the As concentration of the nutrient solution to the main plots, and the rootstock combination to the
subplots. The overall experimental area inside the greenhouse was 450 m2 (15.0 × 30.0 m), including
900 plants (324, excluding border plants), divided into 36 net experimental units (2 As levels × 6
grafting combinations × 3 replicates) each containing 9 plants.

2.2. Leaf Relative Chlorophyll (Chl) Content and Gas Exchange Measurements

Forty-five days after transplanting plants were checked for leaf relative Chl content, through a
portable Chl meter (SPAD 502; Minolta Camera, Osaka, Japan). Before measurements, the instrument
was calibrated according to manufacturer’s instructions. All readings were taken from the adaxial
side of the tallest fully expanded leaf. To minimize possible interactions with either plant water status
and natural irradiance level [21,22], measurements were made in the morning, starting at 08:00 h
(local solar time). Instantaneous leaf photosynthetic rate (AN), stomatal conductance (gs), and leaf
transpiration rate (E) were also measured from 11:00 to 13:00 inside a 6.25 cm2 leaf chamber of a
portable photosynthesis system (LCi; ADC BioScientific Ltd., Hoddesdon, UK). Photosynthetic water
use efficiency (WUE) was calculated as the ratio AN/E [23]. During measurements, leaf temperature
was 27.4 ± 2 ◦C, while mean photosynthetic photon flux density was in the range of 1500 ± 100 µmol
photons m−2 s−1. Duplicate measurements were taken from four plants per sub-plot.

2.3. Plant Growth and Development Measurements

On the same date of physiological measurements, all the plants within each replicate were
harvested and their main fractions (leaves, stem and fruits, regardless of the ripening stage) weighed
separately. The number of leaves per plant (LN) was determined, while plant leaf area (LA) was
measured using an Image Analysis System (DeltaT Devices Ltd., Cambridge, UK), then subsamples
of raw materials were kept in a thermo-ventilated oven at 70 ◦C (Binder, Milan, Italy) until constant
weight, in order to determine their dry weight (DW). From the original data frame, the leaf area ratio
(LAR, the ratio between the area and total plant biomass) and leaf weight ratio (LWR, the dry weight
of leaves to whole plant dry weight) were calculated.

2.4. Arsenic and Phosphorous Determination in Plant Tissues

Roots, shoots, and fully ripe fruits (1 per plant) were analyzed to determine the quantity of the total
As and phosphorus (P). To this end, about 200 mg of samples were subjected to acid digestions and to
As and P determinations, which were performed according to Stazi et al. [19]. The reagents were super
pure for trace analysis. The accuracy of the measurements was assessed using SRM 1573a as standard
reference materials trace metals. Total As quantification were performed using an inductively-coupled
plasma optical emission spectrometer (ICP-OES) with an axially viewed configuration (8000 DV,
PerkinElmer, Shelton, CT, USA) equipped with an ultrasonic nebulizer. The As detection limit for
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employed technique was 0.1 µg L−1. With the aim of understanding the metabolic pathway followed
by this element once absorbed by the plant, we measured the amount of trivalent and pentavalent
As. Inorganic As species were extracted without the addition of hydrogen peroxide according to
Rintala et al. [24] with some modifications. In brief, 200 mg of roots were homogenized and digested
with 10 mL of a mixture of HNO3 (1%, v/v) and left to react overnight. The samples were subjected
to microwave-assisted extraction according to the following program—3 min from 25 to 55 ◦C (step
1), 10 min at 55 ◦C (step 2), 2 min from 55 to 75 ◦C (step 3), 10 min at 75 ◦C (step 4), 2 min from 75 to
95 ◦C (step 5) and 30 min at 95 ◦C (step 6). Samples were then quantitatively transferred into tubes
and centrifuged for 15 min at 10,000 rpm at 4 ◦C. The supernatant was filtered with a 0.22 µm PVDF
filter. The concentration of As(III) was determined directly with an ICP-OES equipped with a hydride
generation system. The total concentration of inorganic arsenic species [As(III)+As(V)] were obtained
after reducing As(V) to As(III) through 5.0% (w/v) ascorbic acid and potassium iodide in hydrochloric
acid, and the content of As(V) was calculated from the difference between total As concentration and
that of As(III) [25].

2.5. Bioaccumulation and Translocation Factors

Arsenic bioaccumulation factor (BAF) (i.e., the ability of a plant to accumulate this element
from water) was calculated on a DW basis, as the ratio among its concentration in root (BAFroot),
shoot (BAFshoot), and pulp (BAFpulp) and the corresponding concentration in the nutrient solution.
The root-to-plant translocation factor (TF) defines the movement and distribution of As from roots
to the aerial part of the plant. The TF was calculated on a DW basis, as the ratio between the As
concentration in shoot (TFshoot) and fruit pulp (TFpulp), and the corresponding concentration in roots
at the end of the experiment [26–28].

2.6. Statistical Procedures

All data were subjected to Shapiro–Wilk and Levene’s test, in order to check for normal distribution
and homoscedasticity, respectively, then to a ‘As concentration × rootstock’ analysis of variance
(ANOVA), according to the split-plot experimental layout adopted in the greenhouse. Percentage data
were Bliss’ transformed before the ANOVA (untransformed data are reported and discussed), while
multiple means comparison was performed through Fisher’s protected least significant difference (LSD)
test (p = 0.05). The As concentrations in root, shoot, and pulp were subjected at principal component
analysis (PCA) to verify the interaction between the different factors able to synthetize the considered
variables. All calculations were performed using the Excel (Microsoft Corporation, Redmond, WA,
USA) and JMP 11.0 statistical software package (SAS Institute, Cary, NC, USA).

2.7. Microclimate Conditions Inside the Greenhouse

During the experiment, the average mean temperature progressively increased from 18.6 to 26.4 ◦C
(on day 12 and 36 after transplanting, respectively), while relative humidity showed an opposite trend,
as it passed from 63.7% to 40.5% (on day 11 and 33 after transplanting, respectively). Solar radiation
amply paralleled the trend of mean temperature, as it progressively increased passing from 10.45 to
15.02 MJ m−2 (on day 11 and 36 after transplanting, respectively). As regards the spatial variability
among main plots, the differences in terms of mean temperature, relative humidity, and solar radiation
never exceeded 0.2 ◦C, 2.1%, and 0.8 MJ m−2, respectively.

3. Results

3.1. Aboveground Plant Biomass and Partitioning

Whole plant biomass was affected by the main factors and their interaction (Table 1). In As−
treatment this variable was higher in “Proteo” grafted onto “Strong Tosa” and “RS841” (309 g plant−1,
on average), whereas in response to As+ treatment it significantly decreased in “Proteo” grafted onto
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“Dinero” (from 251.7 to 198.7 g plant−1, −21%) and “Strong Tosa” (from 317.0 to 239.3 g plant−1, −25%)
(Table 1). Among the plant components, stem biomass resulted 30 and 24 g plant−1 in As− and As+,
respectively (−20%) (Table 1). Passing from As− to As+, there was a general decrease of the leaf
biomass too. This response was more marked in “Proteo” grafted onto “Dinero” (from 66.4 to 42.0 g
plant−1, −37%), ‘Magnus’ (from 56.7 to 44.5 g plant−1, −22%), ‘RS841’ (from 66.3 to 52.1 g plant−1,
−21%), and “Strong Tosa” (from 58.0 to 44.4 g plant−1, −23%), whereas no significant difference was
recorded when “Proteo” was self-grafted or grafted onto “Shintoza” (Table 1). When grown in the As+,
fruit biomass showed a significant variation in “Proteo” grafted onto ‘Magnus’ and “Strong Tosa”,
where it varied by +33% (from 119.9 to 159.1 g plant−1) and −26% (from 231.1 to 170.9 g plant−1),
respectively (Table 1).

Table 1. Aboveground biomass production and partitioning (g dry weight plant−1) in melon plant
as affected by As concentration in the nutrient solution and rootstock. Different letters within main
factors indicate significance at Fisher’s protected least significant difference (LSD) test (p = 0.05).
NS—not significant.

Variable
Rootstock

Mean
LSDinteraction

(p = 0.05)“Proteo”
(Control) “Dinero” “Magnus” “RS841” “Shintoza” “Strong Tosa”

Plant
As− 235.0 251.7 207.0 300.3 247.7 317.0 259.8 a 45.1
As+ 220.0 198.7 226.3 278.7 268.3 239.3 238.6 b

Mean 227 bc 225 c 217 c 289 a 258 ab 278 a

Stem
As− 29.7 31.2 31.4 29.6 30.8 28.0 30.1 a NS
As+ 22.2 21.9 22.7 25.0 28.4 23.39 24.0 b

Mean 25.9 a 26.5 a 27.1 a 27.3 a 29.6 a 25.9 a

Leaf
As− 56.8 66.4 56.7 66.3 55.8 58.0 60.0 a 10.3
As+ 47.6 42.0 44.5 52.1 58.0 44.4 48.1 b

Mean 52.2 a 54.2 a 50.6 a 59.2 a 56.9 a 51.2 a

Fruit
As− 148.8 154.0 119.9 204.6 161.1 231.1 169.9 a 37.3
As+ 150.3 134.6 159.1 201.5 182.0 170.9 166.4 a

Mean 149.6 c 144.3 c 139.5 c 203.0 a 171.5 b 201.0 a

3.2. Leaf Growth Variables

All leaf growth variables were significantly affected by the ‘As concentration× rootstock’ interaction
(Table 2). With the As increase in the nutrient solution, both LN and LA showed the strongest reduction in
the grafting combinations “Proteo”/“Dinero” (−43 leaves plant−1 and −34.4 dm2 plant−1, respectively),
“Proteo”/“Magnus” (−42 leaves plant−1 and −27.2 dm2 plant−1), and “Proteo”/‘Strong Tosa’ (−27 leaves
plant−1 and −19.3 dm2 plant−1) (Table 2). Similarly, LAR and LWR showed a significant reduction
passing from As− to As+ solution, with the strongest drops recorded in the grafting combinations
“Proteo”/“Dinero” (−7.6 cm2 g−1 DW and −0.054 g g−1 DW, respectively) and “Proteo”/“Magnus”
(−16 cm2 g−1 DW and −0.073 g g−1 DW) (Table 2).
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Table 2. Leaf growth variables in melon plant as affected by As concentration in the nutrient solution
and rootstock. Different letters within main factors indicate significance at Fisher’s LSD test (p = 0.05).

Variable
Rootstock

Mean
LSDinteraction

(p = 0.05)“Proteo”
(Control) “Dinero” “Magnus” “RS841” “Shintoza” “Strong Tosa”

LN
(n. plant−1)

As− 163 178 187 158 157 176 170 a 22
As+ 159 135 145 140 162 149 148 b

Mean 161 a 156 a 166 a 149 a 160 a 162 a

LA
(dm2 plant−1)

As− 74.1 91.5 86.9 75.9 83.6 86.3 83.1 a 14.5
As+ 66.9 57.1 59.7 63.3 83.3 67.0 66.2 b

Mean 70.5 a 74.3 a 73.3 a 69.6 a 83.4 a 76.7 a

LAR
(cm2 g−1 DW)

As− 31.7 36.4 42.4 25.3 34.2 27.2 32.9 a 7.1
As+ 30.7 28.8 26.4 22.7 31.5 28.3 28.1 b

Mean 31.2 ab 32.6 ab 34.4 a 24.0 c 32.8 a 27.7 bc

LWR
(g g−1 DW)

As− 0.243 0.267 0.270 0.223 0.230 0.183 0.236 a 0.034
As+ 0.217 0.213 0.197 0.190 0.217 0.187 0.203 b

Mean 0.230 ab 0.240 a 0.233 a 0.207 ab 0.223 bc 0.185 c

LN—number of leaves; LA—leaf area; LAR—leaf area ratio; LWR—leaf weight ratio.

3.3. Leaf Relative Chl Content and Gas Exchanges

Leaf relative Chl content did not differ in relation to rootstock, while in all grafting combinations
it increased by 7% (from 55.3 to 59.3 SPAD units) in the As+ solution (Table 3). The highest AN

values in As− solution were recorded in “Proteo” grafted onto “Magnus”, “RS841”, and ‘Strong Tosa’
(27.4 µmol CO2 m−2 s−1, on average). Nevertheless under As+ treatment, the grafting combination
“Proteo”/“RS841” showed a significant AN reduction (from 27.7 to 22.7 µmol CO2 m−2 s−1, −18%),
whereas an opposite trend was recorded in self-grafted “Proteo” (from 25.3 to 27.7 µmol CO2 m−2 s−1,
+10%) (Table 3). Passing from As− to As+, gs significantly varied in the grafting combinations
“Proteo”/“Dinero” (from 273 to 385 µmol CO2 m−2 s−1, +41%), “Proteo”/“Shintoza” (from 190 to
245 µmol CO2 m−2 s−1, +29%), and “Proteo”/“Magnus” (from 275 to 207 µmol CO2 m−2 s−1, −25%),
with the control showing stable gs values across nutrient solutions (Table 3). “RS841” rootstock
maximized the WUE values in As−, but showed the highest decrease in response to As+ (being
reduced from 3.5 to 3.0 µmol CO2 µmol−1 H2O m−2 s−1, −12%), while an opposite trend was recorded
in self-grafted “Proteo” (from 3.0 to 3.4 µmol CO2 µmol−1 H2O m−2 s−1, +14%). A similar response
was recorded when “Proteo” was grafted onto ‘Strong Tosa’ (from 2.8 to 3.3 µmol CO2 µmol−1 H2O
m−2 s−1, +17%) and “Magnus” (from 2.8 to 3.6 µmol CO2 µmol−1 H2O m−2 s−1, +26%) (Table 3).

Table 3. Leaf relative Chl content and gas exchange variables in melon plant as affected by As
concentration in the nutrient solution and rootstock. Different letters within main factors indicate
significance at Fisher’s LSD test (p = 0.05). NS—not significant.

Variable
Rootstock

Mean
LSDinteraction

(p = 0.05)“Proteo”
(Control) “Dinero” “Magnus” “RS841” “Shintoza” “Strong Tosa”

SPAD
As− 55.7 56.4 54.7 56.1 52.9 55.9 55.3 b NS
As+ 57.5 59.3 58.1 61.7 58.6 60.8 59.3 a

Mean 56.6 a 57.8 a 56.4 a 58.9 a 55.7 a 58.4 a

AN
(µmol CO2 m−2 s−1)

As− 25.3 25.0 26.7 27.7 25.1 27.7 26.2 a 2.2
As+ 27.7 23.2 25.6 22.7 25.4 29.1 25.6 a

Mean 26.5 b 24.1 c 26.1 b 25.2 bc 25.2 bc 28.4 a

Gs
(µmol CO2 m−2 s−1)

As− 240 273 275 255 190 330 261 a 43
As+ 247 385 207 230 245 300 269 a

Mean 243 b 329 a 241 b 243 b 218 b 315 a
WUE

(µmol CO2 µmol−1

H2O m−2 s−1)

As− 3.0 3.0 2.8 3.5 3.0 2.8 3.0 b 0.3
As+ 3.4 2.8 3.6 3.0 3.2 3.3 3.2 a

Mean 3.2 a 2.9 b 3.2 a 3.3 a 3.1 ab 3.1 ab

AN—net assimilation rate; gs—stomatal conductance; WUE—water use efficiency.
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3.4. Arsenic Accumulation in Plant Fractions

Arsenic accumulation in plant fractions was significantly affected by the main factors and their
interaction (Table 4). In As− treatment, the highest Asroot was recorded in the rootstocks “Magnus”
and “Proteo” (11.75 mg kg DW−1, on average), while the lowest one in “RS841” (6.26 mg kg DW−1). In
the As+ treatment, Asroot increased in all the tested rootstocks, with the highest concentration recorded
in “Magnus” (1633.57 mg kg−1 DW, +131 fold than control), while the lowest one in “RS841” (369.10
mg kg−1 DW, +58 fold) (Table 4). The As+ treatment promoted Asshoot in a rootstock-dependent way
too, since passing from As− to As+, “RS841” showed the highest Asshoot increase (by 25.61 mg kg−1

DW, +43 fold than control), whereas ‘Strong Tosa’ showed the least one (by 21.75 mg kg−1 DW, +36
fold) (Table 4). By increasing the As concentration in the nutrient solution, Aspulp increased in all
the grafting combinations, with the highest rise recorded in “Proteo” grafted onto “Shintoza” and
“Dinero” (by 3.09 mg kg−1 DW, on average, equal to +14 fold than control) and the least one recorded
in self-grafted “Proteo” (by 1.86 mg kg−1 DW, +2 fold) (Table 4).

Table 4. Total arsenic accumulation (mg kg−1 DW) in different organs of melon plant as affected by
As concentration in the nutrient solution and rootstock. Different letters within main factors indicate
significance at Fisher’s LSD test (p = 0.05).

Variable
Rootstock

Mean
LSDinteraction

(p = 0.05)“Proteo”
(Control) “Dinero” “Magnus” “RS841” “Shintoza” “Strong Tosa”

Asroot

As− 11.84 7.10 11.65 6.26 8.09 8.35 8.88 b 77.33
As+ 1031.53 1090.73 1633.57 369.10 732.75 805.88 943.93 a

Mean 521.68 b 548.91 b 822.61 a 187.68 d 370.42 c 407.12 c

Asshoot

As− 0.71 0.86 0.77 0.59 0.47 0.60 0.67 b 1.73
As+ 23.71 25.50 23.81 26.20 23.90 22.35 24.24 a

Mean 12.21 ab 13.18 a 12.29 ab 13.39 a 12.18 ab 11.48 b

Aspulp

As− 0.86 0.14 0.46 0.29 0.30 0.60 0.44 b 0.25
As+ 2.72 3.16 2.99 2.98 3.46 3.19 3.08 a

Mean 1.79 ab 1.65 b 1.72 ab 1.64 b 1.88 a 1.89 a

3.5. Arsenic Speciation in Root

Arsenic speciation in root was significantly affected by ‘As concentration × rootstock’ interaction
(Table 5). In As− treatment, Asinorganic in root accounted from 40.1% (“Shintoza”) to 60.1% (“Proteo”);
however, in the As+ solution, this variable significantly decreased in the intraspecific rootstocks,
namely “Proteo”, “Dinero”, and “Magnus” (−14.57%, on average), while it increased in the interspecific
hybrids “RS841”, “Shintoza”, and ‘Strong Tosa’ (+34.93%, on average) (Table 5). In As− treatment,
AsIIIroot widely differed among rootstocks, ranging from 0.01 to 1.94 mg kg−1 DW in “RS841” and
“Proteo”, respectively. In the As+ treatment it showed the highest rise in ‘Strong Tosa’ (+577.24 mg
kg−1 DW; i.e., +3207 fold than control) and “Shintoza” (+287.39 mg kg−1 DW; i.e., +3193 fold), and
the least one in “RS841” (+82.25 mg kg−1 DW; i.e., +8225 fold) (Table 5). In As− treatment, AsVroot

showed the highest value in “Proteo” (5.17 mg kg−1 DW) and the least one in “Dinero” and “RS841”
(2.88 mg kg−1 DW, on average) (Table 5). When plants were grown in the As+ solution, such variable
showed the highest increase in “Magnus” (by 345.94 mg kg−1 DW; i.e., +80 fold than control), followed
by “Proteo” and “Dinero” (by 255.88 mg kg−1 DW, on average; i.e., +64 fold), and the least one in
‘Strong Tosa’ (by 41.85 mg kg−1 DW; i.e., +14 fold) (Table 5).



Agronomy 2019, 9, 828 8 of 15

Table 5. Inorganic As (percentage of total), As(III), and As(V) (mg kg−1 DW) in root of melon plant
as affected by As concentration in the nutrient solution and rootstock. Different letters within main
factors indicate significance at Fisher’s LSD test (p = 0.05).

Variable
Rootstock

Mean
LSDinteraction

(p = 0.05)“Proteo”
(Control) “Dinero” “Magnus” “RS841” “Shintoza” “Strong Tosa”

Asinorganic

As− 60.1 54.1 48.0 46.0 40.1 38.2 47.8 a 12.7
As+ 48.6 38.9 31.0 80.7 71.2 77.2 57.9 b

Mean 54.3 bc 46.5 cd 39.5 d 63.4 a 55.6 ab 57.7 ab

AsIIIroot

As− 1.94 0.96 1.25 0.01 0.09 0.18 0.74 b 71.89
As+ 235.98 168.31 150.07 82.26 287.48 577.42 250.25 a

Mean 118.96 bc 84.64 cd 75.66 cd 41.14 d 143.79 b 288.80 a

AsVroot

As− 5.17 2.88 4.35 2.87 3.15 3.01 3.57 b 102.15
As+ 264.86 254.95 350.29 215.72 233.87 44.86 227.42 a

Mean 135.02 a 128.91 a 177.32 a 109.30 a 118.51 a 23.94 b

3.6. Arsenic Bioaccumulation and Translocation Factors

All the bioaccumulation and translocation factors proved to be higher under the control growing
conditions, displaying a sharp decrease in response to the As+ treatment (Table 6). Shifting from
As− to As+, the strongest BAFroot reduction was found in “Proteo” and “Magnus” (−5646.22 and
−5394.68, respectively, corresponding to −95% and −93%), while the least one in “Dinero” and “RS841”
(−3260.82 and −3033.38, respectively, corresponding to −92% and −97%) (Table 6). Differently, “Dinero”
caused the sharper BAFshoot decrease in response to As+ treatment (−422.82, i.e., −98%), followed
by “Magnus” (−377.37, i.e., −98%), while “Shintoza” generated the smallest variation (−229.6, i.e.,
−97%) (Table 6). With reference to BAFpulp, “Proteo” and “Strong Tosa” generated the strongest drop
in response to As+ (by −426.92 and −298.47, respectively, corresponding to −99.8% and −99.7%),
whereas a less marked decrease was recorded when “Proteo” was grafted onto “Shintoza” (−150.45,
i.e., −99.4%), “RS841” (−145.92; i.e., −99.5%) and “Dinero” (−68.05, i.e.; −98.8%) (Table 6). The increase
in As concentration in the root environment caused the highest TFshoot reductions in “Proteo” grafted
onto “Dinero” (−0.097; i.e., −80.2%) and “Magnus” (−0.051, i.e., −77.3%), while the least ones in the
grafting combinations “Proteo”/“Shintoza” (−0.025; i.e., −43.1%) and “Proteo”/“RS841” (−0.024; i.e.,
−25.3%) (Table 6). “Strong Tosa”, “Magnus” and “Shintoza” proved the highest TFpulp reduction in
response to the As stress (−0.069, −0.038, and −0.032, respectively, corresponding to −94.5%, −95.0%,
and −86.5%), whereas “Dinero” showed the least one (−0.007; i.e., −84.2%) (Table 6).

Table 6. Arsenic bioaccumulation and translocation factors (adimensional) in shoot and pulp of melon
plants as affected by As concentration in the nutrient solution and rootstock. Different letters within
main factors indicate significance at Fisher’s LSD test (p = 0.05).

Variable
Rootstock

Mean
LSDinteraction

(p = 0.05)“Proteo
(Control) “Dinero” “Magnus” “RS841” “Shintoza” “Strong Tosa”

BAFroot

As− 5917.67 3547.86 5824.57 3130.51 4045.17 4176.02 4440.30
a 370.18

As+ 271.45 287.04 429.89 97.13 192.83 212.07 248.40 b

Mean 3094.56 a 1917.45 c 3127.23 a 1613.82 d 2119.00
bc 2194.05 b

BAFshoot

As− 355.46 429.53 383.63 295.42 235.89 301.22 333.52 a 50.54
As+ 6.24 6.71 6.26 6.89 6.29 5.88 6.38 b

Mean 180.85 bc 218.12 a 194.95 ab 151.16 cd 121.09 d 153.55

BAFpulp

As− 427.64 68.88 229.97 146.70 151.36 299.31 220.64 a 15.50
As+ 0.72 0.83 0.79 0.78 0.91 0.84 0.81 b

Mean 214.18 a 34.86 e 115.38 c 73.74 d 76.13 d 150.07 b

TFshoot

As− 0.060 0.121 0.066 0.095 0.058 0.074 0.079 a 0.014
As+ 0.023 0.024 0.015 0.071 0.033 0.028 0.032 b

Mean 0.042 cd 0.072 b 0.040 d 0.083 a 0.046 cd 0.051 c

TFpulp

As− 0.073 0.019 0.040 0.048 0.037 0.073 0.048 a 0.007
As+ 0.003 0.003 0.002 0.008 0.005 0.004 0.004 b

Mean 0.038 a 0.011 d 0.021 c 0.028 b 0.021 c 0.039 a
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3.7. Phosphorus Accumulation in Plant Fractions

Phosphorus accumulation in plant fractions was significantly affected by the main factors and
their interaction (Table 7). Passing from As− to As+ treatment, Proot increased mostly in self-grafted
“Proteo” (from 3527 to 31,390 mg kg−1 DW, +790%), followed by “Dinero” (from 3566 to 17,059 mg
kg−1 DW, +378%), “Magnus” (from 14,362 to 22,938 mg kg−1 DW, +60%), and “Shintoza” (from 12,535
to 19,210 mg kg−1 DW, +53%) (Table 7). Conversely, the As+ treatment significantly reduced Pshoot as
compared to the standard nutrient solution, with the highest drop recorded in “Proteo” grafted onto
“Dinero” and “Magnus” (from 7001 to 4923 mg kg−1 DW, on average, −30%) (Table 7). Passing from
As− to As+, Ppulp significantly increased in “Proteo” grafted onto “Dinero”, “Magnus”, and ‘Strong
Tosa’ (by 4472, 1334, and 1203 mg kg−1 DW, respectively, corresponding to +758%, +35%, and +30%),
whereas did not show any significant variation in the other graft combinations (Table 7).

Table 7. Phosphorus accumulation (mg kg−1 DW) in different organs of melon plants as affected by
As concentration in the nutrient solution and rootstock. Different letters within main factors indicate
significance at Fisher’s LSD test (p = 0.05).

Variable
Rootstock

Mean
LSDinteraction

(p = 0.05)“Proteo”
(Control) “Dinero” “Magnus” “RS841” “Shintoza” “Strong Tosa”

Proot

As− 3527 3566 14362 12959 12535 20875 11304 b 3111
As+ 31390 17059 22938 10379 19210 22343 20553 a

Mean 17458 bc 10312 d 18650 b 11669 d 15872 c 21609 a

Pshoot

As− 7038 7131 6871 6039 6465 6538 6681 a 564
As+ 6434 5064 4782 5563 5861 5786 5582 b

Mean 6736 a 6098 b 5827 b 5801 b 6163 b 6162 b

Ppulp

As− 4745 590 3827 4119 4110 3996 3565 b 521
As+ 5151 5062 5161 3797 4561 5199 4822 a

Mean 4948 a 2826 d 4494 b 3958 c 4335 b 4597 ab

3.8. Principal Component Analysis

The first two principal components gave eigenvalues equal to 2.75 (PC1) and 0.21 (PC2), and
together accounted for 98.9% of the total variance (Table 8). The As accumulation into the different
plant fractions positively contributed to PC1, with correlation coefficient ranging from 0.556 to 0.589,
while PC2 was strongly and positively correlated to Asroot (0.830) and negatively correlated to Asshoot

and Aspulp (−0.367 and −0.419, respectively). The resulting PCA scatterplot showed a clear separation
among plants grown in As− (on the negative side of PC1) and those grown in As+ (on the right side of
PC1). The first group clustered together, with no separation between different plant organs, while the
second group showed a further separation in two sub-clusters, in the second and fourth quadrant of the
centroid, respectively (Figure 1). The first sub-cluster grouped on the positive side of PC2 the grafting
combinations (self-grafted “Proteo”, “Proteo”/“Magnus”, and “Proteo”/“Dinero”) accumulating As
mainly in root, while the second sub-cluster grouped those combinations (“Proteo”/‘Strong Tosa’,
“Proteo”/“Shintoza”, and “Proteo”/“RS841”), accumulating As in the aerial parts of the plant, namely
shoot and pulp (Figure 1).

Table 8. Correlation coefficients for each trait with respect to the first two principal components,
eigenvalues, and relative and cumulative proportions of the explained variance.

Trait
Principal Component Coefficients

First Second

Asroot 0.556 0.830
Asshoot 0.589 −0.367
Aspulp 0.586 −0.419

Eigenvalue 2.75 0.21
Explained Variability (%) 91.91 7.07
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4. Discussion 

Figure 1. Principal Component Analysis scatter-plot based on total As concentration in root, shoot
and pulp of melon plant “Proteo” as a function of the grafting combination and As concentration of
the nutrient solution. Dotted lines group together treatments at different concentrations of As in the
nutrient solution, while solid lines group together the grafting combinations.

4. Discussion

The environmental As contamination is a worldwide health threat due to the toxic and carcinogenic
nature of this metalloid [29]. From an agricultural viewpoint, plants exposure to As− stress can cause
morphological, physiological, and biochemical changes, leading to altered photosynthesis, stunted
growth, reduced crop productivity, and worsened toxicological profile of the edible fractions [30].
In our experiment, the bioaccumulation factors values revealed that, even at a low As concentration
in the nutrient solution, melon behaves as an hyperaccumulator plant, following the gradient root
> shoot > fruit generally reported in literature [31]. However, when exposed to an As+ solution,
all the grafting combinations acted to limit the As entrance into the plant, as can be inferred from
the average reduction of BAFroot (−94.4%), BAFshoot (−98.1%), and BAFpulp (−99.6%). Nonetheless
plants exposure to As stress highlighted evidences of systemic stress, consisting in a decrease of the
whole aboveground dry biomass per plant, which mainly mirrored the reduction of both, stem and
leaf dry biomass per plant. The reduced plant growth in response to As toxicity originates from
complex alterations involving enzymes activity, induction of oxidative stresses, or altered nutrient
uptake and balance into the plant [32,33]. In the present experiment melon plants subjected to As
stress showed a decreased ability to maintain the normal growth equilibrium among plant fractions,
by partially losing (~20%) the ability of photosynthates investment into leaf biomass, so indicating
the main photosynthetic organs as an elective target of As-induced alterations. Leaf area, leaf area
ratio, and leaf weight ratio were predominantly affected by the As toxicity, more than leaf number,
indicating leaf cells proliferation and elongation as primarily affected by the As stress, more than leaf
cells differentiation. According to Koyama and Kikuzawa [34] and Ropokis et al. [35], leaf area is
a trait having a central role in determining the level of nutrient uptake, via the rate of whole plant
photosynthesis and transpiration. In this sense, the decreased leaf area we recorded suggests the
triggering of morpho-physiological modifications reducing the As entrance inside the plant, probably
by modulating the plant’s transpiration and nutrient demand.

Regarding photosynthesis, As accumulation in leaf tissues is responsible for key physiological
events such as chlorophyll degradation and leaf necrosis, decreased activity of the enzymes involved
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in photosynthetic metabolism, disturbance of photosynthates transport, and stomatal behavior [36,37].
This, apparently, was not reflected in our experiment where, besides the absence of any leaf necrosis
(data not shown), there was a general increase in leaf relative chlorophyll content, as can be inferred from
SPAD readings. This result is consistent with those of Zu et al. [37], which have reported that As is able
to promote chlorophyll content in leaf tissues, becoming harmful only above a threshold concentration.

The analysis of net photosynthetic rate revealed different degrees of sensibility to the As toxicity
among grafting combinations, with self-grafted “Proteo” experiencing a slight stimulation under
As stress, a feature opposite to that displayed by “Proteo”–“RS841” combination. Both trends were
associated to correspondingly similar patterns of water use efficiency, but not to any correlated change
in stomatal conductance, indicating that mechanisms beyond stomatal behavior are involved in
determining the photosynthetic response of As-stressed melon plants. Interestingly, under severe As
stress, the AN variations induced by the different rootstocks were not correlated to any corresponding
variation of the aboveground biomass per plant, so that AN and plant growth were apparently not
related to each other. Indeed, under As+ treatment, both whole plant and fruit biomass resulted
generally higher in “Proteo” grafted onto the C. maxima × C. moschata hybrids (namely “RS841”,
“Shintoza” and “Strong Tosa”; i.e., those rootstocks conferring no AN enhancement under As-enriched
nutrient solution). This seems to suggest a differential alteration of the energy balance of the plants,
likely attributable to different energy dissipation pathways involved in the As stress response [38].
The data of As speciation and partitioning we found seem to confirm such hypothesis. Indeed, when
exposed to the As+ treatment, the intraspecific rootstocks showed the highest total As concentration
in roots, but the lowest one under its inorganic form (from 31% to 49%), meaning that up to 69% of
their Asroot was present in organic and complexed form. This is the As form whose translocation
from root is hampered, because of bonds with thiol groups of root-synthetized phytochelatins and
subsequent sequestration into root cells vacuole [39]. On the contrary, the interspecific rootstocks
subjected to the As+ treatment, showed the lowest total As concentration in their root, demonstrating
their superior ability to buffer the As entrance into the plant from the nutrient solution. However, they
showed also the highest inorganic Asroot incidence (up to 81%; i.e., the most mobile As form from the
root organ) [39,40]. Inorganic As(III) is the main species suitable for transport trough xylem vessels
and/or root efflux, while As(V) is rapidly reduced in roots to As(III) and then transported from the root
cortical cells to the xylem vessels [40,41]. Accordingly, when growing under conditions of As stress, all
the interspecific rootstocks had the highest TFshoot and TFpulp values, with “Shintoza” and “Strong
Tosa” having also the highest concentration of As(III) in their roots. On the contrary, “Magnus” and
“Dinero” confirmed the lowest TFshoot and TFpulp values, respectively, since the highest incidence of
organic As into their roots.

Several authors have reported that the As uptake and translocation kinetics are mainly dependent
on its concentration in the root environment and plant species [42,43], with the diversity of the root
systems having a central role in determining differences among genotypes [44]. The PCA scatter
plot highlighted that the As concentration in the root environment had a pivotal role in triggering
different behaviors among rootstocks. Indeed, when exposed to the standard nutrient solution, all the
grafting combinations clustered together on the negative side of PC1 (indicating lower values of As
accumulation in plant tissues), without differences in terms of As partitioning inside the plant fractions.
The opposite was noticed under conditions of imposed As stress, so that the grafting combinations
clustered on the positive side of PC1, with a further distinction along the PC2 between rootstocks
promoting the As accumulation mainly in roots (i.e., the intraspecific rootstocks) and those promoting
its accumulation in shoot and pulp, namely “Shintoza” and “Strong Tosa”. “RS841” slightly diverged
from these latter owing to its ability to contain the As accumulation into the pulp.

The present study took into account the uptake and translocation of P too, given its peculiar
interaction with As, as well as for its role in improving the conversion of solar energy into new
plant biomass [45]. The complex interrelation between arsenate and phosphate in the substrate–plant
systems has brought, up to now, no univocal results in literature, since their interaction can be either
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synergistic or antagonistic, depending on the growing conditions [46]. In our experiment, both P
concentration and partitioning inside the plant were significantly modified by the As level in the
nutrient solution, so that in As-stressed plants prevailed an increased P concentration in root and
pulp, while a lowered one in shoot. This tendency was more marked when “Proteo” was grafted
onto the intraspecific combinations. To this end, the protective role of P against the As-induced lipid
peroxidation of cellular membranes has been suggested [47]. In this view, the selective increase in P
concentration inside the plant fractions could be the result of a melon response aimed at protecting
both root (the plant organ firstly exposed to the As pollution) and reproductive structures from the As
injury, this latter feature having been formerly described in rise [48]. On the other hand, the decreased
P concentration in shoot tissues seems well related to the decreased LA, LAR, and LWR per plant
recorded under conditions of As stress, so suggesting a possible role of P metabolism in buffering the
transpiration-driven As entrance inside the plant.

5. Conclusions

The outcome of this experiment shows that As uptake and translocation into melon plants were
both influenced by its concentration in the nutrient solution and by the genetic background of the
rootstock. All tested plants, when grown in an As-enriched solution, showed a high As mobility
in the substrate–plant continuum, resulting As accumulators most of all in root and shoot. Intra-
and interspecific rootstocks differently influenced the Asroot accumulation inside the plant, with the
interspecific hybrids proving a superior ability to limit the metalloid entrance into the roots. When
subjected to As stress, melon plants acted to limit the metalloid translocation from root to shoot and
pulp, so indicating the triggering of physiological mechanisms aimed at limiting the As diffusion inside
the plant. To this end, the intraspecific rootstocks displayed a better ability to retain the toxic metalloid
into the root system, most of all in an organic form. This feature suggests a higher efficiency of the
root chelation mechanisms of As, occurring, in turn, at the expenses of the photosynthetic balance.
The interspecific C. maxima × C. moschata rootstocks gave the best results in terms of fruit biomass
under conditions of As stress, so suggesting the possibility to exploit their superior bio-agronomical
potential with the aim to improve melon performances in heavily As-polluted areas. “RS841” proved
to be the best rootstock in the view of maximizing yield and minimizing, at the same time, the As
concentration into the fruit. Thus, the significant differences we found suggest the possibility to deepen
this area of research, with the aim of identifying rootstocks genotypes for their superior agronomic and
toxicological response to high As contamination in the root zone.
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