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Abstract: Genomic selection (GS) aims to incorporate molecular information directly into the
prediction of individual genetic merit. Regularized quantile regression (RQR) can be used to fit
models for all portions of a probability distribution of the trait, enabling the conditional quantile
that “best” represents the functional relationship between dependent and independent variables
to be chosen. The objective of this study was to predict the individual genetic merits of the traits
associated with flowering time (DFF—days to first flower; DTF—days to flower) in the common bean
using RQR and to compare the predictive abilities obtained from Random Regression Best Linear
Unbiased Predictor (RR-BLUP), Bayesian LASSO (BLASSO), BayesB, and RQR for predicting the
genetic merit. GS was performed using 80 genotypes of common beans genotyped for 380 single
nucleotide polymorphism (SNP) markers. Considering the “best” RQR fit models (RQR0.3 for DFF,
and RQR0.2 for DTF), the gains in predictive ability in relation to BLASSO, BayesB, and RR-BLUP
were 18.75%, 22.58%, and 15.15% for DFF, respectively, and 15.20%, 24.65%, and 12.55% for DTF,
respectively. The potential cultivars selected, considering the RQR “best” models, were among the
5% of cultivars with the lowest genomic estimated breeding value (GEBV) for the DFF and DTF
traits—the IAC Imperador, IPR Colibri, Capixaba Precoce, and IPR Andorinha were included in the
list of early cycle cultivars.

Keywords: Phaseolus vulgaris L.; linear model; conditional quantile; genome-enabled prediction

1. Introduction

Meuwissen et al. [1] introduced genomic selection (GS) as a means of incorporating molecular
information directly into the prediction of individual genetic merit. GS has been successfully used in
breeding to increase genetic gain per generation through early selection [2] and to improve prediction
accuracy [3].
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However, some statistical issues, for example, longitudinal [4] and non-normal [5] traits, still
pose a challenge for GS. Although several statistical methods have been proposed for GS as solutions
for multicollinearity and dimensionality, we believe there are limited reports in the literature that
generalize these methods to non-normal traits. Non-normal distributions can be found for some traits
in the fields of plant and animal breeding, for example, traits that measure the time until the occurrence
of specific events (such as flowering and parity [6,7]) and hormone concentrations [8].

Another issue is related to the residual heteroscedastic variance. This tends to be neglected by
existing methods, which focus on the mean of the conditional distribution, E(X|Y). Generally, in the
presence of heteroscedastic variance, which is frequently observed in high dimensional data sets such
as those found in GS studies, the sets of relevant covariates may differ when the different segments of
conditional distribution are considered [9].

Quantile regression (QR) is a method that can be used to address these issues [10]. QR allows
models to be fitted to all portions of the probability distribution of the trait, enabling a more complete
picture of the conditional distribution than a single estimate of the center [11]. This feature allows QR
to examine all of the conditional distributions, in order to investigate skewness and heteroscedasticity.
From a GS viewpoint, we can choose the “best” conditional quantile to represent the relationship
between the dependent and independent variables, thus increasing the accuracy of the genomic
estimated breeding value (GEBV) prediction of individual genetic merits [12]. However, because of
the high dimensionality commonly found in GS studies, a variation of QR, denoted by regularized
quantile regression (RQR) [13] should be considered. RQR uses an L1-norm penalty for simultaneously
controlling the variance of the fitted coefficients and performing automatic variable selection.

Among several breeding programs, the common bean (Phaseolus vulgaris L.) fits well in low-input
agricultural systems, which are commonly practiced in African and Latin American countries. Moreover,
the common bean is a key commodity for improving food security [14]. Besides productivity, traits
associated with the flowering time such as days to flowering (DTF) and days to first flower (DFF)
are important in the selection of the common bean. The identification of cultivars with an early
cycle (shorter time from planting to harvest) allows for the planning of harvests in periods of less
rain, the reduction of water consumption by irrigated crops, and earlier freeing of the area for crop
succession [15]. In addition, cultivars with an early cycle are exposed to the risk of plague and disease
for a shorter period of time.

In this context, we aimed to (1) predict the individual genetic merits of the traits associated with
the flowering time (DFF and DTF) in the common bean using RQR, and (2) to compare the predictive
abilities obtained for RQR, Random Regression Best Linear Unbiased Predictor (RR-BLUP), BayesB [1],
and Bayesian LASSO (BLASSO) [16] for predicting genetic merit.

2. Materials and Methods

2.1. Phenotypic and Genotypic Data

The phenotypic data were obtained from two experimental stations at the Federal University of
Viçosa, Minas Gerais State (MG), Brazil. One is located in Viçosa, MG (latitude 20º 45′ 14” S, longitude
42º 52′ 55” W, altitude 648m asl), and the other is in Coimbra, MG (latitude 20º 51′ 24” S, longitude
42º 48′ 10” W, altitude 720 m asl). Two phenological traits, DFF and DTF, were measured in eighty
common bean cultivars, which were studied between 1970 and 2013 by research institutions in Brazil
(Brazilian agricultural research corporation—Embrapa, Campinas Agronomic Institute—IAC, Federal
University of Viçosa—UFV, Paraná Agronomic Institute—IAPAR, Agricultural Research Company
of Minas Gerais—Epamig, Federal University of Lavras—UFLA, State Foundation for Agricultural
Research—Fepagro, Rural Extension and Agricultural Research Enterprise—Epagri, and FT seeds).

The cultivars were planted at each location in the dry-summer (February) and winter (July) seasons
of 2013 following a randomized complete block design with three replicates. The experimental plots
consisted of four 3 m long rows, spaced 0.5 m apart with 15 seeds sown per meter. Fertilization was
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applied according to the results of the soil analyses in order to ensure ideal conditions for development
and production. Insect pests, invasive plants, and weeds were controlled as needed, according to
the official recommendations for the common bean [17]. DFF was measured as the number of days
from planting until at least one plant presented a flower. DTF was measured as the number of days
from planting until at least 50% of the plants in a plot (replicate) had at least one open flower. These
experiments were developed by the bean breeding program at the Federal University of Viçosa, Brazil.
More details, such as the list of cultivars and research institutions are described in the literature [17,18].

The DNA samples were genotyped using the Vera Code1 BeadXpress platform (Illumina) at
the Biotechnology Laboratory of Embrapa (Goiania, GO, Brazil). A set of 384 single nucleotide
polymorphism (SNP) markers was selected as the oligo pool assay (OPA) SNP marker panel.
The genotype call was performed using GenomeStudio software version 2011.1 (Illumina, San Diego,
CA, USA), with call rate values ranging from 0.96 to 0.99, and GenTrain ≥ 0.46 for SNP clustering.

2.2. Phenotypic Data Analyses

The following statistical model of the phenological traits (DFF and DTF) was fit to the phenotypic
data set as follows:

yijk = µ+ gi + aj + gaij + bk(j) + εijk (1)

where yijk is the observed phenotype (DFF and DTF); µ is the overall mean; gi is the random effect of
the genotype (cultivar), i = 1 to 80, assumed to follow a normal distribution, with a mean of 0 and a
variance of σ2

g, with i = 1 to 80; aj is the fixed effect of environment j, with j = 1 to 4; gaij is the random
effect of the interaction of genotype i with environment j, assumed to follow a normal distribution with
a mean of 0 and variance of σ2

ga; bk(j) is the random effect of block (replicate) k (k = 1, 2, and 3) within
environment j, assumed to follow a normal distribution with a mean of 0 and variance of σ2

b ; and
εijk is the experimental error for genotype i in block k of environment j, assumed to follow a normal
distribution with a mean of 0 and variance of σ2

ε. Nascimento et al. [19] used the same data set to
evaluate models with and without the interaction between genotypes and environments through a
likelihood ratio test (LRT), and showed that the full model had better fit.

The corresponding bivariate model is as follows:[
yDFF
yDTF

]
=

[
XDFF 0

0 XDTF

][
bDFF

bDTF

]
+

[
ZgDFF 0

0 ZgDTF

][
gDFF
gDTF

]
+

[
ZgaDFF 0

0 ZgaDTF

][
gaDFF

gaDTF

]
+

[
ZrDFF 0

0 ZrDTF

][
rDFF

rDTF

]
+

[
εDFF

εDTF

] (2)

where yDFF and yDTF denote the vectors of observed DFF and DTF, respectively; XDFF and XDTF denote
the design matrices of the fixed effects for DFF and DTF, respectively; bDFF and bDTF denote the vectors
of the fixed effects associated with XDFF and XDTF, respectively; ZgDFF and ZgDTF denote the design
matrices of the random effect of the genotype for DFF and DTF, respectively; gDFF and gDTF denote
the vectors of the random effects with ZgDFF and ZgDTF; respectively; ZgaDFF and ZgaDTF denote the
design matrices of the random effect of the interaction of the genotype with the environment for DFF
and DTF, respectively; gaDFF and gaDTF denote the vectors of the random effects with ZgaDFF and
ZgaDTF, respectively; ZrDFF and ZrDTF denote the design matrices of the random effect of the block
(replicates) for DFF and DTF, respectively; rDFF and rDTF denote the vectors of the random effects with
ZrDFF and ZrDTF; respectively; and εDFF and εDTF denote the vectors of the random errors associated
with yDFF and yDTF, respectively. Assuming random effects distributed as a multivariate normal with
the mean equal to zero and a covariance matrix, is as follows:
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

gDFF
gDTF
gaDFF

gaDTF

rDFF

rDTF

εDFF

εDTF


=



Iσ2
g,DFF Iσg,DFF;DTF Iσg,00000 Iσg,00000 Iσg,00000 Iσg,00000 Iσg,00000 Iσg,00000

Iσg,DFF;DTF Iσ2
g,DTF Iσg,00000 Iσg,00000 Iσg,00000 Iσg,00000 Iσg,00000 Iσg,00000

Iσg,00000 Iσg,00000 Iσ2
ga,DFF Iσg,00000 Iσg,00000 Iσg,00000 Iσg,00000 Iσg,00000

Iσg,00000 Iσg,00000 Iσg,00000 Iσ2
ga,DTF Iσg,00000 Iσg,00000 Iσg,00000 Iσg,00000

Iσg,00000 Iσg,00000 Iσg,00000 Iσg,00000 Iσ2
r,DFF Iσg,00000 Iσg,00000 Iσg,00000

Iσg,00000 Iσg,00000 Iσg,00000 Iσg,00000 Iσg,00000 Iσ2
r,DTF Iσg,00000 Iσg,00000

Iσg,00000 Iσg,00000 Iσg,00000 Iσg,00000 Iσg,00000 Iσg,00000 Iσ2
ε,DFF Iσε,DFF;DTF

Iσg,00000 Iσg,00000 Iσg,00000 Iσg,00000 Iσg,00000 Iσg,00000 Iσε,DFF;DTF Iσ2
ε,DTF



(3)

where σ2
g,DFF and σ2

g,DFF denote the random genotypes variance for DFF and DTF, respectively;

Iσg,DFF;DTF denote the random genotype covariance between DFF and DTF; σ2
ga,DFF and Iσ2

ga,DTF denote

the random genotype by the environment variance for DFF and DFF, respectively; Iσ2
r,DFF and Iσ2

r,DTF
denote the effect of the block (replicates) variance for DFF and DFF, respectively; Iσ2

ε,DFF and Iσ2
ε,DTF

denote the random error variance for DFF and DTF, respectively; Iσε,DFF;DTF denotes the random error
covariance between DFF and DTF; and I denotes the identity matrix. The genetic parameters (broad
sense heritability and correlations) were also estimated for the flowering traits using components of
variance estimated by the bivariate model. The analyses were carried out in ASReml 3.0 [19].

2.3. Genomic Prediction Models

Prior to performing the genomic predictions, the adjusted phenotypes (Y∗i ) were obtained as the
sum of the random effects (genotypes and error) from the selected model for analyzing the phenotypic
data. Specifically, the adjusted phenotypes were obtained to correct for non-genetic sources of variation,
for example, blocks, environments, and the interaction between the genotypes and environments
(i.e., the combination of two locations (Viçosa and Coimbra, MG) and two seasons (dry and winter)).

The basic genomic model is represented by the following:

Y∗i = µ+
384∑

m=1

Ximβm + ei (4)

where Y∗i is the adjusted phenotype of the genotype, which is obtained as the sum of the random effects
(genotypes and error); µ is the population mean; Xim is the incidence of the mth SNP in the ith adjusted
phenotype of the genotype; and ei is the random error term associated with Y∗i .

Genomic prediction was performed using regularized quantile regression (RQR) [13]. RQR allows
the GEBV at different portions of a probability distribution of the traits to be obtained. This method
consists of obtaining parameter effects at level τ (θτ) that solve the following optimization problem:

θ̂τ = argminθ̂τ

 80∑
i=1

ρτ(ei) + λ
384∑

m=1

∣∣∣βmτ

∣∣∣ (5)

where τ indicates the quantile of interest,
∑384

m=1

∣∣∣βmτ

∣∣∣ is the sum of the absolute values of the regression
coefficients, and λ is the parameter that controls the strength of regularization. In the current study,
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we evaluated five quantiles—(τ): 0.2, 0.3, 0.5, 0.7, and 0.8. The parameter ρτ(·) is denoted as a check
function [10] and is defined by the following:

ρτ(ei) =

{
τ·ei, if ei ≥ 0,

−(1− τ)·ei, if ei < 0.
(6)

where τ ∈ ]0, 1[ indicates the quantile of interest. The constrained optimization problem was solved
using an algorithm that computes the exact solution for the model parameters [10].

GEBVs were obtained by GEBVτ = ûτ = Xβ̂τ, where τ represents the τth quantile of interest.
To define the “best” RQR fit, a grid of pair values given by combinations of τ (τ = 0.2, 0.3, 0.5, 0.7, 0.8)
and λ (from 0 until λ estimated by BLASSO, varying by 1), was considered. The predictive ability was
used as a criterion to define the optimal pair. The GEBVs were also obtained using RR-BLUP, BLASSO,
and BayesB.

In order to assess the predictive ability of all of the fitted models, the Pearson’s correlation between
the predicted values and the phenotypes were calculated using a four-fold cross-validation (CV)
random process. This process was repeated randomly 10 times. The folds were the same for each
fitted model.

The predictive abilities (PAs) and standard errors (SEs) were estimated from 10 estimates of the
predictive ability.

After obtaining the GEBVs through the fit models, the Cohen’s kappa [20] coefficient, and the
Spearman’s and Kendall’s τ correlations were calculated to assess the agreement between the methods.
The Cohen’s kappa coefficient was used to calculate the percentage of individuals in common between
the better 10% of individuals ranked according to the GEBVs. The Cohen’s kappa coefficient is given
by C = NC−CRandom/1−CRandom, where NC is the relative observed agreement among raters, and
CRandom is the hypothetical probability of the random agreement. The Spearman’s correlation was
calculated between the GEBV obtained by the different genomic selection models.

The RQR, RR-BLUP, BLASSO, and BayesB model fittings were carried out using the rq (for RQR)
and BGLR (RR-BLUP, BLASSO, and BayesB) functions in the quantreg [21] and BGLR [22] packages,
respectively, of R software [23]. The Bayesian methods were implemented using 200,000 Markov
chain Monte Carlo iterations, with burn-in and thin values at 10,000 and five iterations, respectively.
The convergence of the Markov chains was checked with the Geweke’s Diagnostic [24].

3. Results

A summary of the descriptive statistics including the means, standard deviations (SD), ranges,
and skewness for the phenological traits is presented in Table 1. The average days from planting until
at least one plant presents one flower (DFF) was 34.74. After an average of 42 days, more than 50% of
the plants in a plot presented at least one open flower (DTF; Table 1). The skewness coefficient shows
that the phenotypes have left-skewed distributions.

Table 1. Means, standard deviations (SD), ranges, and skewness for days to first flower (DFF) and days
to flowering (DTF), measured in 80 common bean genotypes.

Trait Mean (SD) Minimum Maximum Skewness

DFF (days) 34.74 (5.52) 20.00 49.00 −1.08
DTF (days) 42.30 (5.56) 27.00 55.00 −1.32

3.1. Model Selection and Genetic Parameters

The full model (model with the interaction effect) presented lower AIC (AICDFF: 2206, and
AICDTF: 2318) and BIC (BICDFF = 2225, and BICDTF = 2337) values compared with those obtained
from the reduced model (model without the interaction effect; AICDFF = 2233, and AICDTF = 2334;
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BICDFF = 2248, and BICDTF = 2348). The LRTs (LRTDFF = 29.8, and LRTDTF = 17.26) between the full
and reduced models were significantly different (p < 0.01) for both traits.

The estimates of heritability for DFF and DTF were moderate to high, with 0.58 ± 0.06 and
0.49 ± 0.08, respectively. For the estimates of the correlations between DFF with DTF, the genetic
correlations were positive and strong, with a correlation of 0.98 ± 0.01 and a phenotypic correlation of
0.68 ± 0.04.

3.2. Prediction Accuracy of Traits

The estimated predictive abilities for two traits (DFF and DTF) ranged from −0.06 (0.04) to
0.38 (0.02) and are presented in Table 2. For DFF and DTF, the highest accuracy values were 0.38 and
0.34, obtained from RQR0.3 and RQR0.2, respectively (Table 2).

Table 2. Predictive ability for days to first flower (DFF) and to flowering (DTF) measured in 80 common
bean genotypes, using a four-fold cross validation repeated 10 times for all of the fitted models
(Bayesian LASSO (BLASSO), BayesB, Random Regression Best Linear Unbiased Predictor (RR-BLUP),
and regularized quantile regression (RQR)).

Trait
Method

BLASSO BayesB RR-BLUP RQR0.2 RQR0.3 RQR0.5 RQR0.7 RQR0.8

DFF
PA 1 0.32 0.31 0.33 0.37 0.38 0.25 −0.02 −0.05
SE 2 0.03 0.02 0.03 0.03 0.02 0.04 0.03 0.06

DTF
PA 0.29 0.27 0.30 0.34 0.32 0.10 0.01 −0.06
SE 0.03 0.02 0.03 0.02 0.01 0.04 0.03 0.04

1 Predictive ability. 2 Standard error of parameters estimates.

Considering the “best” RQR fit models (RQR0.3 for DFF, and RQR0.2 for DTF), the gains in
predictive ability in relation to BLASSO, BayesB, and RR-BLUP were 18.75% (the ratio between the
predictive ability obtained from “best” RQR model fit and the other methods), 22.58%, and 15.15% for
DFF, respectively, and 15.20%, 24.65%, and 12.55% for DTF, respectively.

Estimates of the Spearman’s correlation (lower triangle) and Cohen’s kappa concordance coefficient
(upper triangle) between the GEBVs obtained by the “best” quantile fit models (RQR0.3 for DFF, and
RQR0.2 for DTF), and the BLASSO, BayesB, and RR-BLUP for the two traits are shown in Table 3.

Table 3. Estimates of Spearman’s correlation (lower triangle), Kendall’s τ rank correlation coefficient
(lower triangle—in parenthesis), and Cohen’s Kappa concordance coefficient2 (upper triangle) between
the genomic estimated breeding value (GEBV) values, obtained considering four different genomic
selection models (BLASSO, RR-BLUP, BayesB, and RQR1) for days to first flower (DFF) and to flowering
(DTF), measured in 80 common bean genotypes.

Traits Method BLASSO BayesB RR-BLUP RQR 1

DFF

BLASSO 1.00 1.00 0.63
BayesB 0.99 (0.90) 1.00 0.63

RR-BLUP 0.99 (0.99) 0.98 (0.89) 0.63
RQR 1 0.63 (0.36) 0.69 (0.41) 0.62 (0.32)

DTF

BLASSO 1.00 1.00 0.63
BayesB 0.99 (0.91) 1.00 0.63

RR-BLUP 1.00 (0.99) 0.99 (0.91) 0.63
RQR 1 0.67 (0.38) 0.73 (0.43) 0.65 (0.38)

1 The “best” RQR fit models (RQR0.3 for DFF and RQR0.2 for DTF) considering the predictive ability. 2 Based on the
lowest 10% GEBVs.
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Overall, the Spearman’s correlations presented high positive values. The lowest Spearman’s
correlation was estimated between the RR-BLUP and RQR0.3 (0.62) models for DFF. The highest
Spearman’s correlations were estimated for BLASSO with BayesB (0.99) and RR-BLUP (0.99) for
the DFF trait, and between the BLASSO and RR-BLUP (1.00) models for the DTF trait (Table 3).
The Kendall’s τ rank correlation coefficient estimates vary from moderate to high positive values.
For instance, the Kendall’s τ rank correlations between the RQR and BayesB, RR-BLUP, and BLASSO
present moderate values (0.32–0.43) for both traits.

After ranking the individuals according to the GEBVs, the percentage of selected individuals
in common was calculated using Cohen’s kappa coefficient and based on the lowest 10% GEBVs.
The lowest GEBVs represent those cultivars with an early cycle (shorter time from planting to harvest).

The lowest Cohen’s kappa coefficient value was observed between RR-BLUP and RQR0.2 (0.25) for
the DTF trait. The highest values were observed between BayesB with RR-BLUP (1.00) and BLASSO
(1.00) for DFF and DTF, respectively (Table 3, upper triangle).

The computational time to fit a model considering all of the four-fold processes varied from
0.28–264.08 s (Table 4). The Bayesian methods (BLASSO and BayesB) required a higher computational
time compared with the RR-BLUP (0.28) and RQR (178.38).

Table 4. Average computational cost (seconds).

Method Computational Time

BLASSO 264.08
BayesB 258.90

RR-BLUP 0.28
RQR 1 178.38 1

1 Time related to the fit of several models considering different quantile and shrinkage values.

4. Discussion

In this study, we predicted the individual genetic merits of the traits associated with the flowering
time (DFF and DTF) in the common bean using RQR models. Using 80 genotypes of common
beans genotyped for 384 markers, we compared the predictive ability of RQR to that obtained by
BLASSO, BayesB, and RR-BLUP. The predictive ability of these methods was assessed using a four-fold
cross-validation (CV) repeated 10 times. The Spearman’s correlation and Cohen’s kappa concordance
(based on the lowest 10% GEBVs) coefficients between the GEBV values estimated by the four different
genomic selection models used in this work were also estimated. However, first, the genetic parameters
were estimated for DFF and DTF.

The heritability estimates for DFF (0.58) and DTF (0.49) were consistent with those reported in
the literature. Specifically, the heritability estimate for DFF was within the range of estimates for the
different crosses in beans (0.29–0.75 [25]; 0.59 [26]). In addition, for DTF, the estimate was close to that
reported by the authors of [27], namely, 0.54. The estimates of the genetic and phenotypic correlations
between the flowering traits were positive and high, which are similar to those reported in [28] for the
phenological traits.

Overall, RQR outperformed the traditional methods for evaluating the two traits of DFF and DTF.
Indeed, the better results are reasonable since the RQR allows for estimating the functional relationships
between the variables for all portions of the probability distribution of the trait. The ability to choose
the “best” relationship between the phenotype and markers increases the predictive performance
of the model. According to the authors of [11] and [12], when the conditional distributions of Y are
non-normal (for instance, skewed), the mean might not be the best way to describe the functional
relationship between the variables.

The skewness coefficient for both traits (DFF and DTF) indicates a negative-skewed phenotypic
distribution, and the “best” quantile fit models were RQR0.3 for DFF, and RQR0.2 for DTF. Therefore,
our results indicate that to improve predictive ability, an effective strategy is to evaluate all of the
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phenotypic distributions so as to choose the “best” quantile fit model. In addition, the heterogeneous
variance that is frequently observed in high dimensional data sets suggests that a single slope is not
able to characterize changes over the probability distribution, therefore indicating that RQR is a good
tool to deal with those situations [29].

Overall, the models presented moderate to high values of Spearman’s correlations (Table 3).
On the other hand, the Kendall’s τ rank correlation, which is a statistic that measures the ordinal
association between two measured quantities, presented moderate correlations between RQR and
the traditional genomic selection methodologies. Additionally, based on Cohen’s kappa coefficient,
the classification agreement between the RQR and non-quantile regression models (BLASSO, BayesB,
and RR-BLUP) also showed moderate values (0.63) [30], suggesting differences in the classifications
obtained by these models.

Among the 5% of cultivars with the lowest GEBVs for the DFF and DTF traits, the IAC Imperador,
IPR Colibri, Capixaba Precoce, and IPR Andorinha were included in the list obtained by RQR “best”
models. These are considered as early cycle cultivars [31–33], indicating the model ability to select.
On the other hand, considering the GEBV obtained by BLASSO, BayesB, and RR-BLUP, the cultivar
IPR Andorinha was replaced by BRSMG Madrepérola, which is not characterized as an early cycle
cultivar [34].

Altogether, these results show that the use of RQR to predict the individual genetic merits of
flowering time-related traits in the common bean (DTF and DFF) is worthy of interest. RQR showed
similar or higher estimates of predictive ability compared with traditional methods (RR-BLUP, BLASSO,
and BayesB), and was able to find cultivars with an early cycle. Moreover, RQR allows for the fitting of
the regression models to other parts of the distribution of the trait, enabling a more informative study
of the relationship between variables. This approach can be useful for representing different selection
strategies (individuals with higher or lower values of the trait), or to give more information about
potential cultivars for selection.

Overall, the computational time does not present any problems as the higher value was less
than five minutes. The higher computational cost observed in the Bayesian methods is related to the
estimation process, which is based on Markov Chain Monte Carlo (MCMC) algorithms. The RQR
requires more computational time compared with RR-BLUP. The higher time observed in the RQR
fitting is related to the necessity of evaluating several quantile and shrinkage values to choose the
“best” model.

The potential of quantile regression (QR) has been confirmed by many studies. Briollais and
Durrieu [11] pointed out some aspects of the use of QR in genome-wide association studies (GWAS).
According to these authors, QR allows for direct estimation at the extremes, and specific sampling
is not needed. Extreme sampling is used to enrich the genetic signal, where the main idea is to
sample individuals with extreme phenotypes in the hope that rare causal variants will be enriched [35].
Recently, Nascimento et al. [18] used QR to identify genomic regions for phenological traits in the
common bean. Unlike the traditional single-SNP GWAS model, the QR methodology was able to find
SNP-trait associations considering one extreme quantile (τ = 0.1). Barroso et al. [29] successfully used
RQR for the SNP marker effect estimation of pig growth curves, as well as to identify the chromosome
regions of the most relevant markers and to estimate the genetic individual weight trajectory over time
under different quantiles. However, to the best of our knowledge, reports in the literature about the
use of QR for GS are limited. Therefore, here, we introduce the QR for plant breeders, bringing new
insights for GS studies.

Finally, QR uses all of the data set in the estimation process, which is different to using a subsample
of data, which can result in smaller sample sizes for each regression [36] and introduces sample
selection bias [37].
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5. Conclusions

The regularized quantile regression (RQR) method was able to predict the individual genetic
merits of the traits associated with the flowering time (DTF and DFF) in the common bean. In addition,
considering the estimates of predictive ability, RQR presented similar or better results compared with
those obtained for RR-BLUP, BLASSO, and BayesB. Moreover, RQR was able to find early cycle cultivars.
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